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1. what is the goal of QTL study?
• uncover underlying biochemistry

– identify how networks function, break down
– find useful candidates for (medical) intervention
– epistasis may play key role
– statistical goal: maximize number of correctly identified QTL

• basic science/evolution
– how is the genome organized?
– identify units of natural selection
– additive effects may be most important (Wright/Fisher debate)
– statistical goal: maximize number of correctly identified QTL

• select “elite” individuals
– predict phenotype (breeding value) using suite of characteristics 

(phenotypes) translated into a few QTL
– statistical goal: mimimize prediction error
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QTL

Marker Trait

cross two inbred lines 
→ linkage disequilibrium 

→ associations
→ linked segregating QTL

(after Gary Churchill)
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pragmatics of multiple QTL
• evaluate some objective for model given data

– classical likelihood
– Bayesian posterior

• search over possible genetic architectures (models)
– number and positions of loci
– gene action: additive, dominance, epistasis

• estimate “features” of model
– means, variances & covariances, confidence regions
– marginal or conditional distributions

• art of model selection
– how select “best” or “better” model(s)?
– how to search over useful subset of possible models?



QTL 2: Bayes Seattle SISG: Yandell © 2006 5

advantages of multiple QTL approach
• improve statistical power, precision

– increase number of QTL detected
– better estimates of loci: less bias, smaller intervals

• improve inference of complex genetic architecture
– patterns and individual elements of epistasis
– appropriate estimates of means, variances, covariances

• asymptotically unbiased, efficient
– assess relative contributions of different QTL

• improve estimates of genotypic values
– less bias (more accurate) and smaller variance (more precise)
– mean squared error = MSE = (bias)2 + variance
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limits of multiple QTL?
• limits of statistical inference

– power depends on sample size, heritability, environmental 
variation

– “best” model balances fit to data and complexity (model size)
– genetic linkage = correlated estimates of gene effects

• limits of biological utility
– sampling: only see some patterns with many QTL
– marker assisted selection (Bernardo 2001 Crop Sci)

• 10 QTL ok, 50 QTL are too many
• phenotype better predictor than genotype when too many QTL
• increasing sample size may not give multiple QTL any advantage

– hard to select many QTL simultaneously
• 3m possible genotypes to choose from
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QTL below detection level?
• problem of selection bias

– QTL of modest effect only detected sometimes
– their effects are biased upwards when detected

• probability that QTL detected
– avoids sharp in/out dichotomy
– avoid pitfalls of one “best” model
– examine “better” models with more probable QTL

• build m = number of QTL detected into QTL model
– directly allow uncertainty in genetic architecture
– model selection over genetic architecture
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• Reverend Thomas Bayes (1702-1761)
– part-time mathematician
– buried in Bunhill Cemetary, Moongate, London
– famous paper in 1763 Phil Trans Roy Soc London
– was Bayes the first with this idea? (Laplace?)

• basic idea (from Bayes’ original example)
– two billiard balls tossed at random (uniform) on table
– where is first ball if the second is to its left?

• prior: anywhere on the table
• posterior: more likely toward right end of table

2. Bayesian QTL mapping
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Bayes posterior for normal data

large prior variancesmall prior variance
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model yi = µ + ei
environment e ~ N( 0, σ2 ), σ2 known 
likelihood y ~ N( µ, σ2 )
prior µ ~ N( µ0, κσ2 ), κ known

posterior: mean tends to sample mean
single individual µ ~ N( µ0 + b1(y1 – µ0), b1σ2)

sample of n individuals

fudge factor
(shrinks to 1)

Bayes posterior for normal data
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Bayesian QTL: key players
• observed measurements

– y = phenotypic trait
– m = markers & linkage map
– i = individual index (1,…,n)

• missing data
– missing marker data
– q = QT genotypes

• alleles QQ, Qq, or qq at locus
• unknown quantities

– λ = QT locus (or loci)
– µ = phenotype model parameters
– H = QTL model/genetic architecture

• pr(q|m,λ,H) genotype model
– grounded by linkage map, experimental cross
– recombination yields multinomial for q given m

• pr(y|q,µ,H) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters µ (could be non-parametric)

observed X Y

missing Q

unknown λ θ

after
Sen Churchill (2001)
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pr(y|q,µ) phenotype model
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posterior centered on sample genotypic mean
but shrunken slightly toward overall mean 
prior:

posterior:

fudge factor:

