Bayesian Quantitative Trait Loci Mapping

Samprit Banerjee PhD Candidate

Dept. of Biostatistics University of Alabama, Birmingham

Cornell Medical College 21-Mar-08

| 4 回 2 4 U = 2 4 U =

Outline

Introduction Bayesian Multiple Traits Bayesian GLM

Introduction

- QTL Mapping
- Statistical Challenges
- Classical Vs Bayesian

2 Bayesian Multiple Traits

- Methods
- Simulation
- Real Data Example
- Conclusion

3 Bayesian GLM

- Generalized Linear Model
- Shrinkage
- Real Data Example

<回> < 回> < 回> < 回>

QTL Mapping Statistical Challenges Classical Vs Bayesian

What?

Quantitative Trait Loci (QTL) Mapping

QTL Mapping Statistical Challenges Classical Vs Bayesian

What?

Quantitative Trait Loci (QTL) Mapping

QT	
<i>y</i> ₁	
<i>Y</i> 2	 Quantitative Traits e.g. Blood prossure RML EstMass complex
<i>Y</i> 3	diseases (Alzhiemers) etc
<i>У</i> 4	
<i>Y</i> 5	
<i>У</i> 6	
Ут	
<i>y</i> 8	
<i>y</i> 9	
<i>У</i> 10	
	지 말 이 지 말 이 가 들 이 들 이 들 이 들 이 가 있다.

QTL Mapping Statistical Challenges Classical Vs Bayesian

What?

Quantitative Trait Loci (QTL) Mapping

• Loci \rightarrow Genomic positions influencing the traits

(本間) (本語) (本語)

Samprit Banerjee, PhD Candidate, UAB

Bayesian QTL mapping

QTL Mapping Statistical Challenges Classical Vs Bayesian

What?

Quantitative Trait Loci (QTL) Mapping

Mapping

- Information from Quantitative traits combined with genetic information
- Try to map the positions of the genome influencing the traits

QTL Mapping Statistical Challenges Classical Vs Bayesian

Genetic Design (Backcross Experiment)

- Broman, 1997 ・ ロト ・ (アト ・ ミト ・ ミト ・ ミー シ へへ)

QTL Mapping Statistical Challenges Classical Vs Bayesian

Backcross Experiment

QTL Mapping Statistical Challenges Classical Vs Bayesian

æ

Data

<i>y</i> 1	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
8.8	AA	AA	AB	AA	AA	AB	AB
9.6	AA	AA	AB	AB	AB	AB	AB
10.6	AB	AB	AA	AA	AB	AA	AA
11.1	AB	AB	AA	AB	AB	AA	AA

Samprit Banerjee, PhD Candidate, UAB Bayesian QTL mapping

QTL Mapping Statistical Challenges Classical Vs Bayesian

・ロン ・回 と ・ ヨ と ・ ヨ と

Genetic Model

Cockerham's Genetic Model

QTL Mapping Statistical Challenges Classical Vs Bayesian

イロン イヨン イヨン イヨン

Genetic Model

Cockerham's Genetic Model

$$F_2$$

$$x^{add} = \begin{cases} 1 & \text{if AA} \\ 0 & \text{if Aa} \\ -1 & \text{if aa} \end{cases} x^{dom} = \begin{cases} 1/2 & \text{if Aa} \\ -1/2 & o.w \end{cases}$$

Backcross

$$x = \left\{ egin{array}{cc} 1/2 & ext{if AA} \ -1/2 & ext{if Aa} \end{array}
ight.$$

QTL Mapping Statistical Challenges Classical Vs Bayesian

Genetic Model

Cockerham's Genetic Model

Backcross

$$x = \left\{ egin{array}{cc} 1/2 & {
m if AA} \ -1/2 & {
m if Aa} \end{array}
ight.$$

Advantages

- Orthogonal contrasts
- Can test non-nested models

・ロン ・回 と ・ ヨ と ・ ヨ と

QTL Mapping Statistical Challenges Classical Vs Bayesian

Idea of Interval Mapping

QTL Mapping Statistical Challenges Classical Vs Bayesian

イロト イヨト イヨト イヨト

Idea of Interval Mapping

• Insert arbitrary positions (pseudomarkers) into marker intervals

QTL Mapping Statistical Challenges Classical Vs Bayesian

Idea of Interval Mapping

- Insert arbitrary positions (pseudomarkers) into marker intervals
- Enables us to detect QTL within marker intervals

イロン イヨン イヨン イヨン

QTL Mapping Statistical Challenges Classical Vs Bayesian

Idea of Interval Mapping

- Insert arbitrary positions (pseudomarkers) into marker intervals
- Enables us to detect QTL within marker intervals
- Pseudomarkers and markers are considered as putative QTL

QTL Mapping Statistical Challenges Classical Vs Bayesian

イロト イヨト イヨト イヨト

Idea of Interval Mapping

- Insert arbitrary positions (pseudomarkers) into marker intervals
- Enables us to detect QTL within marker intervals
- Pseudomarkers and markers are considered as putative QTL
- Pseudomarkers not observed Hidden Markov Model to reconstruct genotypes

QTL Mapping Statistical Challenges Classical Vs Bayesian

Challenges in QTL Mapping

Complex Traits

QTL Mapping Statistical Challenges Classical Vs Bayesian

Challenges in QTL Mapping

Complex Traits

 interacting network of multiple genes and environmental factors

QTL Mapping Statistical Challenges Classical Vs Bayesian

Challenges in QTL Mapping

Complex Traits

- interacting network of multiple genes and environmental factors
- small-to-moderate sized effects

QTL Mapping Statistical Challenges Classical Vs Bayesian

- 4 回 2 - 4 回 2 - 4 回 2

Challenges in QTL Mapping

Complex Traits

- interacting network of multiple genes and environmental factors
- small-to-moderate sized effects
- high sample size required

QTL Mapping Statistical Challenges Classical Vs Bayesian

Challenges in QTL Mapping

Complex Traits

- interacting network of multiple genes and environmental factors
- small-to-moderate sized effects
- high sample size required

Question

What combination of genes and interactions should one consider?

- 4 回 2 - 4 回 2 - 4 回 2

QTL Mapping Statistical Challenges Classical Vs Bayesian

Challenges in QTL Mapping

Complex Traits

- interacting network of multiple genes and environmental factors
- small-to-moderate sized effects
- high sample size required

Question

What combination of genes and interactions should one consider?

Model Selection

- 4 回 2 - 4 回 2 - 4 回 2

QTL Mapping Statistical Challenges Classical Vs Bayesian

Challenges in QTL Mapping

Complex Traits

- interacting network of multiple genes and environmental factors
- small-to-moderate sized effects
- high sample size required

Question

What combination of genes and interactions should one consider?

