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What?

Quantitative Trait Loci (QTL) Mapping

QT
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L Mapping

Quantitative Traits e.g. Blood
pressure, BMI, FatMass, complex
diseases (Alzhiemers) etc.

Loci → Genomic positions influencing
the traits

Information from Quantitative traits
combined with genetic information

Try to map the positions of the
genome influencing the traits
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Genetic Design (Backcross Experiment)

- Broman, 1997
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Data

y1 C1M1 C1M2 C2M1 C2M2 C15M2 C16M1 C19M1
8.8 AA AA AB AA AA AB AB
9.6 AA AA AB AB AB AB AB

10.6 AB AB AA AA AB AA AA
11.1 AB AB AA AB AB AA AA
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Genetic Model

Cockerham’s Genetic Model

F2

xadd =


1 if AA
0 if Aa
−1 if aa

xdom =

{
1/2 if Aa
−1/2 o.w

Backcross

x =

{
1/2 if AA
−1/2 if Aa

Advantages

Orthogonal contrasts

Can test non-nested models
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Idea of Interval Mapping

observed markers

pseudomarkers

Chromosome

Insert arbitrary positions (pseudomarkers) into marker intervals

Enables us to detect QTL within marker intervals

Pseudomarkers and markers are considered as putative QTL

Pseudomarkers not observed – Hidden Markov Model to
reconstruct genotypes
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Challenges in QTL Mapping

Complex Traits

interacting network of
multiple genes and
environmental factors

small-to-moderate sized
effects

high sample size required

Question

What combination of genes and
interactions should one consider?

Model Selection

For a BC (backcross)
population with 40 genetic
markers

240 = 1012 =
1, 000, 000, 000, 000 models
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Statistical structure

QTL

Markers

Traits

Two aspects of the QTL mapping problem

1 The missing data problem: Markers ↔ QTL

2 The model selection problem: QTL → Traits
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Classical QTL Mapping Methods

Classical Methods

Consider single or very loci

Separately analyze all loci

EM or least squares to
analyze

Problem

Simpson’s Paradox:

high dimensional system
viewed from margins
marginal subsystem tells
us very little about the
full system

multiple testing: false
positives

Samprit Banerjee, PhD Candidate, UAB Bayesian QTL mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

QTL Mapping
Statistical Challenges
Classical Vs Bayesian

Classical QTL Mapping Methods

Classical Methods

Consider single or very loci

Separately analyze all loci

EM or least squares to
analyze

Problem

Simpson’s Paradox:

high dimensional system
viewed from margins
marginal subsystem tells
us very little about the
full system

multiple testing: false
positives

Samprit Banerjee, PhD Candidate, UAB Bayesian QTL mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

QTL Mapping
Statistical Challenges
Classical Vs Bayesian

Classical QTL Mapping Methods

Classical Methods

Consider single or very loci

Separately analyze all loci

EM or least squares to
analyze

Problem

Simpson’s Paradox:

high dimensional system
viewed from margins
marginal subsystem tells
us very little about the
full system

multiple testing: false
positives

Samprit Banerjee, PhD Candidate, UAB Bayesian QTL mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

QTL Mapping
Statistical Challenges
Classical Vs Bayesian

Classical QTL Mapping Methods

Classical Methods

Consider single or very loci

Separately analyze all loci

EM or least squares to
analyze

Problem

Simpson’s Paradox:

high dimensional system
viewed from margins
marginal subsystem tells
us very little about the
full system

multiple testing: false
positives

Samprit Banerjee, PhD Candidate, UAB Bayesian QTL mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

QTL Mapping
Statistical Challenges
Classical Vs Bayesian

Classical QTL Mapping Methods

Classical Methods

Consider single or very loci

Separately analyze all loci

EM or least squares to
analyze

Problem

Simpson’s Paradox:

high dimensional system
viewed from margins
marginal subsystem tells
us very little about the
full system

multiple testing: false
positives

Samprit Banerjee, PhD Candidate, UAB Bayesian QTL mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

QTL Mapping
Statistical Challenges
Classical Vs Bayesian

Classical QTL Mapping Methods

Classical Methods

Consider single or very loci

Separately analyze all loci

EM or least squares to
analyze

Problem

Simpson’s Paradox:

high dimensional system
viewed from margins
marginal subsystem tells
us very little about the
full system

multiple testing: false
positives

Samprit Banerjee, PhD Candidate, UAB Bayesian QTL mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

QTL Mapping
Statistical Challenges
Classical Vs Bayesian

Model Selection

Classical Methods

selection criteria AIC, BIC,
BICδ etc

identify “best” multiple
QTL model

forward, backward or
stepwise selection

Problem

What is an “appropriate”
criterion?

