Inferring Causal Phenotype Networks

outline

- QTL-driven directed graphs
 - Assume QTLs known, network unknown
 - Infer links (edges) between pairs of phenotypes (nodes)
 - Based on partial correlation
 - Infer causal direction for edges
 - Chaibub et al. (2008 Genetics)
 - Software R/qdg available on CRAN
- Causal graphical models in systems genetics
 - QTLs unknown, network unknown
 - Infer both genetic architecture (QTLs) and pathways (networks)
 - Chaibub et al. (2010 Ann Appl Statist)
 - Software R/qtlnet (www.stat.wisc.edu/~yandell/sysgen/qtlnet)

QTL-driven directed graphs

- See edited slides by Elias Chaibub Neto
 - BIOCOMP 2008 talk
 - Chaibub Neto, Ferrara, Attie, Yandell (2008)
 Inferring causal phenotype networks from segregating populations. *Genetics* 179: 1089-1100.
 - Ferrara et al. Attie (2008) Genetic networks of liver metabolism revealed by integration of metabolic and transcriptomic profiling. *PLoS Genet* 4: e1000034.

Introduction

- ▶ Our objective is to learn metabolic pathways from data.
- ▶ We represent these pathways by directed networks composed by transcripts, metabolites and clinical traits.
- ► These phenotypes are quantitative in nature, and can be analyzed using quantitative genetics techniques.

Introduction

- ▶ In particular, we use Quantitative Trait Loci (QTL) mapping methods to identify genomic regions affecting the phenotypes.
- Since variations in the genotypes (QTLs) cause variations in the phenotypes, but not the other way around, we can unambiguously determine the causal direction

$$QTL \Rightarrow phenotype$$

▶ Knowing that a QTL causally affects a phenotype will allow us to infer causal direction between phenotypes.

PC algorithm

- ► Causal discovery algorithm developed by Spirtes et al 1993.
- ▶ It is composed of two parts:
 - 1. Infers the skeleton of the causal model.
 - 2. Partially orient the graph (orient some but not all edges).
- We are only interested in the first part (the "PC skeleton algorithm"). We do **not** use the PC algorithm to edge orientation (we use the QDG algorithm instead).

Step 1 (PC skeleton algorithm)

Suppose the true network describing the causal relationships between six transcripts is

The PC-algorithm starts with the complete undirected graph

and progressively eliminates edges based on conditional independence tests.

Step 1 (PC skeleton algorithm)

The algorithm performs several rounds of conditional independence tests of increasing order.

It starts with all zero order tests, then performs all first order, second order . . .

- Notation: $\bot \bot \equiv$ independence. We read $i \bot \bot j \mid k$ as i is conditionally independent from j given k.
- Remark: in the Gaussian case zero partial correlation implies conditional independence, thus

$$i \perp \!\!\!\perp j \mid k \Leftrightarrow cor(i,j \mid k) = 0 \Rightarrow drop(i,j) edge$$

Example (order 1)

$$A(1) \setminus 2 = \{2,4,5,6\}$$

VS

 y_2 d-separates y_1 from y_3

drop edge

move to next edge

Example (order 1)

After all first order conditional independence tests.

The algorithm then moves to second order conditional independence tests.

Example (order 2)

$$A(1) \setminus 4 = \{2, 5, 6\}$$

$$1 \perp \!\!\! \perp 4 \mid 2, 5$$

VS

 (y_2, y_5) d-separate y_1 from y_4

$$1 \perp \!\!\! \perp 4 \mid 2, 5$$

Example (order 2)

$$\textit{A}(1) \setminus \textit{4} = \{\textcolor{red}{2}, \textcolor{red}{5}, 6\}$$

٧S

 (y_2, y_5) d-separate y_1 from y_4

$$1 \perp \!\!\! \perp 4 \mid 2,5$$

drop edge

move to next edge

Example (order 2)

After all second order conditional independence tests.

The algorithm than moves to third order, fourth order . . .

It stops when for each pair (i,j) the cardinality of

$$A(i) \setminus j$$

is smaller then the order of the algorithm.

