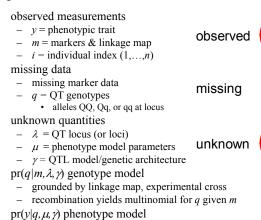
Bayesian Interval Mapping

1.	Bayesian strategy	3-19
2.	Markov chain sampling	20-27
3.	sampling genetic architectures	28-35
4.	criteria for model selection	36-44

QTL 2: Bayes

Seattle SISG: Yandell © 2008

QTL model selection: key players



distribution shape (assumed normal here)

- unknown parameters μ (could be non-parametric)

m q μ after

Sen Churchill (2001)

QTL 2: Bayes Seattle SISG: Yandell © 2008

1. Bayesian strategy for QTL study

- augment data (y,m) with missing genotypes q
- study unknowns (μ, λ, γ) given augmented data (y, m, q)
 - find better genetic architectures γ
 - find most likely genomic regions = QTL = λ
 - estimate phenotype parameters = genotype means = μ
- sample from posterior in some clever way
 - multiple imputation (Sen Churchill 2002)
 - Markov chain Monte Carlo (MCMC)
 - (Satagopan et al. 1996; Yi et al. 2005, 2007)

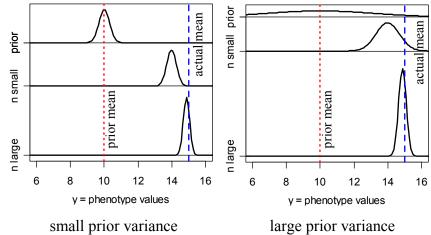
$$posterior = \frac{likelihood*prior}{constant}$$

posterior for
$$q, \mu, \lambda, \gamma = \frac{\text{phenotype likelihood}*[\text{prior for } q, \mu, \lambda, \gamma]}{\text{constant}}$$

$$\operatorname{pr}(q, \mu, \lambda, \gamma \mid y, m) = \frac{\operatorname{pr}(y \mid q, \mu, \gamma) * [\operatorname{pr}(q \mid m, \lambda, \gamma) \operatorname{pr}(\mu \mid \gamma) \operatorname{pr}(\lambda \mid m, \gamma) \operatorname{pr}(\gamma)]}{\operatorname{pr}(y \mid m)}$$
T. 2: Bayes Seattle SISG: Yandell © 2008

QTL 2: Bayes

Bayes posterior for normal data



QTL 2: Bayes

Seattle SISG: Yandell © 2008

Bayes posterior for normal data

model $y_i = \mu + e_i$

environment $e \sim N(0, \sigma^2), \sigma^2$ known

likelihood $y \sim N(\mu, \sigma^2)$

prior $\mu \sim N(\mu_0, \kappa \sigma^2)$, κ known

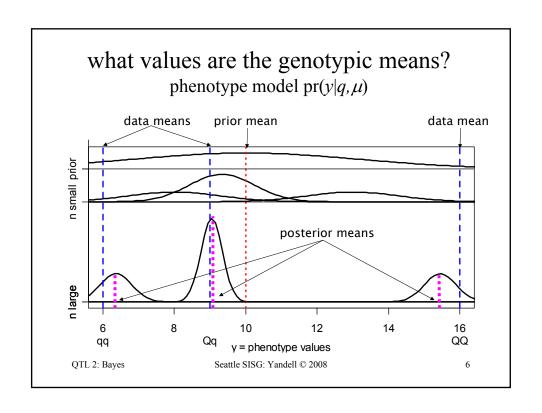
posterior: mean tends to sample mean single individual $\mu \sim N(\mu_0 + b_1(y_1 - \mu_0), b_1\sigma^2)$

sample of *n* individuals $\mu \sim N(b_n \overline{y}_{\bullet} + (1 - b_n)\mu_0, b_n \sigma^2 / n)$

with $\overline{y}_{\bullet} = \sup_{\{i=1,\dots,n\}} y_i / n$

shrinkage factor (shrinks to 1) $b_n = \frac{\kappa n}{\kappa n + 1} \rightarrow 1$