Model Selection

 For a BC (backcross) population with 40 genetic markers

QTL Mapping Statistical Challenges Classical Vs Bayesian

Challenges in QTL Mapping

Complex Traits

- interacting network of multiple genes and environmental factors
- small-to-moderate sized effects
- high sample size required

Question

What combination of genes and interactions should one consider?

Model Selection

- For a BC (backcross) population with 40 genetic markers
- $2^{40} = 10^{12} =$
 - $1,000,000,000,000 \ \text{models}$

イロト イヨト イヨト イヨト

QTL Mapping Statistical Challenges Classical Vs Bayesian

イロト イヨト イヨト イヨト

Statistical structure

Two aspects of the QTL mapping problem

QTL Mapping Statistical Challenges Classical Vs Bayesian

イロト イヨト イヨト イヨト

Statistical structure

Two aspects of the QTL mapping problem

- $\textcircled{\ } \textbf{ In missing data problem: Markers} \leftrightarrow \textbf{QTL}$
- 2 The model selection problem: $QTL \rightarrow Traits$

QTL Mapping Statistical Challenges Classical Vs Bayesian

Classical QTL Mapping Methods

QTL Mapping Statistical Challenges Classical Vs Bayesian

Classical QTL Mapping Methods

Classical Methods

• Consider single or very loci

QTL Mapping Statistical Challenges Classical Vs Bayesian

Classical QTL Mapping Methods

Classical Methods

• Consider single or very loci

Problem

- Simpson's Paradox:
 - high dimensional system viewed from margins
 - marginal subsystem tells us very little about the full system

イロト イヨト イヨト イヨト

QTL Mapping Statistical Challenges Classical Vs Bayesian

Classical QTL Mapping Methods

Classical Methods

- Consider single or very loci
- Separately analyze all loci

Problem

- Simpson's Paradox:
 - high dimensional system viewed from margins
 - marginal subsystem tells us very little about the full system

イロト イヨト イヨト イヨト

QTL Mapping Statistical Challenges Classical Vs Bayesian

Classical QTL Mapping Methods

Classical Methods

- Consider single or very loci
- Separately analyze all loci

Problem

- Simpson's Paradox:
 - high dimensional system viewed from margins
 - marginal subsystem tells us very little about the full system

イロト イヨト イヨト イヨト

• multiple testing: false positives

QTL Mapping Statistical Challenges Classical Vs Bayesian

Classical QTL Mapping Methods

Classical Methods

- Consider single or very loci
- Separately analyze all loci
- EM or least squares to analyze

Problem

- Simpson's Paradox:
 - high dimensional system viewed from margins
 - marginal subsystem tells us very little about the full system

イロト イヨト イヨト イヨト

• multiple testing: false positives

QTL Mapping Statistical Challenges Classical Vs Bayesian

Model Selection

Classical Methods

Samprit Banerjee, PhD Candidate, UAB Bayesian QTL mapping

QTL Mapping Statistical Challenges Classical Vs Bayesian

Model Selection

Classical Methods

• selection criteria AIC, BIC, BIC_{δ} etc

QTL Mapping Statistical Challenges Classical Vs Bayesian

Model Selection

イロト イヨト イヨト イヨト
QTL Mapping Statistical Challenges Classical Vs Bayesian

Model Selection

Classical Methods

- selection criteria AIC, BIC, BIC_{δ} etc
- identify "best" multiple QTL model

Problem

• What is an "appropriate" criterion?

QTL Mapping Statistical Challenges Classical Vs Bayesian

Model Selection

Classical Methods

- selection criteria AIC, BIC, BIC_{δ} etc
- identify "best" multiple QTL model

Problem

- What is an "appropriate" criterion?
- Is there a "best" model?
 - model uncertainty ignored
 - many competing models equally fit data

QTL Mapping Statistical Challenges Classical Vs Bayesian

Model Selection

Classical Methods

- selection criteria AIC, BIC, BIC_{δ} etc
- identify "best" multiple QTL model
- forward, backward or stepwise selection

Problem

- What is an "appropriate" criterion?
- Is there a "best" model?
 - model uncertainty ignored
 - many competing models equally fit data

QTL Mapping Statistical Challenges Classical Vs Bayesian

Model Selection

Classical Methods

- selection criteria AIC, BIC, BIC_{δ} etc
- identify "best" multiple QTL model
- forward, backward or stepwise selection

Problem

- What is an "appropriate" criterion?
- Is there a "best" model?
 - model uncertainty ignored
 - many competing models equally fit data
- lot of judgement involved in the process

QTL Mapping Statistical Challenges Classical Vs Bayesian

QTL Mapping Statistical Challenges Classical Vs Bayesian

QTL Mapping Statistical Challenges Classical Vs Bayesian

・ロン ・回 と ・ ヨン ・ ヨン

æ

QTL Mapping Statistical Challenges Classical Vs Bayesian

Bay	es Theorem		
$P(B_1 \mid A) = \frac{1}{P(A \mid A)}$	$\frac{P(A \mid B_1)P(B_1)}{B_1)P(B_1) + P(A \mid B_2)P(B_2)}$	L	/
Samprit Baneriee, PhD Candidate, UAE	Bayesian QTL mapping		

QTL Mapping Statistical Challenges Classical Vs Bayesian

Bayesian Interval Mapping Framework

QTL Mapping Statistical Challenges Classical Vs Bayesian

Bayesian Interval Mapping Framework

 Observed: y (traits) and M (marker and linkage map)

- 4 回 2 - 4 回 2 - 4 回 2

QTL Mapping Statistical Challenges Classical Vs Bayesian

Bayesian Interval Mapping Framework

 Observed: y (traits) and M (marker and linkage map)

• Missing markers and QTL genotypes (Q)

QTL Mapping Statistical Challenges Classical Vs Bayesian

Bayesian Interval Mapping Framework

 Observed: y (traits) and M (marker and linkage map)

• Missing markers and QTL genotypes (Q)

- 4 回 2 - 4 回 2 - 4 回 2

• Unknown parameters (λ, β, H, Q)

QTL Mapping Statistical Challenges Classical Vs Bayesian

Bayesian Interval Mapping Framework

- Observed: y (traits) and M (marker and linkage map)
 - trait model $p(y \mid Q, \beta, \lambda, H)$
- Missing markers and QTL genotypes (Q)

• Unknown parameters (λ, β, H, Q)

- 4 昂 ト 4 臣 ト 4 臣 ト

QTL Mapping Statistical Challenges Classical Vs Bayesian

Bayesian Interval Mapping Framework

- Observed: y (traits) and M (marker and linkage map)
 - trait model $p(y \mid Q, \beta, \lambda, H)$
- Missing markers and QTL genotypes (Q)

- 4 昂 ト 4 臣 ト 4 臣 ト

- genetic model $p(Q \mid M, \lambda, H)$
- Unknown parameters (λ, β, H, Q)

