High Dimensional Data, Covariance Matrices and Application to Genetics

Samprit Banerjee, Ph.D Div. of Biostatistics
Department of Public Health Weill Medical College of Cornell University

UW-M 22-Apr-2010

Outline

High Dimensional Data
Examples
Theoretical
Underpinnings
Random Matrices
Shrinkage Estimation

Motivation High Dimensional Data Examples

Theoretical Underpinnings
Random Matrices
Shrinkage Estimation
Decision Theory
Bayesian Estimation

QTL Mapping
Background
Statistical Challenges
Bayesian Solution
Bayesian Multiple Traits

Data Deluge

"The coming century is surely the century of data"

David Donoho, 2000

The Economist, 2010
Sources of high dimensional data

- Genetics and Genomics
- Internet portals: e.g Netflix
- Financial data

High Dimensional Data

In statistics,

- Observations: instances of a particular phenomenon
- Example of instances \leftrightarrow human beings
- Typically, n denotes the number of observations.
- Variable or Random variable is vector of values these observations are measured on
- Example: blood pressure, weight, height.
- Typically, p denotes the number of variables.
- Recent trend: explosive growth of p, \leftrightarrow dimensionality.
- $p \gg n$ classical methods of statistics fail!

Example 1: Principal Component Analysis

 Let $\mathbf{X}_{n \times p}=\left[X_{1}: X_{2}: \cdots: X_{p}\right]$ be i.i.d variables. Goal: reduce dimensionality by constructing a smaller number of "derived" variables.

$$
w_{1}=\arg \max _{\|w\|=1} \operatorname{var}\left(W^{\prime} X\right)
$$

Spectral decomposition: $X^{\prime} X=W L W^{\prime}$, where $L=\operatorname{diag}\left\{\ell_{1}, \ldots, \ell_{p}\right\}$ are the eigenvalues.

Population Structure within Europe

High Dimensional Data
Examples

Theoretical

Underpinnings

Random Matrices
Shrinkage Estimation Decision Theory

${ }^{1} \mathrm{~J}$ Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/nature07331a

Example 2: Multivariate Regression

One of the most common use of the covariance matrix in statistics is during a multivariate regression.

$$
\mathbf{Y}_{n \times p}=\mathbf{X}_{n \times q} \beta_{q \times p}+\mathbf{E}_{n \times p}
$$

where $e_{i} \sim \mathcal{N}_{p}(0, \Sigma), i=1, \cdots, n$ and Σ is $p \times p$.

- Historically $p<n$; High Dimensional data $p \gg n$ or $q \gg n$
- Estimates can be obtained by maximizing the likelihood

$$
L(\beta, \Sigma \mid X, Y) \propto \prod_{i=1}^{n}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}\left(Y_{i}-X_{i} \beta\right)^{\prime} \Sigma^{-1}\left(Y_{i}-X_{i} \beta\right)\right\}
$$

Seemingly Unrelated Regression

Zellner, 1962 introduced the Seemingly Unrelated Regression model.

$$
\mathbf{Y}_{n p \times 1}^{*}=\mathbf{X}^{*}{ }_{n p \times p q} \beta_{p q \times 1}^{*}+e_{n p \times 1}^{*}
$$

where $\mathbf{Y}=\operatorname{vec}(\mathbf{Y}), \mathbf{X}^{*}=\operatorname{diag}\left\{X_{1}, \cdots, X_{p}\right\}, \beta^{*}=\operatorname{vec}(\beta)$,$e^{*}=\operatorname{vec}(\mathbf{E})$ and $\operatorname{vec}()$ is the vectorizing operator.

- $e^{*} \sim N\left(0, \Sigma \otimes I_{n}\right)$
- GLS estimates: $\hat{\beta}=\left(X^{*^{\prime}} \Omega^{-1} X^{*}\right)^{-1}\left(X^{*^{\prime}} \Omega^{-1} Y\right)$
- where $\Omega=\Sigma \otimes I_{n}$ and \otimes is the Kronecker product.

Random Matrix Theory

- Covariance matrix $\Sigma_{p \times p}$ is a random matrix
- Eigenvalues of $\Sigma,\left\{\lambda_{1}, \cdots, \lambda_{p}\right\}$ are random
- Properties of interest: joint distribution of eigenvalues, number of eigenvalues falling below a given value
- Beginning in 1950s, physicists began to use random matrices to study energy levels of a system in quantum mechanics.
- Wigner proposed a statistical description of an "ensemble" of energy levels - properties empirical distribution and distribution of spacings.