QTL 2: Bayes Seattle SISG: Yandell © 2008



Bayes posterior QTL means

posterior centered on sample genotypic mean but shrunken slightly toward overall mean

phenotype mean:
$$E(y | q) = \mu_q$$
 $V(y | q) = \sigma^2$

genotypic prior:
$$E(\mu_q) = \bar{y}_{\bullet}$$
 $V(\mu_q) = \kappa \sigma^2$

posterior:
$$E(\mu_q \mid y) = b_q \overline{y}_q + (1 - b_q) \overline{y}_{\bullet} \quad V(\mu_q \mid y) = b_q \sigma^2 / n_q$$

$$n_q = \operatorname{count}\{q_i = q\} \qquad \overline{y}_q = \sup_{\{q_i = q\}} y_i / n_q$$

shrinkage:
$$b_q = \frac{\kappa n_q}{\kappa n_q + 1} \rightarrow 1$$

QTL 2: Bayes Seattle SISG: Yandell © 2008

partition genotypic effects on phenotype

- phenotype depends on genotype
- genotypic value partitioned into
 - main effects of single QTL
 - epistasis (interaction) between pairs of QTL

$$\mu_q = \beta_0 + \beta_q = E(Y;q)$$

$$\beta_q = \beta(q_2) + \beta(q_2) + \beta(q_1,q_2)$$

QTL 2: Bayes

Seattle SISG: Yandell © 2008

partitition genotypic variance

- consider same 2 QTL + epistasis
- centering variance $V(\beta_0) = \kappa_0 \sigma^2 = s^2$
- genotypic variance $V(\beta_q) = \kappa_1 \sigma^2 = \sigma_q^2 = \sigma_1^2 + \sigma_2^2 + \sigma_{12}^2$
- heritability $h_q^2=rac{\sigma_q^2}{\sigma_q^2+\sigma^2}=h_1^2+h_2^2+h_{12}^2$

QTL 2: Bayes

Seattle SISG: Yandell © 2008

Q

posterior mean \approx LS estimate

$$\beta_q \mid y \sim N(b_q \hat{\beta}_q, b_q C_q \sigma^2)$$

$$\approx N(\hat{\beta}_q, C_q \sigma^2)$$

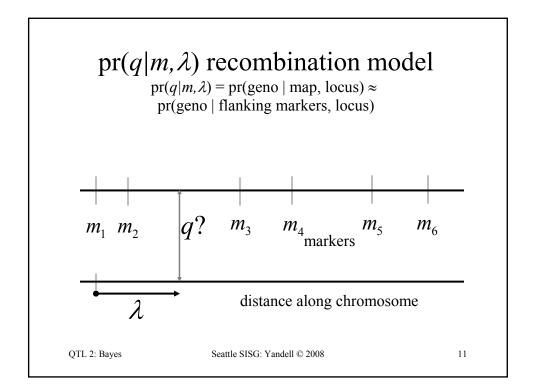
LS estimate $\hat{\beta}_q = \text{sum}_i[\text{sum}_j \hat{\beta}(q_{ij})] = \text{sum}_i w_{qi} y_i$

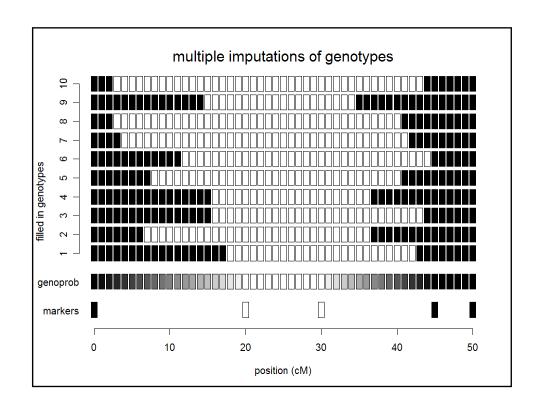
variance
$$V(\hat{\beta}_q) = \text{sum}_i w_{qi}^2 \sigma^2 = C_q \sigma^2$$

shrinkage
$$b_q = \kappa_1 / (\kappa_1 + C_q) \rightarrow 1$$

QTL 2: Bayes

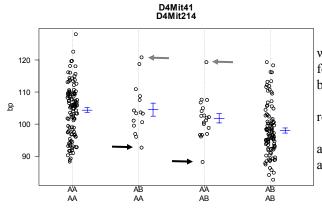
Seattle SISG: Yandell © 2008





what are likely QTL genotypes q?

how does phenotype y improve guess?



