

Bayes posterior for normal data		
model environment likelihood prior	$Y_i = \mu + E_i$ $E \sim N(0, \sigma^2), \sigma^2$ known $Y \sim N(\mu, \sigma^2)$ $\mu \sim N(\mu_0, \kappa \sigma^2), \kappa$ known	
posterior: single individual	mean tends to sample mean $\mu \sim N(\mu_0 + B_1(Y_1 - \mu_0), B_1\sigma^2)$	
sample of <i>n</i> individuals	$\mu \sim N \Big(B_n \overline{Y}_{\bullet} + (1 - B_n) \mu_0, B_n \sigma^2 / n \Big)$ with $\overline{Y}_{\bullet} = \sup_{\{i=1,\dots,n\}} Y_i / n$	
fudge factor (shrinks to 1)	$B_n = \frac{\kappa n}{\kappa n + 1} \to 1$	
Bayes	NCSU QTL II: Yandell © 2005	6

choice of multiple QTL priors

- phenotype influenced by genotype & environment $pr(Y/Q=q,\theta) \sim N(G_q, \sigma^2)$, or $Y = G_q$ + environment
- partition genotype-specific mean into QTL effects $G_q = \text{mean} + \text{main effects} + \text{epistatic interactions}$

$$G_q = \mu + \beta_q = \mu + \operatorname{sum}_{j \text{ in } M} \beta_{qj}$$

priors on mean and effects

~
$$N(\mu_0, \kappa_0 \sigma^2)$$
 grand mean

- $\beta_q \sim N(0, \kappa_1 \sigma^2)$ model-independent genotypic effect
- β_{ai} ~ $N(0, \kappa_1 \sigma^2 / |M|)$ effects down-weighted by size of M
- · determine hyper-parameters via empirical Bayes

$$\mu_0 \approx \overline{Y} \text{ and } \kappa_1 \approx \frac{h^2}{1-h^2} = \frac{\sigma_G^2}{\sigma^2}$$

NCSU QTL II: Yandell © 2005

19

Model

μ

<section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