QTL Mapping Statistical Challenges Classical Vs Bayesian

Bayesian Interval Mapping Framework

- Observed: y (traits) and M (marker and linkage map)
 - trait model $p(y \mid Q, \beta, \lambda, H)$
- Missing markers and QTL genotypes (Q)
 - genetic model $p(Q \mid M, \lambda, H)$
- Unknown parameters (λ, β, H, Q)

QTL Mapping Statistical Challenges Classical Vs Bayesian

Advantages of a Bayesian approach

• Multiple testing not an issue

QTL Mapping Statistical Challenges Classical Vs Bayesian

Advantages of a Bayesian approach

- Multiple testing not an issue
- No "best" model

QTL Mapping Statistical Challenges Classical Vs Bayesian

Advantages of a Bayesian approach

- Multiple testing not an issue
- No "best" model
 - model averaging cancels out the bias arising from model uncertainty

QTL Mapping Statistical Challenges Classical Vs Bayesian

Advantages of a Bayesian approach

- Multiple testing not an issue
- No "best" model
 - model averaging cancels out the bias arising from model uncertainty
- Model selection technique relatively simple and automated in high-dimensional problems

QTL Mapping Statistical Challenges Classical Vs Bayesian

イロト イヨト イヨト イヨト

Advantages of a Bayesian approach

- Multiple testing not an issue
- No "best" model
 - model averaging cancels out the bias arising from model uncertainty
- Model selection technique relatively simple and automated in high-dimensional problems
- Easily extensible to a wide range of problems, *e.g* analyzing ordinal traits using the threshold model.

QTL Mapping Statistical Challenges Classical Vs Bayesian

Advantages of a Bayesian approach

- Multiple testing not an issue
- No "best" model
 - model averaging cancels out the bias arising from model uncertainty
- Model selection technique relatively simple and automated in high-dimensional problems
- Easily extensible to a wide range of problems, *e.g* analyzing ordinal traits using the threshold model.
- Problem: A full Bayesian analysis can be computationally intensive and hence slow.

Outline Methods Introduction Simulation Bayesian Multiple Traits Real Data Example Bayesian GLM Conclusion

Bayesian QTL Mapping for Multiple Traits

Samprit Banerjee and Nengjun Yi

Dept. of Biostatistics University of Alabama, Birmingham

Methods Simulation Real Data Example Conclusion

Why Multiple Traits?

У1	У2	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

• Typically data on more than one phenotype (correlated) are collected *e.g.* BMI, fatmass etc.

Methods Simulation Real Data Example Conclusion

Why Multiple Traits?

У1	У2	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected *e.g.* BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects

Methods Simulation Real Data Example Conclusion

Why Multiple Traits?

У1	У2	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected *e.g.* BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects
- Higher precision of estimates

Methods Simulation Real Data Example Conclusion

Why Multiple Traits?

У1	У2	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected *e.g.* BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects
- Higher precision of estimates
- Separate close linkage from pleiotropy

Methods Simulation Real Data Example Conclusion

Why Multiple Traits?

У1	У2	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected *e.g.* BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects
- Higher precision of estimates
- Separate close linkage from pleiotropy
 - pleiotropy

Methods Simulation Real Data Example Conclusion

Why Multiple Traits?

У1	У2	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected *e.g.* BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects
- Higher precision of estimates
- Separate close linkage from pleiotropy
 - pleiotropy
 - one gene, affecting both traits indicating common biochemical pathways

Methods Simulation Real Data Example Conclusion

Why Multiple Traits?

У1	У2	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected *e.g.* BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects
- Higher precision of estimates
- Separate close linkage from pleiotropy
 - pleiotropy
 - one gene, affecting both traits indicating common biochemical pathways

イロト イヨト イヨト イヨト

• close linkage

Methods Simulation Real Data Example Conclusion

Why Multiple Traits?

У1	У2	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected *e.g.* BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects
- Higher precision of estimates
- Separate close linkage from pleiotropy
 - pleiotropy
 - one gene, affecting both traits indicating common biochemical pathways
 - close linkage
 - two tightly linked genes resulting in collinear genotypes

Methods Simulation Real Data Example Conclusion

Multivariate Model

We wish to investigate the performance of two multivariate models.

Traditional Multivariate Model - for a simple case of two traits and two QTL:

> $Y_1 = \beta_{11}Q_1 + \beta_{21}Q_2 + \epsilon$ $Y_2 = \beta_{21}Q_1 + \beta_{22}Q_2 + \epsilon$

Methods Simulation Real Data Example Conclusion

Multivariate Model

We wish to investigate the performance of two multivariate models.

Traditional Multivariate Model - for a simple case of two traits and two QTL:

$$Y_1 = \beta_{11}Q_1 + \beta_{21}Q_2 + \epsilon$$

$$Y_2 = \beta_{21}Q_1 + \beta_{22}Q_2 + \epsilon$$

• Assumption $\epsilon \sim \mathcal{N}(0, \Sigma_{\epsilon})$

Methods Simulation Real Data Example Conclusion

Multivariate Model

We wish to investigate the performance of two multivariate models.

Traditional Multivariate Model - for a simple case of two traits and two QTL:

$$\begin{aligned} Y_1 &= \beta_{11} Q_1 + \beta_{21} Q_2 + \epsilon \\ Y_2 &= \beta_{21} Q_1 + \beta_{22} Q_2 + \epsilon \end{aligned}$$

• Assumption $\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma_{\epsilon})$

Seemingly Unrelated Regression (SUR) Model - for a simple case of two traits and two QTL:

$$\begin{array}{rcrcrcr} Y_1 = & \beta_{11}Q_1 & + & + & \epsilon \\ Y_2 = & & + & \beta_{22}Q_2 & + & \epsilon \end{array}$$

Methods Simulation Real Data Example Conclusion

Multivariate Model

We wish to investigate the performance of two multivariate models.