Is there a “best” model?

model uncertainty ignored
many competing models
equally fit data

lot of judgement involved in
the process
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Bayesian Idea

p(y | µ) = N(µ, 1)

p(µ) = N(0, 9)

p(µ | y) = N(µ̂, σ2
µ)

Bayes Theorem

P(B1 | A) =
P(A | B1)P(B1)

P(A | B1)P(B1) + P(A | B2)P(B2)
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Bayesian Interval Mapping Framework

observed M y

↘ ↗ ↑
missing Q |

↗ ↑ |
unknown λ | β

↖ | ↗
H

Observed: y (traits) and M
(marker and linkage map)

- trait model
p(y | Q, β, λ,H)

Missing markers and QTL
genotypes (Q)

- genetic model
p(Q | M, λ,H)

Unknown parameters
(λ, β,H,Q)

posterior = likelihood × prior

p(λ, β,H,Q | y ,M) ∝ p(y | β, λ,Q,H)p(Q | M, λ,H)p(β, λ,H)
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Advantages of a Bayesian approach

Multiple testing not an issue

No “best” model

- model averaging cancels out the bias arising from model
uncertainty

Model selection technique relatively simple and automated in
high-dimensional problems

Easily extensible to a wide range of problems, e.g analyzing
ordinal traits using the threshold model.

Problem: A full Bayesian analysis can be computationally
intensive and hence slow.
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Why Multiple Traits?

y1 y2 C1M1 C1M2 C2M1 C2M2 C15M2 C16M1 C19M1
8.8 7.8 AA AA AB AA AA AB AB
9.6 10.1 AA AA AB AB AB AB AB

10.6 9.9 AB AB AA AA AB AA AA
11.1 10.9 AB AB AA AB AB AA AA

Typically data on more than one phenotype (correlated) are
collected e.g. BMI, fatmass etc.

Higher power to detect weak main and/or epistatic effects

Higher precision of estimates

Separate close linkage from pleiotropy

pleiotropy

one gene, affecting both traits indicating common biochemical
pathways

close linkage

two tightly linked genes resulting in collinear genotypes
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Multivariate Model

We wish to investigate the performance of two multivariate
models.

1 Traditional Multivariate Model - for a simple case of two traits
and two QTL:

Y1 = β11Q1 + β21Q2 + ε
Y2 = β21Q1 + β22Q2 + ε

Assumption ε ∼ N (0,Σε)

2 Seemingly Unrelated Regression (SUR) Model - for a simple
case of two traits and two QTL:

Y1 = β11Q1 + + ε
Y2 = + β22Q2 + ε

Assumption ε ∼ N (0,Σε ⊗ In)
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Composite Model Space Approach

Markers C1M1 C1M2 C2M1 C2M2 C15M2 C16M1 C19M1

γy1 0 0 1 0 0 1 1
γy2 0 0 1 0 1 0 0

Assign indicators Γ to the putative loci

1 included in the model
0 excluded from the model

Impose a constraint on the number of detectable QTL (say L)

- reduces the search space drastically
- efficient way to walk through the space of models, spending

more time on “good” models

Remarkable feature achieved by augmenting the variable
dimension space (Γ, λΓ, βΓ) to the fixed dimension model
(Γ, λ, β)
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Seemingly Unrelated Regression (SUR) Model

We consider two different SUR model

1 Modeling different loci for all traits (SURd)
QTL1 QTL2 QTL3 QTL4

λy1 λ11 λ12 λ13 λ14

λy2 λ21 λ22 λ23 λ24

γy1 0 1 1 0
γy2 1 0 1 0

2 Modeling same loci for all traits (SURs)
QTL1 QTL2 QTL3 QTL4

λy1 λ1 λ2 λ3 λ4

λy2 λ1 λ2 λ3 λ4

γy1 0 1 1 0
γy2 1 0 1 0
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Choice of Priors

Prior on β

batches k=add,dom,add-add
interaction etc.