Genotype

what are probabilities for genotype *q* between markers?

recombinants AA:AB

all 1:1 if ignore *y* and if we use *y*?

QTL 2: Bayes

Seattle SISG: Yandell © 2008

13

posterior on QTL genotypes q

- full conditional of q given data, parameters
 - proportional to prior $pr(q \mid m, \lambda)$
 - weight toward q that agrees with flanking markers
 - proportional to likelihood pr($y \mid q, \mu$)
 - \bullet weight toward q with similar phenotype values
 - posterior recombination model balances these two
- this is the E-step of EM computations

$$\operatorname{pr}(q \mid y, m, \mu, \lambda) = \frac{\operatorname{pr}(y \mid q, \mu) * \operatorname{pr}(q \mid m, \lambda)}{\operatorname{pr}(y \mid m, \mu, \lambda)}$$

QTL 2: Bayes

Seattle SISG: Yandell © 2008

Where are the loci λ on the genome?

- prior over genome for QTL positions
 - flat prior = no prior idea of loci
 - or use prior studies to give more weight to some regions
- posterior depends on QTL genotypes q

$$\operatorname{pr}(\lambda \mid m,q) = \operatorname{pr}(\lambda) \operatorname{pr}(q \mid m,\lambda) / \operatorname{constant}$$

- constant determined by averaging
 - over all possible genotypes q
 - over all possible loci λ on entire map
- no easy way to write down posterior

QTL 2: Bayes

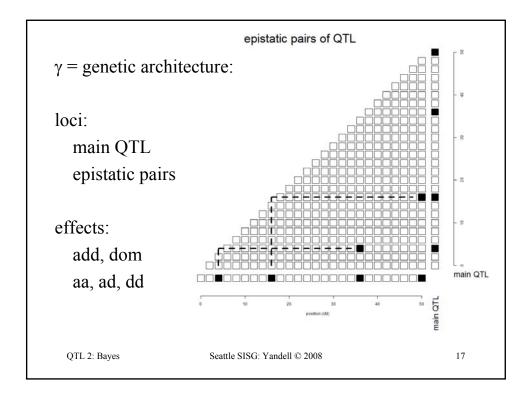
Seattle SISG: Yandell © 2008

15

what is the genetic architecture γ ?

- which positions correspond to QTLs?
 - priors on loci (previous slide)
- which QTL have main effects?
 - priors for presence/absence of main effects
 - same prior for all QTL
 - can put prior on each d.f. (1 for BC, 2 for F2)
- which pairs of QTL have epistatic interactions?
 - prior for presence/absence of epistatic pairs
 - depends on whether 0,1,2 QTL have main effects
 - epistatic effects less probable than main effects

QTL 2: Bayes Seattle SISG: Yandell © 2008



Bayesian priors & posteriors

- augmenting with missing genotypes q
 - prior is recombination model
 - posterior is (formally) E step of EM algorithm
- sampling phenotype model parameters μ
 - prior is "flat" normal at grand mean (no information)
 - posterior shrinks genotypic means toward grand mean
 - (details for unexplained variance omitted here)
- sampling QTL loci λ
 - prior is flat across genome (all loci equally likely)
- sampling QTL genetic architecture model γ
 - number of QTL
 - · prior is Poisson with mean from previous IM study
 - genetic architecture of main effects and epistatic interactions
 - priors on epistasis depend on presence/absence of main effects

2. Markov chain sampling

- construct Markov chain around posterior
 - want posterior as stable distribution of Markov chain
 - in practice, the chain tends toward stable distribution
 - initial values may have low posterior probability
 - · burn-in period to get chain mixing well
- sample QTL model components from full conditionals
 - sample locus λ given q, γ (using Metropolis-Hastings step)
 - sample genotypes q given λ, μ, y, γ (using Gibbs sampler)
 - sample effects μ given q, y, γ (using Gibbs sampler)
 - sample QTL model γ given λ, μ, y, q (using Gibbs or M-H)

$$(\lambda, q, \mu, \gamma) \sim \operatorname{pr}(\lambda, q, \mu, \gamma \mid y, m)$$

$$(\lambda, q, \mu, \gamma)_1 \rightarrow (\lambda, q, \mu, \gamma)_2 \rightarrow \cdots \rightarrow (\lambda, q, \mu, \gamma)_N$$