Traditional Multivariate Model - for a simple case of two traits and two QTL:

$$\begin{aligned} Y_1 &= \beta_{11} Q_1 + \beta_{21} Q_2 + \epsilon \\ Y_2 &= \beta_{21} Q_1 + \beta_{22} Q_2 + \epsilon \end{aligned}$$

• Assumption $\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma_{\epsilon})$

Seemingly Unrelated Regression (SUR) Model - for a simple case of two traits and two QTL:

• Assumption $\epsilon \sim \mathcal{N}(0, \Sigma_{\epsilon} \otimes I_n)$

Methods Simulation Real Data Example Conclusion

Composite Model Space Approach

Markers	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
γ_{y_1}	0	0	1	0	0	1	1
γ_{y_2}	0	0	1	0	1	0	0

 \bullet Assign indicators Γ to the putative loci

Methods Simulation Real Data Example Conclusion

Composite Model Space Approach

Markers	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
γ_{y_1}	0	0	1	0	0	1	1
γ_{y_2}	0	0	1	0	1	0	0

• Assign indicators Γ to the putative loci

1 included in the model

Methods Simulation Real Data Example Conclusion

Composite Model Space Approach

Markers	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
γ_{y_1}	0	0	1	0	0	1	1
γ_{y_2}	0	0	1	0	1	0	0

 \bullet Assign indicators Γ to the putative loci

- $1 \hspace{0.1 cm} \text{included} \hspace{0.1 cm} \text{in the model}$
- 0 excluded from the model

Methods Simulation Real Data Example Conclusion

Composite Model Space Approach

Markers	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
γ_{y_1}	0	0	1	0	0	1	1
γ_{y_2}	0	0	1	0	1	0	0

• Assign indicators Γ to the putative loci

- $1 \hspace{0.1 cm} \mbox{included}$ in the model
- 0 excluded from the model

• Impose a constraint on the number of detectable QTL (say L)

Methods Simulation Real Data Example Conclusion

Composite Model Space Approach

Markers	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
γ_{y_1}	0	0	1	0	0	1	1
γ_{y_2}	0	0	1	0	1	0	0

Assign indicators Γ to the putative loci

- $1 \hspace{0.1 cm} \mbox{included}$ in the model
- 0 excluded from the model
- Impose a constraint on the number of detectable QTL (say L)
 - reduces the search space drastically

Methods Simulation Real Data Example Conclusion

Composite Model Space Approach

Markers	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
γ_{y_1}	0	0	1	0	0	1	1
γ_{y_2}	0	0	1	0	1	0	0

- Assign indicators Γ to the putative loci
 - 1 included in the model
 - 0 excluded from the model
- Impose a constraint on the number of detectable QTL (say L)
 - reduces the search space drastically
 - efficient way to walk through the space of models, spending more time on "good" models

Methods Simulation Real Data Example Conclusion

Composite Model Space Approach

Markers	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1	C19M1
γ_{y_1}	0	0	1	0	0	1	1
γ_{y_2}	0	0	1	0	1	0	0

- Assign indicators Γ to the putative loci
 - 1 included in the model
 - 0 excluded from the model
- Impose a constraint on the number of detectable QTL (say L)
 - reduces the search space drastically
 - efficient way to walk through the space of models, spending more time on "good" models
- Remarkable feature achieved by augmenting the variable dimension space (Γ, λ_Γ, β_Γ) to the fixed dimension model (Γ, λ, β)

Methods Simulation Real Data Example Conclusion

Seemingly Unrelated Regression (SUR) Model

We consider two different SUR model

0	Modeling different loci for all traits (SU							
		QTL_1	QTL_2	QTL_3	QTL_4			
	λ_{y_1}	λ_{11}	λ_{12}	λ_{13}	λ_{14}	-		
	λ_{y_2}	λ_{21}	λ_{22}	λ_{23}	λ_{24}			
	γ_{y_1}	0	1	1	0	-		
	γ_{y_2}	1	0	1	0			

Methods Simulation Real Data Example Conclusion

Seemingly Unrelated Regression (SUR) Model

We consider two different SUR model

1

 γ_{y_2}

Modeling different loci for all traits (SURd) QTL_1 QTL_2 QTL_3 QTL₄ λ_{y_1} λ_{12} λ_{13} λ_{11} λ_{14} λ_{y_2} λ_{22} λ_{23} λ_{21} λ_{24} 0 1 1 0 γ_{V_1}

1

Ø Modeling same loci for all traits (SURs) QTL_1 $QTL_2 \quad QTL_3$ QTL_4 λ_1 λ_2 λ_{v_1} λ_3 λ_{Λ} λ_3 λ_4 λ_1 λ_2 λ_{v_2} 1 1 0 0 γ_{v_1} 0 1 1 0 γ_{v_2}

0

- - 4 回 ト - 4 回 ト

0

Methods

Simulation Real Data Example Conclusion

Choice of Priors

Prior on β

- batches k=add,dom,add-add interaction etc.
- $\beta_k \sim \mathcal{N}(0, \sigma_k^2)$ and $\sigma_k^2 \sim Inv - \chi^2(\nu_k, s_k^2)$
- s_k^2 controls the prior heritability per effect $s_k^2 = (\nu_k - 2)E(h_j)V_p/(\nu_k V_j)$

Methods

Simulation Real Data Example Conclusion

Choice of Priors

Prior on β

- batches k=add,dom,add-add interaction etc.
- $\beta_k \sim \mathcal{N}(0, \sigma_k^2)$ and $\sigma_k^2 \sim Inv - \chi^2(\nu_k, s_k^2)$
- s_k^2 controls the prior heritability per effect $s_k^2 = (\nu_k - 2)E(h_j)V_p/(\nu_k V_j)$

Prior on number of QTL (ℓ)

- $\ell \sim Poission(\ell_0)$
- Choice of $L = \ell_0 + 3\sqrt{\ell_0}$

Methods

Simulation Real Data Example Conclusion

Choice of Priors

Prior on β

- batches k=add,dom,add-add interaction etc.
- $\beta_k \sim \mathcal{N}(0, \sigma_k^2)$ and $\sigma_k^2 \sim Inv - \chi^2(\nu_k, s_k^2)$
- s_k^2 controls the prior heritability per effect $s_k^2 = (\nu_k - 2)E(h_j)V_p/(\nu_k V_j)$

•
$$\ell \sim Poission(\ell_0)$$

• Choice of
$$L = \ell_0 + 3\sqrt{\ell_0}$$

Prior on λ and γ

 independent priors on QTL positions and indicators

Methods

Simulation Real Data Example Conclusion

Choice of Priors

Prior on β

Prior on Σ_{ϵ}^{-1}

- batches k=add,dom,add-add interaction etc.
- $\beta_k \sim \mathcal{N}(0, \sigma_k^2)$ and $\sigma_k^2 \sim Inv - \chi^2(\nu_k, s_k^2)$

• $p(\Sigma_{\epsilon}) \propto |\Sigma_{\epsilon}|^{-\frac{M+1}{2}}$

• s_k^2 controls the prior heritability per effect $s_k^2 = (\nu_k - 2)E(h_j)V_p/(\nu_k V_j)$

Prior on number of QTL (ℓ)

- $\ell \sim Poission(\ell_0)$
- Choice of $L = \ell_0 + 3\sqrt{\ell_0}$

Prior on λ and γ

 independent priors on QTL positions and indicators

Methods

Simulation Real Data Example Conclusion

MCMC Idea

Marginal Posterior

 $p(\beta_1 \mid y) = \int_{\beta_2} \dots \int_{\beta_J} \int_{\mu} \int_{\sigma} \int_{\Sigma_{\epsilon}^{-1}} \int_g p(\beta, \mu, \sigma, \Sigma_{\epsilon}^{-1}, g, \lambda, | y) d\beta_2 \dots d\beta_J d\mu d\sigma d\Sigma_{\epsilon}^{-1} dg$