Bayes posterior QTL means
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• partition genotype-specific mean into QTL effects
µq = mean + main effects + epistatic interactions
µq = µ + βq = µ + sumj in H βqj

• priors on mean and effects
µ ~  N(µ0, κ0σ2) grand mean
βq ~  N(0, κ1σ2) model-independent genotypic effect
βqj ~  N(0, κ1σ2/|H|) effects down-weighted by size of H

• determine hyper-parameters via empirical Bayes

partition of multiple QTL effects
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λ

1m 2m 3m 4m 5m 6m

pr(q|m,λ) recombination model
pr(q|m,λ) = pr(geno | map, locus) ≈
pr(geno | flanking markers, locus)

distance along chromosome

q?
markers
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how does phenotype Y improve 
posterior for genotype Q?
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posterior on QTL genotypes
• full conditional for q depends data for individual i

– proportional to prior pr(q | mi, λ )
• weight toward q that agrees with flanking markers

– proportional to likelihood pr(yi|q,µ)
• weight toward q so that group mean µq ≈ yi

• phenotype and prior recombination may conflict
– posterior recombination balances these two weights
– this is “E step” in EM for classical QTL analysis
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Bayesian model posterior
• augment data (y,m) with unknowns q
• study unknowns (µ,λ,q) given data (y,m)

– properties of posterior pr(µ,λ,q | y,m )
• sample from posterior in some clever way

– multiple imputation or MCMC
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Bayesian priors for QTL
• missing genotypes q

– pr( q | m, λ )
– recombination model is formally a prior

• effects ( µ, σ2 )
– prior = pr( µq | σ2 ) pr(σ2 ) 
– use conjugate priors for normal phenotype

• pr( µq | σ2 ) = normal
• pr(σ2 ) = inverse chi-square

• each locus λ may be uniform over genome
– pr(λ | m ) = 1 / length of genome

• combined prior
– pr( q, µ, λ | m ) = pr( q | m, λ ) pr( µ ) pr(λ | m ) 
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3. Markov chain sampling of architectures
• construct Markov chain around posterior

– want posterior as stable distribution of Markov chain
– in practice, the chain tends toward stable distribution

• initial values may have low posterior probability
• burn-in period to get chain mixing well

• hard to sample (q, µ , λ, H) from joint posterior
– update (q,µ,λ) from full conditionals for model H
– update genetic architecture H
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MCMC sampling of (λ,q,µ)
• Gibbs sampler

– genotypes q
– effects µ
– not loci λ

• Metropolis-Hastings sampler
– extension of Gibbs sampler
– does not require normalization

• pr( q | m ) = sumλ pr( q | m, λ ) pr(λ )
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full conditional for locus
• cannot easily sample from locus full conditional

pr(λ |y,m,µ,q) = pr( λ | m,q)
= pr( q | m, λ ) pr(λ ) / constant

• constant is very difficult to compute explicitly
– must average over all possible loci λ over genome
– must do this for every possible genotype q

• Gibbs sampler will not work in general
– but can use method based on ratios of probabilities
– Metropolis-Hastings is extension of Gibbs sampler
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Gibbs sampler idea
• toy problem

– want to study two correlated effects
– could sample directly from their bivariate distribution

• instead use Gibbs sampler:
– sample each effect from its full conditional given the other
– pick order of sampling at random
– repeat many times
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Gibbs sampler samples: ρ = 0.6
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Metropolis-Hastings idea
• want to study distribution f(λ)

– take Monte Carlo samples
• unless too complicated

– take samples using ratios of f
• Metropolis-Hastings samples:

– propose new value λ*

• near (?) current value λ
• from some distribution g

– accept new value with prob a
• Gibbs sampler: a = 1 always
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Metropolis-Hastings samples
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4. sampling across architectures 
• search across genetic architectures M of various sizes

– allow change in number of QTL
– allow change in types of epistatic interactions

• methods for search
– reversible jump MCMC
– Gibbs sampler with loci indicators

• complexity of epistasis
– Fisher-Cockerham effects model
– general multi-QTL interaction & limits of inference
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model selection in regression
• consider known genotypes q at 2 known loci λ

– models with 1 or 2 QTL
• jump between 1-QTL and 2-QTL models
• adjust parameters when model changes

– βq1 estimate changes between models 1 and 2
– due to collinearity of QTL genotypes
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collinear QTL = correlated effects
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• linked QTL = collinear genotypes
correlated estimates of effects (negative if in coupling phase)
sum of linked effects usually fairly constant
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reversible jump MCMC idea