Covariance Matrices

In statistics: $X_{1}, \cdots, X_{n} \sim N_{p}(0, \Sigma)$ and $X_{n \times p}=\left[X_{1}, \cdots, X_{n}\right]^{\prime}$ The usual estimator is

Bayesian Estimation

Sample Covariance Matrix

$$
S=X^{\prime} X / n
$$

$$
\begin{aligned}
\pi(\Sigma \mid X) & \propto p(X \mid \Sigma) \pi(\Sigma) \\
\hat{\Sigma} & =E_{\pi(\cdot \mid X)}(\Sigma)
\end{aligned}
$$

Gaussian and Wishart Distributions

If $X_{1}, X_{2}, \cdots, X_{n}$ are n i.i.d samples from a p-variate or p-dimensional Gaussian distribution $N_{p}(0, \Sigma)$ with density.

$$
f(X)=|\sqrt{2 \pi} \Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2} X^{\prime} \Sigma^{-1} X\right\}
$$

$S=X^{\prime} X$ follows a Wishart distribution (named after John Wishart, 1928)

$$
f(S)=c_{n, p}|\Sigma|^{-n / 2}|S|^{(n-p-1) / 2} \operatorname{etr}\left\{-\frac{1}{2} \Sigma^{-1} S\right\}
$$

where $\operatorname{etr}()=\exp (\operatorname{tr}())$

Eigenstructure of sample covariance matrix It is well known that the eigenvalues of the sample covariance matrix are more spread out compared to the true eigenvalues of the population covariance matrix

Spread of Sample Eigenvalues

High Dimensional

 DataExamples

Theoretical

Underpinnings
Random Matrices
Shrinkage Estimation Decision Theory
Bayesian Estimation
QTL Mapping
Background
Statistical Challenges
Bayesian Solution
Bayesian Multiple Traits

- Counting the number of times the sample eigenvalues are spread.
- $\ell_{1}<\lambda_{1} \mid \ell_{p}>\lambda_{p}$
- $\ell_{1}>\ell_{2}>\cdots>\ell_{p}$ are the eigenvalues of the sample covariance matrix S
- $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{p}$ are the eigenvalues of the population covariance matrix Σ

Joint Distribution of Eigen Values

Fisher (Cambridge), Girshik (Columbia), Hsu (London), Mood (Princeton) and Roy (Calcutta)

Theorem
If S is $W_{p}(n, \Sigma)$ with $n \geq p$ the joint density function of the eigenvalues $\ell_{1}, \ell_{2}, \cdots, \ell_{p}$ of S is

$$
\propto \prod_{j=1}^{p} \ell_{j}^{(n-p-1) / 2} \prod_{j<k}\left(\ell_{j}-\ell_{k}\right) \times \int_{\mathbb{O}(p)} e t r\left\{-\frac{1}{2} \Sigma^{-1} H L H^{\prime}\right\} d H
$$

where \mathbb{O}_{p} is the orthogonal group of $p \times p$ matrices, $d H$ is the normalized Haar measure and L is the diagonal matrix $\operatorname{diag}\left(\ell_{1}, \ell_{2}, \cdots, \ell_{p}\right)$. Assume $\ell_{1}>\ell_{2}>\cdots>\ell_{p}$.

The integral over \mathbb{O}_{p} can be expanded by zonal polynomials. If
$\Sigma=I$ then the joint density simplifies

$$
\propto \prod_{j=1}^{p} \ell_{j}^{(n-p-1) / 2} \prod_{j<k}\left(\ell_{j}-\ell_{k}\right) \exp \left(-\frac{1}{2} \sum_{j} \ell_{j}\right)
$$

Eigenspectrum

- Empirical Spectrum: how many eigenvalues fall below a given value.
- Wigner's Semi-Circle Law: Wigner showed the limiting density of the "empirical spectrum" of real symmetric matrices A with i.i.d entries is a semi-circle
- Marčenko-Pastur gave the limiting density of the "empirical spectrum" of the sample eigenvalues for a special case $A \sim W_{p}(n, I)$

Eigenspectrum

Marcenko-Pastur limit density

Study of eigenvalue distributions can be distinguished into

- Bulk: Refers to the properties of the full set $\ell_{1}, \ell_{2}, \cdots, \ell_{p}$
- Extremes: Addresses the (first few) largest and smallest eigenvalues