• Ugly posterior: analytical calculations not possible

Methods

Simulation Real Data Example Conclusion

MCMC Idea

Marginal Posterior

 $p(\beta_1 \mid y) = \int_{\beta_2} \dots \int_{\beta_J} \int_{\mu} \int_{\sigma} \int_{\Sigma_{\epsilon}^{-1}} \int_g p(\beta, \mu, \sigma, \Sigma_{\epsilon}^{-1}, g, \lambda, | y) d\beta_2 \dots d\beta_J d\mu d\sigma d\Sigma_{\epsilon}^{-1} dg$

- Ugly posterior: analytical calculations not possible
- Direct sampling from posterior not possible

Methods

Simulation Real Data Example Conclusion

MCMC Idea

Marginal Posterior

 $p(\beta_1 \mid y) = \int_{\beta_2} \dots \int_{\beta_J} \int_{\mu} \int_{\sigma} \int_{\Sigma_{\epsilon}^{-1}} \int_g p(\beta, \mu, \sigma, \Sigma_{\epsilon}^{-1}, g, \lambda, | y) d\beta_2 \dots d\beta_J d\mu d\sigma d\Sigma_{\epsilon}^{-1} dg$

- Ugly posterior: analytical calculations not possible
- Direct sampling from posterior not possible
- Construct a Markov chain, $\{X_i\}_{i=0}^{\infty}$ so that $\lim_{i \to \infty} P(X_i = x) = \pi(x)$

Methods

Simulation Real Data Example Conclusion

MCMC Idea

Marginal Posterior

 $p(\beta_1 \mid y) = \int_{\beta_2} \dots \int_{\beta_J} \int_{\mu} \int_{\sigma} \int_{\Sigma_{\epsilon}^{-1}} \int_g p(\beta, \mu, \sigma, \Sigma_{\epsilon}^{-1}, g, \lambda, | y) d\beta_2 \dots d\beta_J d\mu d\sigma d\Sigma_{\epsilon}^{-1} dg$

- Ugly posterior: analytical calculations not possible
- Direct sampling from posterior not possible
- Construct a Markov chain, $\{X_i\}_{i=0}^{\infty}$ so that $\lim_{i \to \infty} P(X_i = x) = \pi(x)$
- Generate Monte carlo samples to approximate the posterior.

Methods

Simulation Real Data Example Conclusion

MCMC

・ロ・ ・ 日・ ・ 日・ ・ 日・

Methods

Simulation Real Data Example Conclusion

MCMC

- Draw $\beta_j | \beta_{-j} \sim \mathcal{N}(\beta_j^*, \sigma_{\beta_j}^2)$
- Draw $\Sigma_{\epsilon}^{-1}|eta_{\Gamma} \sim Wi(\Omega^{-1}, n)$

イロン 不同と 不同と 不同と

Methods

Simulation Real Data Example Conclusion

MCMC

- Draw $\beta_j | \beta_{-j} \sim \mathcal{N}(\beta_j^*, \sigma_{\beta_j}^2)$
- Draw $\Sigma_{\epsilon}^{-1}|eta_{\Gamma} \sim Wi(\Omega^{-1}, n)$
- \bullet Update locations λ fine tune in the nearby region

Methods

Simulation Real Data Example Conclusion

MCMC

- Draw $\beta_j | \beta_{-j} \sim \mathcal{N}(\beta_j^*, \sigma_{\beta_j}^2)$
- Draw $\Sigma_{\epsilon}^{-1}|eta_{\Gamma} \sim Wi(\Omega^{-1}, n)$
- Update locations λ fine tune in the nearby region
- Update indicators γ

Methods

Simulation Real Data Example Conclusion

MCMC

- Draw $\beta_j | \beta_{-j} \sim \mathcal{N}(\beta_j^*, \sigma_{\beta_j}^2)$
- Draw $\Sigma_{\epsilon}^{-1}|eta_{\Gamma} \sim Wi(\Omega^{-1}, n)$
- Update locations λ fine tune in the nearby region
- Update indicators γ
 - **0** QTL currently in the model

Methods

Simulation Real Data Example Conclusion

MCMC

- Draw $\beta_j | \beta_{-j} \sim \mathcal{N}(\beta_j^*, \sigma_{\beta_j}^2)$
- Draw $\Sigma_{\epsilon}^{-1}|eta_{\Gamma} \sim Wi(\Omega^{-1}, n)$
- Update locations λ fine tune in the nearby region
- Update indicators γ
 - QTL currently in the model
 - position and genotypes already generated in the preceding step

Methods

Simulation Real Data Example Conclusion

MCMC

- Draw $\beta_j | \beta_{-j} \sim \mathcal{N}(\beta_j^*, \sigma_{\beta_j}^2)$
- Draw $\Sigma_{\epsilon}^{-1}|eta_{\Gamma} \sim Wi(\Omega^{-1}, n)$
- Update locations λ fine tune in the nearby region
- Update indicators γ
 - QTL currently in the model
 - position and genotypes already generated in the preceding step
 - QTL currently not in the model

Methods

Simulation Real Data Example Conclusion

MCMC

- Draw $\beta_j | \beta_{-j} \sim \mathcal{N}(\beta_j^*, \sigma_{\beta_j}^2)$
- Draw $\Sigma_{\epsilon}^{-1}|eta_{\Gamma} \sim Wi(\Omega^{-1}, n)$
- Update locations λ fine tune in the nearby region
- Update indicators γ
 - QTL currently in the model
 - position and genotypes already generated in the preceding step
 - QTL currently not in the model
 - generate new QTL from its prior distribution and generate genotypes for all individuals

<ロ> (日) (日) (日) (日) (日)

Methods Simulation Real Data Example Conclusion

R/qtlbim

Our method has been (and is being) implemented in R/qtlbim (Bayesian Interval Mapping for $\mbox{QTL})$

- add-on package for R, freely available, distributable and extensible.
- computationally intensive algorithms written in C while graphics in R and built on top of R/qtl (Broman)
- Collaboration of Dr. Nengjun Yi (UAB) and Dr. Brian Yandell (UW-Madison)
 - Tapan Mehta, Ramprasad Venkataraman, Daniel Shriner and Samprit Banerjee (UAB)
 - Jee Young Moon, William Whipple Neely (UW-Madison)
 - NIH R01 grant (PI: Yi)
 - Released through CRAN in Sept. 2006
- Website: http://www.qtlbim.org/.

