Efficient and Robust Model Selection for Quantitative Trait Loci Analysis in Inbred Lines

Brian S. Yandell

University of Wisconsin-Madison www.stat.wisc.edu/~yandell

with Jaya M. Satagopan, Sloan-Kettering Biostatistics,

Fei Zou, UNC Biostatistics and Patrick J. Gaffney, Lubrizol

NCSU Statistical Genetics, June 2002

June 2002

NCSU QTL II © Brian S. Yandell

1

<section-header>Goals • model selection with one QTL - review interval mapping basics • extensions of phenotype model • how to map non-normal data? • brief digression to multiple crosses • brief digression to multiple crosses • bayesian interval mapping • how to sample from the posterior? • model selection over multiple QTL = how many QTL are supported by data? • how to sample complicated model space?

log empirical likelihood details

 $log(L(\theta, \lambda | Y, X)) = sum_{i} log(f(Y_{i})) + log(w_{i})$ now profile with respect to β, λ $log(L(\beta, \lambda | Y, X)) = sum_{i} log(f_{i}) + log(w_{i})$ + sum_{Q} $\alpha_{Q}(1 - sum_{i} f_{i} \exp(Y_{i} \beta_{Q}))$ partial likelihood: set Lagrange multipliers α_{Q} to 0 point mass density estimates $f_{i} = \left[sum_{Q} \exp(Y_{i} \beta_{Q}) p(Q | X, \lambda)\right]^{-1}$ with $p(Q | X, \lambda) = sum_{i} pr(Q | X_{i}, \lambda)$

June 2002

NCSU QTL II © Brian S. Yandell

25

June 2002

-		C	Chro	mos	som	e co	ount	vec	tor		
т	1	2	3	4	5	6	7	8	9	10	Count
8	2	0	1	0	0	2	0	2	1	0	3371
9	3	0	1	0	0	2	0	2	1	0	751
7	2	0	1	0	0	2	0	1	1	0	377
9	2	0	1	0	0	3	0	2	1	0	218
9	2	0	1	0	0	2	0	2	2	0	198

	v	VIIUN	s goin		luuy	
chrom	position	LOD	effect	chrom	position	effect
n2	66.4	25.87	21.3	n10	45.0	9.24
n3	106.8	13.33	12.95	n2	66.9	22.4
n10	43.3	13.14	12.77		142.6	0.01
n2	154.0	10.69	11.3	112	142.0	9.01
n13	126.7	32.4	-5.78	n3	103.4	8.36
ble 8.5: Res	ult of CIM analys	sis for B. napus a	lataset.	Table 8.6: Estimate	s of QTL location an	d effect using BIM.
					-	, i i i i i i i i i i i i i i i i i i i

	to fo	orm of	prior	
Prior, pr(<i>m</i>)	B ₁₂	B ₂₃	B ₃₄	B ₄₅
Geometric(2/3)	0.129	0.773	0.954	1.019
Poisson(1)	0.128	0.775	0.941	1.013
Poisson(3)	0.130	0.766	0.954	1.003
Poisson(6)	0.132	0.775	0.963	1.009
Fast-decay poisson(1)	0.128	0.764	0.941	1.022
Fast-decay Poisson(4)	0.129	0.773	9.963	1.032
Uniform	0.133	0.774	0.960	0.99

QTL reversible jump MCMC: inbred lines

- Gaffney PJ (2001) An efficient reversible jump Markov chain Monte Carlo approach to detect multiple loci and their effects in inbred crosses. PhD dissertation, Department of Statistics, UW-Madison.
- JM Satagopan, BS Yandell (1996) Estimating the number of quantitative trait loci via Bayesian model determination, *Proc JSM Biometrics Section*.
- DA Stephens, RD Fisch (1998) Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo, *Biometrics* 54: 1334-1347.
- MJ Sillanpää, E Arjas (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data, *Genetics* 148: 1373-1388.
- R Waagepetersen, D Sorensen (1999) Understanding reversible jump MCMC, mailto:sorensen@inet.uni2.dk.
- N Yi, S Xu (2002) Mapping quantitative trait loci with epistatic effects. *Genet. Res. Camb.* 00: 000-000.

June 2002

NCSU QTL II © Brian S. Yandell

185

	many thanks	
Michael Newton	Tom Osborn	
Daniel Sorensen	David Butruille	
Daniel Gianola	Marcio Ferrera	
Jaya Satagopan	Josh Udahl	
Patrick Gaffney	Pablo Quijada	
Fei Zou	Alan Attie	
Liang Li	Jonathan Stoehr	
Yang Song	Hong Lan	
Chunfang Jin	USDA Hatch Grants	
June 2002	NCSU QTL II © Brian S. Yandell	193