Largest Eigenvalue

Theorem (Johnstone, 2001)

Let $\ell_{1}>, \cdots,>\ell_{p}$ denote the eigenvalues of the sample covariance matrix $X^{\prime} X \sim W_{p}(n, I)$. Then

$$
\frac{\ell_{1}-\mu_{n p}}{\sigma_{n p}} \mathfrak{D} \rightarrow W_{1} \sim F_{1}
$$

where

$$
\begin{gathered}
\mu_{n p}=(\sqrt{n-1}+\sqrt{p})^{2} \\
\sigma_{n p}=(\sqrt{n-1}+\sqrt{p})\left(\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{p}}\right)^{1 / 3}
\end{gathered}
$$

F_{1} is the Tracy-Widom law of order 1 and has the distribution function defined by

$$
F_{1}(s)=\exp \left\{-\frac{1}{2} \int_{s}^{\infty} q(x)+(x-s) q^{2}(x) d x\right\}, \quad s \in \mathbb{R}
$$

where q solves the (nonlinear) Painlevé II differential equation

$$
\begin{gathered}
q(x)=x q(x)+2 q^{3}(x) \\
q(x) \sim \operatorname{Ai}(x) \quad \text { as } \quad x \rightarrow+\infty
\end{gathered}
$$

where $A i(x)$ denotes the Airy function.

Lessons learned

- The Vandermonde determinant $\prod_{j>k}\left(\ell_{j}-\ell_{k}\right)$ of the joint eigenvalue induces repulsion
- The eigenstructure of the sample covariance is more spread out compared to that of the population covariance matrix
- This is less pronounced when p is small
- Both Bulk and Extreme distribution of eigenvalues are complicated for computation.

Stein's Estimator

The sample covariance matrix S can be decomposed into $V L V^{\prime}$, where V is an orthogonal matrix and $L=\operatorname{diag}\left(\ell_{1}, \cdots, \ell_{p}\right)$ with $\ell_{1} \geq \ell_{2} \geq \cdots \geq \ell_{p}$. Stein (1975) considered the orthogonal invariant estimator:

$$
\hat{\Sigma}=V \Phi(L) V^{\prime}
$$

where $\Phi(L)=\operatorname{diag}\left(\phi_{1}, \cdots, \phi_{p}\right)$ with $\phi_{i}=\ell_{i} / \alpha_{i}$,

$$
\alpha_{i}=(n-p+1)+2 \ell_{i} \sum_{j \neq i} \frac{1}{\ell_{i}-\ell_{j}}
$$

Stein's Estimator contd...

Issues with Stein's estimator:

- The intuitive ordering of $\phi_{1} \geq \phi_{2} \geq \cdots \phi_{p}$ is frequently violated.
- Sometimes ϕ_{i} can be negative
- Stein suggested an isotonizing algorithm to avoid this problem by pooling adjacent pairs.
Haff (1991) formally minimized the Bayes risk for an orthogonally invariant prior by a variational technique.

Decision Theoretic Tools

Definition (Decision Theory)

Decision theory in philosophy, mathematics and statistics is concerned with identifying the values, uncertainties and other issues relevant in a given decision, its rationality, and the resulting optimal decision. It is very closely related to the field of game theory. (source: Wikipedia)

Definition (Loss function)

A loss function is any function L from $\Theta \times \mathcal{D}$ in $[0,+\infty)$
We will consider the following Loss functions for Σ

- Stein's Loss: $L_{1}(\Sigma, \hat{\Sigma})=\operatorname{tr}\left(\hat{\Sigma} \Sigma^{-1}\right)-\log \left|\hat{\Sigma} \Sigma^{-1}\right|-p$.
- Quadratic Loss: $L_{2}(\Sigma, \hat{\Sigma})=\operatorname{tr}\left(\hat{\Sigma} \Sigma^{-1}-l\right)^{2}$

Decision Theoretic Tools contd...