Methods Simulation Real Data Example Conclusion

Simulation Design

<ロ> <同> <同> < 同> < 同> < 同>

Methods Simulation Real Data Example Conclusion

Simulation Design

Ξ

э

・ロト ・日本 ・モート ・モート

Samprit Banerjee and Nengjun Yi

Bayesian QTL Mapping for Multiple Traits

Samprit Banerjee and Nengjun Yi

Bayesian QTL Mapping for Multiple Traits

SURs ,
$$\rho_{y_1 y_2} = 0.5$$

SURd ,
$$\rho_{y_1 y_2} = 0.5$$

Samprit Banerjee and Nengjun Yi Bayesian QTL Mapping for Multiple Traits

Outline Methods Introduction Simulation Bayesian Multiple Traits Real Data Example Bayesian GLM Conclusion

SURs ,
$$\rho_{V_1 V_2} = 0.8$$

SURd , $\rho_{y_1\,y_2}$ = 0.8

2logBF

Samprit Banerjee and Nengjun Yi

Bayesian QTL Mapping for Multiple Traits

SURs ,
$$\rho_{y_1 y_2} = 0.5$$

SURd ,
$$\rho_{y_1 y_2} = 0.5$$

Samprit Banerjee and Nengjun Yi Bayesian QTL Mapping for Multiple Traits

Outline Methods Introduction Simulation Bayesian Multiple Traits Real Data Example Bayesian GLM Conclusion

SURs ,
$$\rho_{y_1 y_2} = 0.8$$

2logBF

SURd , $\rho_{y_1 y_2} = 0.8$

Samprit Banerjee and Nengjun Yi Bayesian QTL Mapping for Multiple Traits

Samprit Banerjee and Nengjun Yi

Bayesian QTL Mapping for Multiple Traits

Samprit Banerjee and Nengjun Yi

Bayesian QTL Mapping for Multiple Traits
(Dutline	Methods
Introd	duction	Simulation
Bayesian Multiple	Traits	Real Data Example
Bayesia	n GLM	Conclusion

Average correct and incorrect QTL detected for y_2

			Correct				Incorrect	
$(n, \rho_{y_1y_2})$	STA	TMV	SURs	SURd	STA	TMV	SURs	SURd
(100, 0.5)	0.65	0.8	0.67	0.64	0.7	1.34	0.45	0.65
(100, 0.8)	0.34	1.01	1.02	0.97	0.24	1.85	0.75	0.54
(200, 0.5)	1.69	2.13	2.12	1.78	1.06	2.53	0.78	1.02
(200, 0.8)	1.51	2.6	2.56	2.24	0.63	2.92	0.73	0.72
(500, 0.5)	3.54	3.72	3.76	3.66	1.01	3.1	0.83	1.22
(500, 0.8)	3.55	3.81	3.78	3.67	1.1	3.14	1.03	1.01

Average MCMC time

	STA	TMV	SURs	SURd
VLN:LR	1.17	0.96	1.10	1.18
VLN:HR	1.18	0.98	1.09	1.16
LN:LR	2.47	1.99	2.23	2.52
LN:HR	2.48	2.06	2.22	2.45
HN:LR	6.94	6.14	6.51	7.76
HN:HR	6.92	6.11	6.45	7.51

→ 御 → → 注 → → 注 →

æ

Methods Simulation Real Data Example Conclusion

Comparison between methods

• STA - not powerful in low sample sizes

イロン 不同と 不同と 不同と

Methods Simulation Real Data Example Conclusion

Comparison between methods

- STA not powerful in low sample sizes
- TMV too many incorrect detections

Methods Simulation Real Data Example Conclusion

Comparison between methods

- STA not powerful in low sample sizes
- TMV too many incorrect detections
- SUR both SUR models performed well

Methods Simulation Real Data Example Conclusion

Comparison between methods

- STA not powerful in low sample sizes
- TMV too many incorrect detections
- SUR both SUR models performed well
- Recommend SURd as SURs can favor QTL of no effect on one trait but having large effect on the other.

Methods Simulation Real Data Example Conclusion

Real Data Set

Methods Simulation Real Data Example Conclusion

Trait Phenotype

- GONFAT \rightarrow Right Gonadal fat pad
- $\bullet~\mbox{SUBFAT}$ $\rightarrow~\mbox{Subcutaneous fat}$ pad

Bayes Factor Profile for SUBFAT and GONFAT

· ~ ~ ~

Methods Simulation Real Data Example Conclusion

Pleiotropic Effect

Posterior Probability for Pleiotropic Effect

Samprit Banerjee and Nengjun Yi Bayesian QTL Mapping for Multiple Traits

Methods Simulation Real Data Example Conclusion

Conclusion

• Use available information

◆□→ ◆□→ ◆三→ ◆三→

Methods Simulation Real Data Example Conclusion

Conclusion

- Use available information
 - more power to detect QTL

・ロト ・日本 ・モト ・モト

Methods Simulation Real Data Example Conclusion

Conclusion

- Use available information
 - more power to detect QTL
 - precise estimates

・ロト ・日本 ・モト ・モト

Methods Simulation Real Data Example Conclusion

Conclusion

- Use available information
 - more power to detect QTL
 - precise estimates
- Test biologically important hypotheses (like pleiotropy)

Methods Simulation Real Data Example Conclusion

Conclusion

- Use available information
 - more power to detect QTL
 - precise estimates
- Test biologically important hypotheses (like pleiotropy)
 - understand underlying biochemical pathway

Methods Simulation Real Data Example Conclusion

Conclusion

- Use available information
 - more power to detect QTL
 - precise estimates
- Test biologically important hypotheses (like pleiotropy)
 - understand underlying biochemical pathway
 - ultimate goal in QTL mapping

Methods Simulation Real Data Example Conclusion

Conclusion

- Use available information
 - more power to detect QTL
 - precise estimates
- Test biologically important hypotheses (like pleiotropy)
 - understand underlying biochemical pathway
 - ultimate goal in QTL mapping
- A comprehensive genome-wide search strategy to map multiple interacting QTL in correlated traits.

Methods Simulation Real Data Example Conclusion

Future Research

• Gene-gene (epistasis) and gene-environment (GxE) interactions; covariates

イロン 不同と 不同と 不同と

Methods Simulation Real Data Example Conclusion

Future Research

- Gene-gene (epistasis) and gene-environment (GxE) interactions; covariates
- Extend to ordinal traits: threshold model

Methods Simulation Real Data Example Conclusion

Future Research

- Gene-gene (epistasis) and gene-environment (GxE) interactions; covariates
- Extend to ordinal traits: threshold model
- Formal test for pleiotropy vs close linkage

Methods Simulation Real Data Example Conclusion

Future Research

- Gene-gene (epistasis) and gene-environment (GxE) interactions; covariates
- Extend to ordinal traits: threshold model
- Formal test for pleiotropy vs close linkage
- eQTL?