Edge orientation

Consider two traits y_1 and y_2 . Our problem is to decide between models:

$$M_1: (y_1) \rightarrow (y_2)$$
 $M_2: (y_1) \leftarrow (y_2)$

Problem: the above models are likelihood equivalent,

$$f(y_1)f(y_2 \mid y_1) = f(y_1, y_2) = f(y_2)f(y_1 \mid y_2)$$
.

Edge orientation

However, models

are not likelihood equivalent because

$$f(\mathbf{q}_1)f(y_1 \mid \mathbf{q}_1)f(y_2 \mid y_1, \mathbf{q}_2)f(\mathbf{q}_2)$$

$$\neq$$

$$f(\mathbf{q}_2)f(y_2 \mid \mathbf{q}_2)f(y_1 \mid y_2, \mathbf{q}_1)f(\mathbf{q}_1)$$

Edge orientation

We perform model selection using a direction LOD score

$$LOD = \log_{10} \left\{ \frac{\prod_{i=1}^{n} f(y_{1i} \mid \mathbf{q}_{1i}) f(y_{2i} \mid y_{1i}, \mathbf{q}_{2i})}{\prod_{i=1}^{n} f(y_{2i} \mid \mathbf{q}_{2i}) f(y_{1i} \mid y_{2i}, \mathbf{q}_{1i})} \right\}$$

where f() represents the predictive density, that is, the sampling model with parameters replaced by the corresponding maximum likelihood estimates.

QDG algorithm

QDG stands for QTL-directed dependency graph.

The QDG algorithm is composed of 7 steps:

- 1. Get the causal skeleton (with the PC skeleton algorithm).
- 2. Use QTLs to orient the edges in the skeleton.
- 3. Choose a random ordering of edges, and
- Recompute orientations incorporating causal phenotypes in the models (update the causal model according to changes in directions).
- 5. Repeat 4 iteratively until no more edges change direction (the resulting graph is one solution).
- 6. Repeat steps 3, 4, and 5 many times and store all different solutions.
- 7. Score all solutions and select the graph with best score.

Step 2

Now suppose that for each transcript we have a set of e-QTLs

Given the QTLs we can distinguish causal direction:

$$(\mathbf{q}_1) \rightarrow (y_1) \rightarrow (y_2) \leftarrow (\mathbf{q}_2)$$

$$\mathbf{q}_1$$
 \rightarrow (y_1) \leftarrow (y_2) \leftarrow (\mathbf{q}_2)

÷

$$\overline{\mathbf{q}_5}$$
 \rightarrow $\overline{(y_5)}$ \leftarrow $\overline{(y_6)}$ \leftarrow $\overline{(\mathbf{q}_6)}$

Steps 4 and 5 (first iteration)

Steps 4 and 5 (first iteration)

Steps 4 and 5 (first iteration)

Suppose the updated causal model after the first iteration (DG_1) is

Since some arrows changed direction $(DG_1 \neq DG_0)$, the algorithm goes for another round of re-computations.

Directing edges without QTLs

- ▶ In general we need to have at least one QTL per pair of phenotypes to infer causal direction.
- ▶ In some situations, however, we may be able to infer causal direction for a pair of phenotypes without QTLs. Eg.

since
$$f(y_1) f(y_2 | y_1) f(y_3 | y_2) \neq f(y_1) f(y_2 | y_1, y_3) f(y_3)$$
.

► So both QTLs and phenotypes play important roles in the orientation process.

Unresolvable situation

▶ We cannot infer direction when the phenotypes have exactly same set of QTLs and causal phenotypes

since

$$f(y_1 \mid y_3, q) f(y_2 \mid y_1, y_3, q) = f(y_1 \mid y_2, y_3, q) f(y_2 \mid y_3, q)$$

Cyclic networks

Our simulations showed good performance with toy cyclic graphs, though.

- ▶ The spurious edges in graph (c) were detected at low rates.
- ▶ QDG approach cannot detect reciprocal interactions. In graph (c) it orients the edge (2)—(5) in the direction with higher strength.