Frequentist Risk

$$
R(\theta, \delta)=\int_{\mathcal{X}} L(\theta, \delta(x)) f(x \mid \theta) d x
$$

Bayesian Paradigm

- Posterior Expected Loss

$$
\rho(\pi, d \mid x)=\int_{\Theta} L(\theta, \delta(x)) \pi(\theta \mid x) d \theta
$$

- Integrated Risk

$$
r(\pi, \delta)=\int_{\Theta} \int_{\mathcal{X}} L(\theta, \delta(x)) f(x \mid \theta) d x \pi(\theta) d \theta
$$

- Bayes estimator δ^{π} is that which minimized $r(\pi, \delta)$ and the corresponding risk is the Bayes risk.
... "To average over all possible values of x, when we know the observed value of x, seems to be a waste of information"
... "Such an evaluation may be satisfactory for the statistician, but it is not so appealing for a client, who wants optimal results for her data x, not that of another's"

$$
\text { Christian Robert, } 2007 \text { (The Bayesian Choice) }
$$

> Bayesian Paradigm $\pi(\Sigma \mid X) \propto p(X \mid \Sigma) \pi(\Sigma)$

- Posterior mean, maximum a posteriori
- Decision theoretic approach
- Bayes estimator: minimize the integrated risk based on a certain prior and loss function

Jeffreys Prior

Jeffreys' invariant principle: Sir Harold Jeffreys (1961) suggested any non-informative prior distribution should be justified on the grounds of its invariance under parameter transformation. So, if $\theta \sim \pi$ a priori, for any one-to-one transformation $\phi=\phi(\theta)$ the prior on ϕ should be $\pi(\phi)$.

$$
\pi(\theta) \propto \mathcal{I}(\theta)^{1 / 2} \text { where } \mathcal{I}(\theta)=E_{x \mid \theta}\left(-\frac{\partial^{2} L}{\partial \theta^{2}}\right)
$$

This is easy to see since $\mathcal{I}(\phi)=\mathcal{I}(\theta)(d \theta / d \phi)^{2}$

- Jeffreys prior for the covariance matrix is

$$
\pi(\Sigma) \propto|\Sigma|^{-(p+1) / 2}
$$

- Under Stein's loss $\left(L_{1}\right)$, the Bayes estimator for the covariance matrix is the usual unbiased estimator, the sample covariance matrix S / n

Reference Prior

Reference Prior Principle: (Bernardo, 1992) Let x be the result of an experiment $\epsilon=\{\mathcal{X}, \Theta, p(x \mid \theta)\}$ and let C be the class of admissible priors. The reference posterior of θ after x has been observed is defined to be $\pi(\theta \mid x)=\lim \pi_{k}(\theta \mid x)$ where $\pi_{k}(\theta \mid x) \propto p(x \mid \theta) \pi_{k}(\theta)$ is the posterior density corresponding to the prior $\pi_{k}(\theta)$ which maximizes $\mathcal{I}^{\theta}\{\epsilon(k), p(\theta)\}=\int p(x) \int p(\theta \mid x) \log \frac{p(\theta \mid x)}{p(\theta)} d \theta d x$ the expected information (expected Kullback-Leibler divergence of the posterior with respect to the prior) about θ.

The Reference prior was derived by Yang and Berger (1995). Let $\Sigma=O \wedge O^{\prime}$ where O is an orthogonal matrix and Λ is a diagonal matrix. The reference prior formulation is as follows

$$
\begin{aligned}
\pi(\Lambda, O)(d \Lambda)(d O) & \propto \frac{1}{|\Lambda|}(d \Lambda)(d H) \\
& \propto \frac{1}{|\Sigma| \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)}(d \Sigma)
\end{aligned}
$$

where $(d H)$ is the conditional invariant Haar measure over the space of orthogonal matrices.

Sampling from the Reference Posterior

The posterior resulting from the reference prior is

$$
\pi_{R}(\Sigma \mid S)(d \Sigma) \propto \frac{e \operatorname{tr}\left(-\frac{1}{2} \Sigma^{-1} S\right)}{|\Sigma|^{n / 2+1} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)}(d \Sigma)
$$

A Metropolis-Hastings Sampler:

- Generate $\Sigma^{\text {new }} \sim W_{p}(n, S)$
- Accept $\sum^{\text {new }}$ with probability
$-\alpha=\min \left\{1, \frac{\left|\Sigma^{\text {old }}\right|^{(p+1) / 2} \Pi_{i<j}\left(\lambda_{i}^{\text {old }}-\lambda_{j}^{\text {old }}\right)}{\left|\Sigma^{\text {new }}\right|(p+1) / 2} \Pi_{i<j}\left(\lambda_{i}^{\text {ee }}-\lambda_{j}^{\text {eew }}\right) ~\right\} ~$

Reference and Jeffreys comparison

Simulation

- $\mathrm{n}=50,100$
- $\mathrm{p}=2,5,10$
- correlation structure: correlated and independent
- 50 replicated

Frequentist Risks of the posterior mean are approximated by average Loss under the following Loss functions.