Generalized Linear Model Shrinkage Real Data Example

Large-Scale Hierarchical Generalized Linear Models for Genome-wide QTL Mapping

Samprit Banerjee and Nengjun Yi

Dept. of Biostatistics University of Alabama, Birmingham

イロン 不同と 不同と 不同と

Generalized Linear Model Shrinkage Real Data Example

• Some traits are non-normal, e.g. binary, poisson etc.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Generalized Linear Model Shrinkage Real Data Example

GLM

• Some traits are non-normal, e.g. binary, poisson etc.

Linear Models
$E(y \mid X) = X\beta$

・ロト ・回 ト ・ヨト ・ヨト

Generalized Linear Model Shrinkage Real Data Example

GLM

• Some traits are non-normal, e.g. binary, poisson etc.

Linear Models

$$E(y \mid X) = X\beta$$

Generalized Linear Models

- Linear predictor: $\eta = X\beta$
- 2 Link function: $E(y | X) = g^{-1}(\eta)$
- **3** Dist. of outcome variable: $p(y \mid X\beta, \phi) = \prod_{i=1}^{n} p(y_i \mid X_i\beta, \phi)$

・ロン ・回 と ・ ヨ と ・ ヨ と

Generalized Linear Model Shrinkage Real Data Example

Link function

GLM

$$\eta = g(\mu),$$
 where $\mu = E(y \mid X)$

• Identity
$$ightarrow g(\mu) = \mu$$

• Logit
$$ightarrow g(\mu) = log(rac{\mu}{1-\mu})$$

• Probit
$$ightarrow g(\mu) = \Phi^{-1}(\mu)$$

• Logarithm
$$ightarrow g(\mu) = \textit{log}(\mu)$$

・ロン ・四 と ・ 臣 と ・ 臣 と

Э

Generalized Linear Model Shrinkage Real Data Example

GLM

Linear Predictor

$$\eta = \beta_0 + X_E \beta_E + X_G \beta_G + X_{GG} \beta_{GG} + X_{GE} \beta_{GE}$$

• *E* = environmental effects

Generalized Linear Model Shrinkage Real Data Example

Linear Predictor

$$\eta = \beta_0 + X_E \beta_E + X_G \beta_G + X_{GG} \beta_{GG} + X_{GE} \beta_{GE}$$

- *E* = environmental effects
- *G* = genetic effects *e.g.* main effects including additive and dominant effects of markers and pseudomarkers

3

イロン 不同と 不同と 不同と

Generalized Linear Model Shrinkage Real Data Example

Linear Predictor

 $\eta = \beta_0 + X_E \beta_E + X_G \beta_G + X_{GG} \beta_{GG} + X_{GE} \beta_{GE}$

- *E* = environmental effects
- *G* = genetic effects *e.g.* main effects including additive and dominant effects of markers and pseudomarkers
- *GG* = gene-gene interaction (epistatic effects)

・ロン ・回と ・ヨン・

Generalized Linear Model Shrinkage Real Data Example

Linear Predictor

 $\eta = \beta_0 + X_E \beta_E + X_G \beta_G + X_{GG} \beta_{GG} + X_{GE} \beta_{GE}$

- E = environmental effects
- *G* = genetic effects *e.g.* main effects including additive and dominant effects of markers and pseudomarkers
- *GG* = gene-gene interaction (epistatic effects)
- GE = gene-environment interaction

・ロン ・回と ・ヨン ・ヨン

Generalized Linear Model Shrinkage Real Data Example

Conventional GLM

• Classical maximum likelihood method breaks down.

3

Generalized Linear Model Shrinkage Real Data Example

Conventional GLM

- Classical maximum likelihood method breaks down.
- Number of unknowns more that number of equations

Generalized Linear Model Shrinkage Real Data Example

Hierarchical Models

Solution

Informative prior distribution on coefficient (β) that favors sparseness

Generalized Linear Model Shrinkage Real Data Example

Hierarchical Models

Solution

Informative prior distribution on coefficient (β) that favors sparseness

Prior on β

$$egin{aligned} eta_j \mid au_j^2 &\sim \textit{N}(0, au_j^2) \ au_j^2 \mid
u_j, extsf{s}_j^2 &\sim \textit{Inv} - \chi^2(
u_j, extsf{s}_j^2) \end{aligned}$$

Generalized Linear Model Shrinkage Real Data Example

Hierarchical Models

Solution

Informative prior distribution on coefficient (β) that favors sparseness

$$\begin{array}{c} \text{Prior on } \beta \\ \beta_j \mid \tau_j^2 \sim \mathcal{N}(0, \tau_j^2) \\ \tau_j^2 \mid \nu_j, s_j^2 \sim \textit{Inv} - \chi^2(\nu_j, s_j^2) \end{array}$$

1

・ロン ・回 と ・ ヨ と ・ ヨ と Large-Scale Hierarchical Generalized Linear Models for Genome

æ

Generalized Linear Model Shrinkage Real Data Example

Hierarchical Models

Samprit Banerjee and Nengjun Yi Large-Scale Hierarchical Generalized Linear Models for Genome

Generalized Linear Model Shrinkage Real Data Example

Another prior for β

Prior II on eta
$\beta_j \mid \tau_j^2 \sim N(0, \tau_j^2)$ $\tau_j^2 \mid \lambda \sim \text{Expon}(\tau_j^2 \mid \frac{\lambda^2}{2}) - \frac{\lambda^2}{2} e^{-\lambda^2 \tau_j^2/2}$

・ロン ・四と ・ヨン ・ヨン
Generalized Linear Model Shrinkage Real Data Example

Another prior for β

₩

Double exponential prior on eta $eta_j \mid \lambda \sim \prod_{j=1}^p rac{\lambda}{2} e^{-\lambda |eta_j|}$

Generalized Linear Model Shrinkage Real Data Example

Another prior for β

₩

Double exponential prior on eta

$$\beta_j \mid \lambda \sim \prod_{j=1}^p \frac{\lambda}{2} e^{-\lambda |\beta_j|}$$

LASSO prior: LASSO estimates \equiv Bayesian posterior modes (Tibshirani 1996)

Samprit Banerjee and Nengjun Yi Large-Scale Hierarchi

Large-Scale Hierarchical Generalized Linear Models for Genome

Generalized Linear Model Shrinkage Real Data Example

Idea of Shrinkage

Variable Selection						
Markers	C1M1	C1M2	C2M1	C2M2	C15M2	C16M1
γ_y	0	0	1	0	1	1

Shrinkage							
Markers	C1M1	C1M2	C1M3	C1M4		C19M100	
β	0	0	0.2	0.3		0.1	

Where prior variance of $\beta < 0.001$ set $\beta = 0$

イロン イヨン イヨン イヨン

æ

Generalized Linear Model Shrinkage Real Data Example

Unknown Variance

$\begin{array}{l} \text{Prior on } \beta\\ \beta_j \mid \tau_j^2 \sim \textit{N}(0,\tau_j^2) \quad \quad \tau_j^2 \mid \nu_j, s_j^2 \sim \textit{Inv} - \chi^2(\nu_j,s_j^2) \end{array}$