QTL 2: Bayes Seattle SISG: Yandell © 2008

19

MCMC sampling of unknowns (q, μ, λ) for given genetic architecture γ

- Gibbs sampler
 - genotypes q
 - effects μ
 - not loci λ

$$q \sim \operatorname{pr}(q \mid y_{i}, m_{i}, \mu, \lambda)$$

$$\mu \sim \frac{\operatorname{pr}(y \mid q, \mu)\operatorname{pr}(\mu)}{\operatorname{pr}(y \mid q)}$$

$$\lambda \sim \frac{\operatorname{pr}(q \mid m, \lambda)\operatorname{pr}(\lambda \mid m)}{\operatorname{pr}(q \mid m)}$$

- Metropolis-Hastings sampler
 - extension of Gibbs sampler
 - does not require normalization
 - $\operatorname{pr}(q \mid m) = \operatorname{sum}_{\lambda} \operatorname{pr}(q \mid m, \lambda) \operatorname{pr}(\lambda)$

QTL 2: Bayes

Seattle SISG: Yandell © 2008

Gibbs sampler for two genotypic means

- want to study two correlated effects
 - could sample directly from their bivariate distribution
 - assume correlation ρ is known
- instead use Gibbs sampler:
 - sample each effect from its full conditional given the other
 - pick order of sampling at random
 - repeat many times

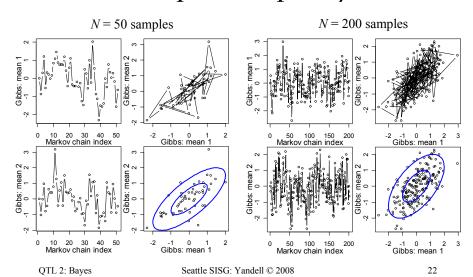
$$\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}$$
$$\mu_1 \sim N \left(\rho \mu_2, 1 - \rho^2 \right)$$
$$\mu_2 \sim N \left(\rho \mu_1, 1 - \rho^2 \right)$$

QTL 2: Bayes

Seattle SISG: Yandell © 2008

21

Gibbs sampler samples: $\rho = 0.6$



full conditional for locus

- cannot easily sample from locus full conditional $pr(\lambda | y, m, \mu, q) = pr(\lambda | m, q)$ = $pr(q | m, \lambda) pr(\lambda) / constant$
- constant is very difficult to compute explicitly
 - must average over all possible loci λ over genome
 - must do this for every possible genotype q
- Gibbs sampler will not work in general
 - but can use method based on ratios of probabilities
 - Metropolis-Hastings is extension of Gibbs sampler

QTL 2: Bayes

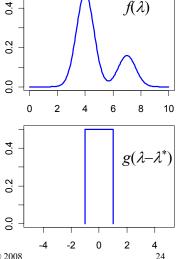
Seattle SISG: Yandell © 2008

23

Metropolis-Hastings idea

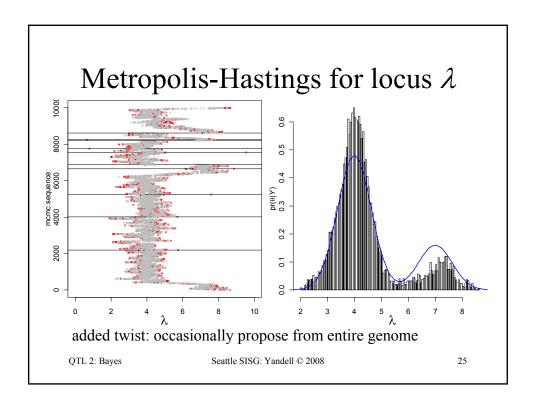
- want to study distribution $f(\lambda)$
 - take Monte Carlo samples
 - unless too complicated
 - take samples using ratios of f
- Metropolis-Hastings samples:
 - propose new value λ^*
 - near (?) current value λ
 - from some distribution g
 - accept new value with prob a
 - Gibbs sampler: a = 1 always