- Stein's Loss: $L_{1}(\Sigma, \hat{\Sigma})=\operatorname{tr}\left(\hat{\Sigma} \Sigma^{-1}\right)-\log \left|\hat{\Sigma} \Sigma^{-1}\right|-p$
- Quadratic Loss: $L_{2}(\Sigma, \hat{\Sigma})=\operatorname{tr}\left(\hat{\Sigma} \Sigma^{-1}-I\right)^{2}$

Reference and Jeffreys comparison

Outline

Mativation

High Dimensional Data
Examples

Theoretical

Underpinnings
Random Matrices
Shrinkage Estimation Decision Theory
Bayesian Estimation
QTL Mapping
Background
Statistical Challenges
Bayesian Solution
Bayesian Multiple Traits

What is QTL Mapping?

Outline

Examples

Theoretical

Underpinnings
Random Matrices
Shrinkage Estimation Decision Theory Bayesian Estimation

QTL Mapping

Background

Statistical Challenges
Bayesian Solution
Bayesian Multiple Traits

Quantitative Trait Loci (QTL) Mapping

What is QTL Mapping?

Examples

Theoretical

Underpinnings
Random Matrices
Shrinkage Estimation Decision Theory

Quantitative Trait Loci (QTL) Mapping

QT
y_{1}
y_{2}
y_{3}
y_{4}
y_{5}
y_{6}
y_{7}
y_{8}
y_{9}
y_{10}

- Quantitative Traits e.g. Blood pressure, BMI, FatMass, complex diseases (Alzhiemers) etc.

What is QTL Mapping?

Quantitative Trait Loci (QTL) Mapping

Examples	
Theoretical Underpinnings	
Random Matrices Shrinkage Estimation	QT
Decision Theory Bayesian Estimation	y_{1}
QTL Mapping	y_{2}
Background Statistical Challenges	y3
Bayesian Multiple	y4
	$y 5$
	Y6
	y_{7}
	y8
	Y9
	Y10

What is QTL Mapping?

Quantitative Trait Loci (QTL) Mapping

QT
y_{1}
y_{2}
y_{3}
y_{4}
y_{5}
y_{6}
y_{7}
y_{8}
y_{9}
y_{10}

Mapping

- Information from Quantitative traits combined with genetic information
- Try to map the positions of the genome influencing the traits

Genetic Design (Backcross Experiment)

- Broman, 1997
- Controlled experiments \rightarrow not possible with humans
- Example of traits: BMI, fatmass, Obesity related traits etc.
- Big impact on public health

Importance of QTL Mapping

- Identifying QTL in experimental animals is critical for the understanding biochemical pathways underlying complex traits.
- These understanding translate to drug targets and eventual clinical trials.
- QTL mapping is also important for animal/plant breeding.

Data

Outline
 High Dimensiona
 Data
 Examples

Theoretical
Underpinnings
Random Matrices
Shrinkage Estimation Decision Theory Bayesian Estimation

QTL Mapping

Background

Statistical Challenges Bayesian Solution Bayesian Multiple Traits

y_{1}	C 1 M 1	C 1 M 2	C 2 M 1	C 2 M 2	C 15 M 2	C 16 M 1	C 19 M 1
8.8	AA	AA	AB	AA	AA	AB	AB
9.6	AA	AA	AB	AB	AB	AB	AB
10.6	AB	AB	AA	AA	AB	AA	AA
11.1	AB	AB	AA	AB	AB	AA	AA
Genetic map							

Interval Mapping

Outline

Mativation
High Dimensional Data
Examples

Theoretical

Underpinnings
Random Matrices
Shrinkage Estimation Decision Theory
Bayesian Estimation

QTL Mapping

Background
Statistical Challenges
Bayesian Solution Bayesian Multiple Traits
observed markers

Interval Mapping

Motivation

- Insert arbitrary positions (pseudomarkers) into marker intervals

Interval Mapping

Motivation
 High Dimensional Data

Examples
Theoretical
Underpinning
Random Matrices
Shrinkage Estimation

- Insert arbitrary positions (pseudomarkers) into marker intervals
- Enables us to detect QTL within marker intervals

Interval Mapping

- Insert arbitrary positions (pseudomarkers) into marker intervals
- Enables us to detect QTL within marker intervals
- Pseudomarkers and markers are considered as putative QTL