• Metropolis-Hastings updates: draw one of three choices
– update m-QTL model with probability 1-b(m+1)-d(m)

• update current model using full conditionals
• sample m QTL loci, effects, and genotypes

– add a locus with probability b(m+1)
• propose a new locus and innovate new genotypes & genotypic effect
• decide whether to accept the “birth” of new locus

– drop a locus with probability d(m)
• propose dropping one of existing loci
• decide whether to accept the “death” of locus

• Satagopan Yandell (1996, 1998); Sillanpaa Arjas (1998); Stevens Fisch (1998)
– these build on RJ-MCMC idea of Green (1995); Richardson Green (1997)

0 Lλ1 λm+1 λmλ2 …
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Gibbs sampler with loci indicators  
• consider only QTL at pseudomarkers

– every 1-2 cM
– modest approximation with little bias

• use loci indicators in each pseudomarker
– δ = 1 if QTL present
– δ = 0 if no QTL present

• Gibbs sampler on loci indicators δ
– relatively easy to incorporate epistasis
– Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)

• (see earlier work of Nengjun Yi and Ina Hoeschele)

 2211 qqq βδβδµµ ++=
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5. Gene Action and Epistasis
additive, dominant, recessive, general effects

of a single QTL (Gary Churchill)
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additive effects of two QTL
(Gary Churchill)

µq = µ + βq1 + βq2
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Epistasis (Gary Churchill)

The allelic state at one locus can mask or 

uncover the effects of allelic variation at another.

- W. Bateson, 1907.
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epistasis in parallel pathways (GAC)
• Z keeps trait value low

• neither E1 nor E2 is rate 
limiting

• loss of function alleles are
segregating from parent A at 
E1 and from parent B at E2
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epistasis in a serial pathway (GAC)

ZX Y
E1 E2

• Z keeps trait value high

• neither E1 nor E2 is rate 
limiting

• loss of function alleles are
segregating from parent B at 
E1 and from parent A at E2
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QTL with epistasis
• same phenotype model overview

• partition of genotypic value with epistasis

• partition of genetic variance & heritability
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epistatic interactions
• model space issues

– 2-QTL interactions only? 
• or general interactions among multiple QTL?

– partition of effects
• Fisher-Cockerham or tree-structured or ? 

• model search issues
– epistasis between significant QTL

• check all possible pairs when QTL included?
• allow higher order epistasis?

– epistasis with non-significant QTL
• whole genome paired with each significant QTL?
• pairs of non-significant QTL?

• Yi Xu (2000) Genetics; Yi, Xu, Allison (2003) Genetics; Yi et al. (2005) Genetics
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limits of epistatic inference
• power to detect effects

– epistatic model size grows exponentially
• |H| = 3nqtl for general interactions

– power depends on ratio of n to model size
• want n / |H| to be fairly large (say > 5)
• n = 100, nqtl = 3, n / |H| ≈ 4

• empty cells mess up adjusted (Type 3) tests
– missing q1Q2 / q1Q2 or q1Q2q3 / q1Q2q3 genotype
– null hypotheses not what you would expect
– can confound main effects and interactions
– can bias AA, AD, DA, DD partition
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6. comparing QTL models

• balance model fit with model "complexity“
– want maximum likelihood
– without too complicated a model

• information criteria quantifies the balance
– Bayes information criteria (BIC) for likelihood
– Bayes factors for Bayesian approach
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Bayes factors & BIC

• what is a Bayes factor?
– ratio of posterior odds to prior odds
– ratio of model likelihoods

• BF is equivalent to LR statistic when
– comparing two nested models
– simple hypotheses (e.g. 1 vs 2 QTL)

• BF is equivalent to Bayes Information Criteria (BIC)
– for general comparison of any models
– want Bayes factor to be substantially larger than 1 (say 10 or more)
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Bayes factors and genetic model H
• H = number of QTL

– prior pr(H) chosen by user
– posterior pr(H|y,m)

• sampled marginal histogram
• shape affected by prior pr(H)

• pattern of QTL across genome
• gene action and epistasis
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issues in computing Bayes factors
• BF insensitive to shape of prior on nqtl

– geometric, Poisson, uniform
– precision improves when prior mimics posterior

• BF sensitivity to prior variance on effects θ
– prior variance should reflect data variability
– resolved by using hyper-priors

• automatic algorithm; no need for user tuning

• easy to compute Bayes factors from samples
– sample posterior using MCMC
– posterior pr(nqtl|y,m) is marginal histogram