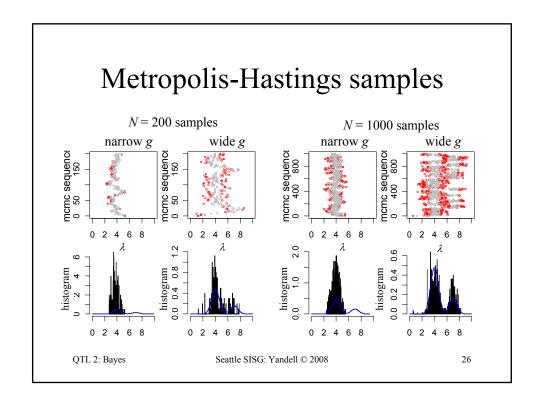
$$a = \min\left(1, \frac{f(\lambda^*)g(\lambda^* - \lambda)}{f(\lambda)g(\lambda - \lambda^*)}\right)$$



QTL 2: Bayes

Seattle SISG: Yandell © 2008





3. sampling genetic architectures

- search across genetic architectures A of various sizes
 - allow change in number of QTL
 - allow change in types of epistatic interactions
- methods for search
 - reversible jump MCMC
 - Gibbs sampler with loci indicators
- complexity of epistasis
 - Fisher-Cockerham effects model
 - general multi-QTL interaction & limits of inference

QTL 2: Bayes

Seattle SISG: Yandell © 2008

27

reversible jump MCMC

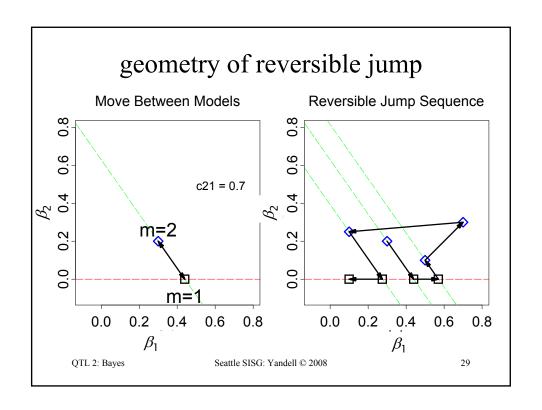
- consider known genotypes q at 2 known loci λ
 - models with 1 or 2 QTL
- M-H step between 1-QTL and 2-QTL models
 - model changes dimension (via careful bookkeeping)
 - consider mixture over QTL models H

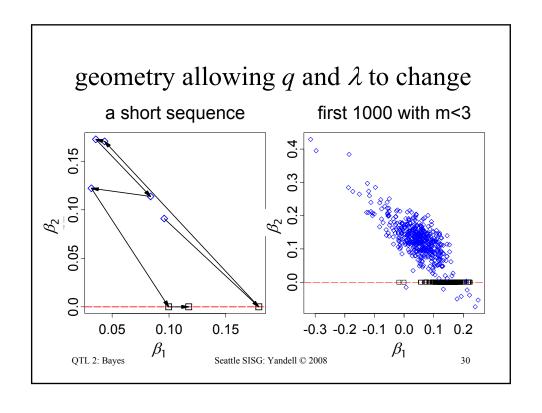
$$\gamma = 1 \text{ QTL} : Y = \beta_0 + \beta(q_1) + e$$

$$\gamma = 2 \text{ QTL} : Y = \beta_0 + \beta(q_1) + \beta(q_2) + e$$

QTL 2: Bayes

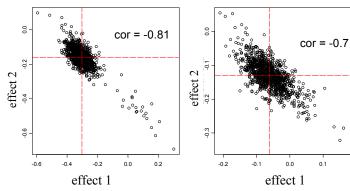
Seattle SISG: Yandell © 2008





collinear QTL = correlated effects

8-week



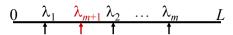
- linked QTL = collinear genotypes
 - > correlated estimates of effects (negative if in coupling phase)
 - > sum of linked effects usually fairly constant