βk ∼ N (0, σ2
k) and

σ2
k ∼ Inv − χ2(νk , s

2
k )

s2
k controls the prior

heritability per effect
s2
k = (νk−2)E (hj)Vp/(νkVj)

Prior on Σ−1
ε

p(Σε) ∝ |Σε|−
M+1

2

Prior on number of QTL (`)

` ∼ Poission(`0)

Choice of L = `0 + 3
√
`0

Prior on λ and γ

independent priors on QTL
positions and indicators
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MCMC Idea

Marginal Posterior

p(β1 | y) =
∫
β2
. . .
∫
βJ

∫
µ

∫
σ

∫
Σ−1

ε

∫
g p(β, µ, σ,Σ−1

ε , g , λ, |
y)dβ2 . . . dβJdµdσdΣ−1

ε dg

Ugly posterior: analytical calculations not possible

Direct sampling from posterior not possible

Construct a Markov chain, {Xi}∞i=0 so that
limiP(Xi = x) = π(x)

Generate Monte carlo samples to approximate the posterior.
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MCMC

Draw βj |β−j ∼ N (β∗j , σ
2
βj

)

Draw Σ−1
ε |βΓ ∼Wi(Ω−1, n)

Update locations λ fine tune in the nearby region

Update indicators γ

1 QTL currently in the model

- position and genotypes already generated in the preceding step

2 QTL currently not in the model

- generate new QTL from its prior distribution and generate
genotypes for all individuals
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R/qtlbim

Our method has been (and is being) implemented in R/qtlbim
(Bayesian Interval Mapping for QTL)

add-on package for R, freely available, distributable and
extensible.

computationally intensive algorithms written in C while
graphics in R and built on top of R/qtl (Broman)

Collaboration of Dr. Nengjun Yi (UAB) and Dr. Brian
Yandell (UW-Madison)

Tapan Mehta, Ramprasad Venkataraman, Daniel Shriner and
Samprit Banerjee (UAB)
Jee Young Moon, William Whipple Neely (UW-Madison)
NIH R01 grant (PI: Yi)
Released through CRAN in Sept. 2006

Website: http://www.qtlbim.org/.
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n = 100, 200, 500

Low Corr, ρy1y2 = 0.5

High Corr, ρy1y2 = 0.8

SURs

SURd

STA

TMV

SURs

SURd

STA

TMV

Samprit Banerjee and Nengjun Yi Bayesian QTL Mapping for Multiple Traits



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

Methods
Simulation
Real Data Example
Conclusion

Simulation Design

Q1 Q2 Q3 Q4 Q5 Q6
Chr 1 1 2 2 3 4

Pos(cM) 22 55 22 65 65 45
y1 0.8 0.6 0 0 0.8 0.6
y2 0 0 -0.8 -0.6 0.8 0.6
y1 8.8% 4.9% 0 0 8.8% 4.9%
y2 0 0 9.3% 5.2% 9.3% 5.2%
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Average correct and incorrect QTL detected for y2

Correct Incorrect
(n, ρy1y2 ) STA TMV SURs SURd STA TMV SURs SURd

(100, 0.5) 0.65 0.8 0.67 0.64 0.7 1.34 0.45 0.65
(100, 0.8) 0.34 1.01 1.02 0.97 0.24 1.85 0.75 0.54
(200, 0.5) 1.69 2.13 2.12 1.78 1.06 2.53 0.78 1.02
(200, 0.8) 1.51 2.6 2.56 2.24 0.63 2.92 0.73 0.72
(500, 0.5) 3.54 3.72 3.76 3.66 1.01 3.1 0.83 1.22
(500, 0.8) 3.55 3.81 3.78 3.67 1.1 3.14 1.03 1.01