Simulations

2 or 3 QTLs per phenotype (not shown)

We generated 100 data sets according to this network.

Parameters were chosen in a range close to values estimated from real data.

n	60	300	500
TDR	94.53	95.18	91.22
TPR	52.07	87.33	93.64
CD	83.65	98.58	99.63

$$TDR = \frac{\text{\# true positives}}{\text{\# inferred edges}}, TPR = \frac{\text{\# true positives}}{\text{\# true edges}}$$

CD: correct direction

Real data example

- We constructed a network from metabolites and transcripts involved in liver metabolism.
- ▶ We validated this network with in vitro experiments (Ferrara et al 2008). Four out of six predictions were confirmed.

Software and references

The qdg R package is available at CRAN.

References:

- Chaibub Neto et al 2008. Inferring causal phenotype networks from segregating populations. Genetics 179: 1089-1100.
- Ferrara et al 2008. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptomic profiling. PLoS Genetics 4: e1000034.
- ▶ Spirtes et al 1993. Causation, prediction and search. MIT press.

Acknowledgements

Co-authors:

- ► Alan D. Attie
- ▶ Brian S. Yandell
- Christine T. Ferrara

Funding:

- CNPq Brazil
- NIH grants DK66369, DK58037 and DK06639

Permutation p-values

- ▶ To break the connections (brk) that affect direction of an edge, we permute the corresponding pair of nodes (and their common covariates) as a block.
- ▶ In panel (a) we permute (y_1, y_2, x) as a block breaking the connections with z, \mathbf{q}_1 and \mathbf{q}_2 ;
- ▶ In panel (b) we incorrectly keep z in the permutation block.

Direct versus indirect effects of a common QTL

- ▶ A strong QTL directly affecting an upstream trait may also be (incorrectly) detected as a QTL for a downstream phenotype.
- ► To resolve this situation we apply a generalization of Schadt et al. 2005 allowing for multiple QTLs.
- ▶ Model (a) supports both traits being directly affected by the common QTL q. Model (b) implies that q directly affects y₁ but should not be included as a QTL of phenotype y₂. Model (c) supports the reverse situation.

causal graphical models in systems genetics

- Chaibub Neto, Keller, Attie, Yandell (2010) Causal Graphical Models in Systems Genetics: a unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Ann Appl Statist 4: 320-339)
- Related references
 - Schadt et al. Lusis (2005 Nat Genet); Li et al. Churchill (2006 Genetics);
 Chen Emmert-Streib Storey(2007 Genome Bio); Liu de la Fuente
 Hoeschele (2008 Genetics); Winrow et al. Turek (2009 PLoS ONE)
- Jointly infer unknowns of interest
 - genetic architecture
 - causal network

Basic idea of QTLnet

- Genetic architecture given causal network
 - Trait y depends on parents pa(y) in network
 - QTL for y found conditional on pa(y)
 - Parents pa(y) are interacting covariates for QTL scan
- Causal network given genetic architecture
 - Build (adjust) causal network given QTL

MCMC for QTLnet

- Propose new causal network with simple changes to current network
 - Change edge direction
 - Add or drop edge
- Find any new genetic architectures (QTLs)
 - Update phenotypes whose parents pa(y) change in new network
- Compute likelihood for new network and QTL
- Accept or reject new network and QTL
 - Usual Metropolis-Hastings idea

Future work

- Incorporate latent variables
 - Aten et al. Horvath (2008 BMC Sys Biol)
- Allow for prior information about network
 - Werhli and Husmeier (2007 SAGMB); Dittrich et al. Müller (2008 Bioinfo); Zhu et al. Schadt (2008 Nat Genet); Lee et al. Koller (2009 PLoS Genet); Thomas et al. Portier (2009 Genome Bio); Wu et al. Lin (2009 Bioinfo)
- Improve algorithm efficiency
 - Ramp up to 1000s of phenotypes
- Extend to outbred crosses, humans