QTL 2: Bayes

Seattle SISG: Yandell © 2008

31

sampling across QTL models γ



action steps: draw one of three choices

- update QTL model γ with probability 1- $b(\gamma)$ - $d(\gamma)$
 - update current model using full conditionals
 - sample QTL loci, effects, and genotypes
- add a locus with probability $b(\gamma)$
 - propose a new locus along genome
 - innovate new genotypes at locus and phenotype effect
 - decide whether to accept the "birth" of new locus
- drop a locus with probability $d(\gamma)$
 - propose dropping one of existing loci
 - decide whether to accept the "death" of locus

QTL 2: Bayes

Seattle SISG: Yandell © 2008

Gibbs sampler with loci indicators

- consider only QTL at pseudomarkers
 - every 1-2 cM
 - modest approximation with little bias
- use loci indicators in each pseudomarker
 - $\gamma = 1$ if QTL present
 - $\gamma = 0$ if no QTL present
- Gibbs sampler on loci indicators γ
 - relatively easy to incorporate epistasis
 - Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)
 - (see earlier work of Nengjun Yi and Ina Hoeschele)

$$\mu_q = \mu + \gamma_1 \beta(q_1) + \gamma_2 \beta(q_2), \ \gamma_k = 0.1$$

QTL 2: Bayes

Seattle SISG: Yandell © 2008

33

Bayesian shrinkage estimation

- soft loci indicators
 - strength of evidence for λ_i depends on γ
 - 0 ≤ γ ≤ 1 (grey scale)
 - shrink most ½s to zero
- Wang et al. (2005 Genetics)
 - Shizhong Xu group at U CA Riverside

$$\mu_{q} = \beta_{0} + \gamma_{1}\beta_{1}(q_{1}) + \gamma_{2}\beta_{2}(q_{1}), \ 0 \le \gamma_{k} \le 1$$

QTL 2: Bayes

Seattle SISG: Yandell © 2008

4. criteria for model selection balance fit against complexity

- classical information criteria
 - penalize likelihood L by model size $|\gamma|$
 - $-IC = -2 \log L(\gamma | y) + \text{penalty}(\gamma)$
 - maximize over unknowns
- Bayes factors
 - marginal posteriors $pr(y \mid y)$
 - average over unknowns

OTL 2: Baves

Seattle SISG: Yandell © 2008

35

classical information criteria

- start with likelihood $L(\gamma | y, m)$
 - measures fit of architecture (γ) to phenotype (y)
 - given marker data (m)
 - genetic architecture (γ) depends on parameters
 - have to estimate loci (μ) and effects (λ)
- complexity related to number of parameters
 - $|\gamma| = \text{size of genetic architecture}$
 - BC: $|\gamma| = 1 + n.qtl + n.qtl(n.qtl 1) = 1 + 4 + 12 = 17$
 - F2: $|\gamma| = 1 + 2n.qtl + 4n.qtl(n.qtl 1) = 1 + 8 + 48 = 57$

QTL 2: Bayes

Seattle SISG: Yandell © 2008

classical information criteria

- construct information criteria
 - balance fit to complexity
 - Akaike AIC = $-2 \log(L) + 2 |\gamma|$
 - Bayes/Schwartz BIC = $-2 \log(L) + |\gamma| \log(n)$
 - Broman BIC_{δ} = -2 log(L) + $\delta |\gamma| \log(n)$
 - general form: IC = $-2 \log(L) + |\gamma| D(n)$
- compare models
 - hypothesis testing: designed for one comparison
 - $2 \log[LR(\gamma_1, \gamma_2)] = L(y|m, \gamma_2) L(y|m, \gamma_1)$
 - model selection: penalize complexity
 - $IC(\gamma_1, \gamma_2) = 2 log[LR(\gamma_1, \gamma_2)] + (|\gamma_2| |\gamma_1|) D(n)$

QTL 2: Bayes

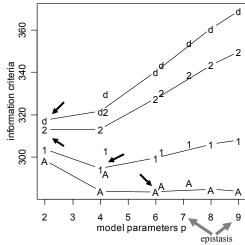
Seattle SISG: Yandell © 2008

37

information criteria vs. model size

- WinQTL 2.0
- SCD data on F2
- A=AIC
- 1=BIC(1)
- 2=BIC(2)
- d=BIC(δ)
- models
 - 1,2,3,4 QTL
 - 2+5+9+2
 - epistasis