Average MCMC time
STA TMV SURs SURd

VLN:LR 1.17 0.96 1.10 1.18
VLN:HR 1.18 0.98 1.09 1.16
LN:LR 2.47 1.99 2.23 2.52
LN:HR 2.48 2.06 2.22 2.45
HN:LR 6.94 6.14 6.51 7.76
HN:HR 6.92 6.11 6.45 7.51
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Comparison between methods

STA - not powerful in low sample sizes

TMV - too many incorrect detections

SUR - both SUR models performed well

Recommend SURd as SURs can favor QTL of no effect on
one trait but having large effect on the other.
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Real Data Set
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Trait Phenotype

GONFAT → Right Gonadal fat pad

SUBFAT → Subcutaneous fat pad
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Pleiotropic Effect
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Conclusion

Use available information

- more power to detect QTL
- precise estimates

Test biologically important hypotheses (like pleiotropy)

- understand underlying biochemical pathway
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GLM

Some traits are non-normal, e.g. binary, poisson etc.

Linear Models

E (y | X ) = Xβ

Generalized Linear Models

1 Linear predictor: η = Xβ

2 Link function: E (y | X ) = g−1(η)

3 Dist. of outcome variable: p(y | Xβ, φ) =
∏n

i=1 p(yi | Xiβ, φ)
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Link function

GLM

η = g(µ), where µ = E (y | X )

Identity → g(µ) = µ

Logit → g(µ) = log( µ
1−µ)

Probit → g(µ) = Φ−1(µ)

Logarithm → g(µ) = log(µ)
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GLM

Linear Predictor

η = β0 + XEβE + XGβG + XGGβGG + XGEβGE

E = environmental effects

G = genetic effects e.g. main effects including additive and
dominant effects of markers and pseudomarkers

GG = gene-gene interaction (epistatic effects)

GE = gene-environment interaction
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Conventional GLM

Problem

p ≫ n

Number of predictors ≫ Sample size

Classical maximum likelihood method breaks down.

Number of unknowns more that number of equations
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Hierarchical Models

Solution

Informative prior distribution on coefficient (β) that favors
sparseness

Prior on β

βj | τ2
j ∼ N(0, τ2

j )

τ2
j | νj , s

2
j ∼ Inv − χ2(νj , s

2
j )

⇓

Prior on β

βj | νj , s
2
j ∼ tνj (0, s2

j )

Inv − χ2(0, 0) ≡ p(τ 2
j ) ∝ τ−2

j
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Another prior for β

Prior II on β

βj | τ2
j ∼ N(0, τ2

j )

τ2
j | λ ∼ Expon(τ2

j |
λ2

2 ) = λ2

2 e−λ
2τ2

J /2

⇓

Double exponential prior on β

βj | λ ∼
p∏

j=1

λ

2
e−λ|βj |

LASSO prior: LASSO estimates ≡ Bayesian posterior modes
(Tibshirani 1996)
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Idea of Shrinkage

Variable Selection

Markers C1M1 C1M2 C2M1 C2M2 C15M2 C16M1

γy 0 0 1 0 1 1

Shrinkage

Markers C1M1 C1M2 C1M3 C1M4 · · · C19M100

β 0 0 0.2 0.3 · · · 0.1

Where prior variance of β < 0.001 set β = 0
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Unknown Variance

Prior on β

βj | τ2
j ∼ N(0, τ2

j ) τ2
j | νj , s

2
j ∼ Inv − χ2(νj , s

2
j )

In classical GLM, the likelihood is approximated by weighted
normal likelihood and estimates are obtained

This step is repeated until convergence (Iterated Weighted
Least Squares)

τ2
j are unknowns and need to be estimated

EM (Expectation Maximization) algorithm
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EM idea

posterior mode

EM algorithm calculates the posterior mode of (β, φ, s2) averaging
over τ2

j , j = 1, .., J
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Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and
gene-environment (GxE) interactions

Search main effects chromosome by chromosome

Search interactions between included main effects

Search interactions between included and excluded main
effects chromosome by chromosome

Search interactions between covariates and included main
effects

Search interactions between covariates and excluded main
effects

Search interactions between excluded main effects

Samprit Banerjee and Nengjun Yi Large-Scale Hierarchical Generalized Linear Models for Genome-wide QTL Mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