• In classical GLM, the likelihood is approximated by weighted normal likelihood and estimates are obtained

・ロン ・回と ・ヨン・

Generalized Linear Model Shrinkage Real Data Example

Unknown Variance

$\begin{array}{l} \text{Prior on } \beta\\ \beta_j \mid \tau_j^2 \sim \textit{N}(0,\tau_j^2) \quad \quad \tau_j^2 \mid \nu_j, \textit{s}_j^2 \sim \textit{Inv} - \chi^2(\nu_j,\textit{s}_j^2) \end{array}$

- In classical GLM, the likelihood is approximated by weighted normal likelihood and estimates are obtained
- This step is repeated until convergence (Iterated Weighted Least Squares)

・ロン ・回と ・ヨン・

Generalized Linear Model Shrinkage Real Data Example

Unknown Variance

$\begin{array}{l} \mathsf{Prior} \,\, \mathsf{on} \,\, \beta \\ \beta_j \mid \tau_j^2 \sim \textit{N}(0,\tau_j^2) \quad \quad \tau_j^2 \mid \nu_j, \textit{s}_j^2 \sim \textit{Inv} - \chi^2(\nu_j,\textit{s}_j^2) \end{array}$

- In classical GLM, the likelihood is approximated by weighted normal likelihood and estimates are obtained
- This step is repeated until convergence (Iterated Weighted Least Squares)
- τ_i^2 are unknowns and need to be estimated

・ロン ・回と ・ヨン ・ヨン

Generalized Linear Model Shrinkage Real Data Example

Unknown Variance

$\begin{array}{l} \text{Prior on } \beta\\ \beta_j \mid \tau_j^2 \sim \textit{N}(0,\tau_j^2) \quad \quad \tau_j^2 \mid \nu_j, s_j^2 \sim \textit{Inv} - \chi^2(\nu_j,s_j^2) \end{array}$

- In classical GLM, the likelihood is approximated by weighted normal likelihood and estimates are obtained
- This step is repeated until convergence (Iterated Weighted Least Squares)
- τ_i^2 are unknowns and need to be estimated
- EM (Expectation Maximization) algorithm

・ロン ・回と ・ヨン・

Generalized Linear Model Shrinkage Real Data Example

EM idea

EM algorithm calculates the posterior mode of (β, ϕ, s^2) averaging over $\tau_j^2, j = 1, .., J$

イロト イヨト イヨト イヨト

Generalized Linear Model Shrinkage Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and gene-environment (GxE) interactions

イロン イヨン イヨン イヨン

Generalized Linear Model Shrinkage Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and gene-environment (GxE) interactions

• Search main effects chromosome by chromosome

イロト イヨト イヨト イヨト

Generalized Linear Model Shrinkage Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and gene-environment (GxE) interactions

- Search main effects chromosome by chromosome
- Search interactions between included main effects

イロト イヨト イヨト イヨト

Generalized Linear Model Shrinkage Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and gene-environment (GxE) interactions

- Search main effects chromosome by chromosome
- Search interactions between included main effects
- Search interactions between included and excluded main effects chromosome by chromosome

イロン イヨン イヨン イヨン

Generalized Linear Model Shrinkage Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and gene-environment (GxE) interactions

- Search main effects chromosome by chromosome
- Search interactions between included main effects
- Search interactions between included and excluded main effects chromosome by chromosome
- Search interactions between covariates and included main effects

イロン イヨン イヨン イヨン

Generalized Linear Model Shrinkage Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and gene-environment (GxE) interactions

- Search main effects chromosome by chromosome
- Search interactions between included main effects
- Search interactions between included and excluded main effects chromosome by chromosome
- Search interactions between covariates and included main effects
- Search interactions between covariates and excluded main effects

イロト イヨト イヨト イヨト

Generalized Linear Model Shrinkage Real Data Example

Model fitting strategy

Concern

Large number of markers: main effects, gene-gene (epistasis) and gene-environment (GxE) interactions

- Search main effects chromosome by chromosome
- Search interactions between included main effects
- Search interactions between included and excluded main effects chromosome by chromosome
- Search interactions between covariates and included main effects
- Search interactions between covariates and excluded main effects
- Search interactions between excluded main effects

Generalized Linear Model Shrinkage Real Data Example

Listeria Monocytogenes Dataset

Samprit Banerjee and Nengjun Yi

Large-Scale Hierarchical Generalized Linear Models for Genome

Probit link

Analyzing dead mice (81) only (Time to infection (T) < 264)

・ロト ・回ト ・ヨト ・ヨト

æ

Generalized Linear Model Shrinkage Real Data Example

Results

Binary Traits

	Estimate	Std. Error	z-value	Pr(> z)
(Intercept)	-0.4947	0.1538	-3.216	0.001300
D5M91(5:32.9)a	-1.0962	0.2414	-4.540	5.62e-06
D6M188(6:18.2)a	0.8330	0.2331	3.574	0.000352
D13M99(13:18.9)a	0.9269	0.2216	4.182	2.89e-05

Continuous Traits

	Estimate	Std. Error	t-value	Pr(> t)
(Intercept)	0.02616	0.09274	0.282	0.7786
D1M355(1:81.4)a	0.54642	0.12867	4.247	5.74e-05
D15M100(15:13.5)a	-0.27828	0.11341	-2.454	0.0163

< □ > < □ > < □ > < □ > < □ > .

Outline Introduction Bayesian Multiple Traits Bayesian GLM Frinkage Real Data Example

Samprit Banerjee and Nengjun Yi Large-Scale Hierarchical Generalized Linear Models for Genome

Generalized Linear Model Shrinkage Real Data Example

Discussion

• Quick algorithm calculates posterior mode rather than investigating the complete posterior

Generalized Linear Model Shrinkage Real Data Example

Discussion

- Quick algorithm calculates posterior mode rather than investigating the complete posterior
- Use existing GLM algorithm (R/glm)

Generalized Linear Model Shrinkage Real Data Example

Discussion

- Quick algorithm calculates posterior mode rather than investigating the complete posterior
- Use existing GLM algorithm (R/glm)
- Wide range of phenotypic traits

Generalized Linear Model Shrinkage Real Data Example

Discussion

- Quick algorithm calculates posterior mode rather than investigating the complete posterior
- Use existing GLM algorithm (R/glm)
- Wide range of phenotypic traits
- General framework: easily extensible

Generalized Linear Model Shrinkage Real Data Example

Discussion

- Quick algorithm calculates posterior mode rather than investigating the complete posterior
- Use existing GLM algorithm (R/glm)
- Wide range of phenotypic traits
- General framework: easily extensible
- eQTL