• 2:2 AD



QTL 2: Bayes

Seattle SISG: Yandell © 2008

Bayes factors

- ratio of model likelihoods
 - ratio of posterior to prior odds for architectures
 - averaged over unknowns

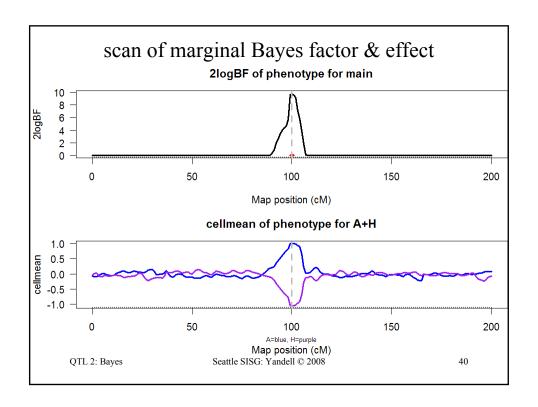
$$B_{12} = \frac{\text{pr}(\gamma_1 \mid y, m) / \text{pr}(\gamma_2 \mid y, m)}{\text{pr}(\gamma_1) / \text{pr}(\gamma_2)} = \frac{\text{pr}(y \mid m, \gamma_1)}{\text{pr}(y \mid m, \gamma_2)}$$

- roughly equivalent to BIC
 - BIC maximizes over unknowns
 - BF averages over unknowns

$$-2\log(B_{12}) = -2\log(LR) - (|\gamma_2| - |\gamma_1|)\log(n)$$

QTL 2: Bayes

Seattle SISG: Yandell © 2008



issues in computing Bayes factors

- BF insensitive to shape of prior on γ
 - geometric, Poisson, uniform
 - precision improves when prior mimics posterior
- BF sensitivity to prior variance on effects θ
 - prior variance should reflect data variability
 - resolved by using hyper-priors
 - automatic algorithm; no need for user tuning
- easy to compute Bayes factors from samples
 - sample posterior using MCMC
 - posterior pr(y | y, m) is marginal histogram

OTL 2: Baves

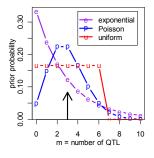
Seattle SISG: Yandell © 2008

41

Bayes factors & genetic architecture γ

- $|\gamma|$ = number of QTL
 - prior $pr(\gamma)$ chosen by user
 - posterior $pr(\gamma | y, m)$
 - sampled marginal histogram
 - shape affected by prior pr(A)

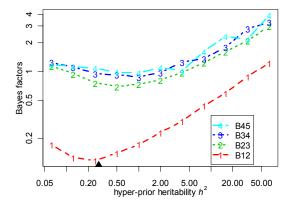
$$BF_{\gamma_1,\gamma_2} = \frac{\operatorname{pr}(\gamma_1|y,m)/\operatorname{pr}(\gamma_1)}{\operatorname{pr}(\gamma_2|y,m)/\operatorname{pr}(\gamma_2)}$$



- pattern of QTL across genome
- gene action and epistasis

QTL 2: Bayes

Seattle SISG: Yandell © 2008



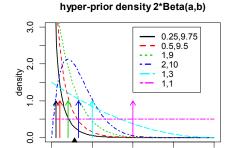
$$\beta_{qj} \sim N(0, \sigma_G^2/m), \sigma_G^2 = h^2 \sigma_{\text{total}}^2, h^2 \text{ fixed}$$

QTL 2: Bayes

Seattle SISG: Yandell © 2008

43

BF insensitivity to random effects prior



1.0

hyper-parameter heritability h^2

insensitivity to hyper-prior

$$\beta_{qj} \sim N(0, \sigma_G^2 / m), \sigma_G^2 = h^2 \sigma_{\text{total}}^2, \frac{1}{2} h^2 \sim \text{Beta}(a, b)$$

2.0

QTL 2: Bayes

0.0

Seattle SISG: Yandell © 2008