Generalized Linear Model
Shrinkage
Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and
gene-environment (GxE) interactions

Search main effects chromosome by chromosome

Search interactions between included main effects

Search interactions between included and excluded main
effects chromosome by chromosome

Search interactions between covariates and included main
effects

Search interactions between covariates and excluded main
effects

Search interactions between excluded main effects

Samprit Banerjee and Nengjun Yi Large-Scale Hierarchical Generalized Linear Models for Genome-wide QTL Mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

Generalized Linear Model
Shrinkage
Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and
gene-environment (GxE) interactions

Search main effects chromosome by chromosome

Search interactions between included main effects

Search interactions between included and excluded main
effects chromosome by chromosome

Search interactions between covariates and included main
effects

Search interactions between covariates and excluded main
effects

Search interactions between excluded main effects

Samprit Banerjee and Nengjun Yi Large-Scale Hierarchical Generalized Linear Models for Genome-wide QTL Mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

Generalized Linear Model
Shrinkage
Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and
gene-environment (GxE) interactions

Search main effects chromosome by chromosome

Search interactions between included main effects

Search interactions between included and excluded main
effects chromosome by chromosome

Search interactions between covariates and included main
effects

Search interactions between covariates and excluded main
effects

Search interactions between excluded main effects

Samprit Banerjee and Nengjun Yi Large-Scale Hierarchical Generalized Linear Models for Genome-wide QTL Mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

Generalized Linear Model
Shrinkage
Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and
gene-environment (GxE) interactions

Search main effects chromosome by chromosome

Search interactions between included main effects

Search interactions between included and excluded main
effects chromosome by chromosome

Search interactions between covariates and included main
effects

Search interactions between covariates and excluded main
effects

Search interactions between excluded main effects

Samprit Banerjee and Nengjun Yi Large-Scale Hierarchical Generalized Linear Models for Genome-wide QTL Mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

Generalized Linear Model
Shrinkage
Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and
gene-environment (GxE) interactions

Search main effects chromosome by chromosome

Search interactions between included main effects

Search interactions between included and excluded main
effects chromosome by chromosome

Search interactions between covariates and included main
effects

Search interactions between covariates and excluded main
effects

Search interactions between excluded main effects

Samprit Banerjee and Nengjun Yi Large-Scale Hierarchical Generalized Linear Models for Genome-wide QTL Mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

Generalized Linear Model
Shrinkage
Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and
gene-environment (GxE) interactions

Search main effects chromosome by chromosome

Search interactions between included main effects

Search interactions between included and excluded main
effects chromosome by chromosome

Search interactions between covariates and included main
effects

Search interactions between covariates and excluded main
effects

Search interactions between excluded main effects

Samprit Banerjee and Nengjun Yi Large-Scale Hierarchical Generalized Linear Models for Genome-wide QTL Mapping



Outline
Introduction

Bayesian Multiple Traits
Bayesian GLM

Generalized Linear Model
Shrinkage
Real Data Example

Listeria Monocytogenes Dataset

BALB/cByJ C57BL/6ByJ

F1

116 female F2 mice
133 genetic markers

Trait Phenotype

Time to death following Listeria monocytogenes
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Binary Trait

Survival = 1/0
Probit link

Continuous Trait

Analyzing dead mice (81) only (Time
to infection (T) < 264)
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Results

Binary Traits
Estimate Std. Error z-value Pr(> |z |)

(Intercept) -0.4947 0.1538 -3.216 0.001300
D5M91(5:32.9)a -1.0962 0.2414 -4.540 5.62e-06
D6M188(6:18.2)a 0.8330 0.2331 3.574 0.000352
D13M99(13:18.9)a 0.9269 0.2216 4.182 2.89e-05

Continuous Traits
Estimate Std. Error t-value Pr(> |t|)

(Intercept) 0.02616 0.09274 0.282 0.7786
D1M355(1:81.4)a 0.54642 0.12867 4.247 5.74e-05
D15M100(15:13.5)a -0.27828 0.11341 -2.454 0.0163
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Discussion

Quick algorithm calculates posterior mode rather than
investigating the complete posterior

Use existing GLM algorithm (R/glm)

Wide range of phenotypic traits

General framework: easily extensible

eQTL
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