Interval Mapping

- Insert arbitrary positions (pseudomarkers) into marker intervals
- Enables us to detect QTL within marker intervals
- Pseudomarkers and markers are considered as putative QTL
- Pseudomarkers not observed - Hidden Markov Model to reconstruct genotypes

Challenges in QTL Mapping

Outline
 Mativation

High Dimensional Data
Examples

Theoreticel

Underpinnings
Random Matrices
Shrinkage Estimation
Decision Theory
Bayesian Estimation
QTL Mapping
Background

Statistical Challenges

Bayesian Solution
Bayesian Multiple Traits

Complex Traits

Challenges in QTL Mapping

High Dimensional

 DataExamples

Theoretical

Underpinnings

Random Matrices Shrinkage Estimation Decision Theory Bayesian Estimation

Complex Traits

- interacting network of multiple genes and environmental factors

Challenges in QTL Mapping

Theoretical

Underpinnings

Random Matrices

- interacting network of multiple genes and environmental factors
- small-to-moderate sized effects

Challenges in QTL Mapping

Complex Traits

- interacting network of multiple genes and environmental factors
- small-to-moderate sized effects
- high sample size required

Challenges in QTL Mapping

Question
What combination of genes

Complex Traits

- interacting network of multiple genes and environmental factors
- small-to-moderate sized effects
- high sample size required
and interactions should one consider?

Challenges in QTL Mapping

Question
What combination of genes

Complex Traits

- interacting network of multiple genes and environmental factors
- small-to-moderate sized effects
- high sample size required
and interactions should one consider?

Model Selection

Challenges in QTL Mapping

Question

What combination of genes

Complex Traits

- interacting network of multiple genes and environmental factors
- small-to-moderate sized effects
- high sample size required
and interactions should one consider?

Model Selection

- For a BC (backcross) population with 40 genetic markers

Challenges in QTL Mapping

Question

What combination of genes

Complex Traits

- interacting network of multiple genes and environmental factors
- small-to-moderate sized effects
- high sample size required
and interactions should one consider?

Model Selection

- For a BC (backcross) population with 40 genetic markers
- $2^{40}=10^{12}=$
$1,000,000,000,000$ models

Statistical structure

High Dimensional

 Data
Examples

Theoretical

Underpinnings
Random Matrices
Shrinkage Estimation

Two aspects of the QTL mapping problem

1. The missing data problem: Markers \leftrightarrow QTL

Statistical structure

Two aspects of the QTL mapping problem

1. The missing data problem: Markers \leftrightarrow QTL
2. The model selection problem: QTL \rightarrow Traits

Bayesian Interval Mapping Framework

Bayesian Interval Mapping Framework

- Observed: y (traits) and M
 (marker and linkage map)

Bayesian Interval Mapping Framework

- Observed: y (traits) and M

Bayesian Interval Mapping Framework

- Observed: y (traits) and M
 (marker and linkage map)
- Missing markers and QTL genotypes (Q)
- Unknown parameters
(λ, β, H, Q)

Bayesian Interval Mapping Framework

- Observed: y (traits) and M
 (marker and linkage map)
- trait model $p(y \mid Q, \beta, \lambda, H)$
- Missing markers and QTL genotypes (Q)
- Unknown parameters (λ, β, H, Q)

Bayesian Interval Mapping Framework

- Observed: y (traits) and M (marker and linkage map)
- trait model

$$
p(y \mid Q, \beta, \lambda, H)
$$

- Missing markers and QTL genotypes (Q)
- genetic model $p(Q \mid M, \lambda, H)$
- Unknown parameters (λ, β, H, Q)

Bayesian Interval Mapping Framework

- Observed: y (traits) and M

(marker and linkage map)
- trait model

$$
p(y \mid Q, \beta, \lambda, H)
$$

- Missing markers and QTL genotypes (Q)
- genetic model $p(Q \mid M, \lambda, H)$
- Unknown parameters (λ, β, H, Q)
posterior $=$ likelihood \times prior
$p(\lambda, \beta, H, Q \mid y, M) \propto p(y \mid \beta, \lambda, Q, H) p(Q \mid$ $M, \lambda, H) p(\beta, \lambda, H)$

Why Multiple Traits?

y_{1}	y_{2}	C 1 M 1	C 1 M 2	C 2 M 1	C 2 M 2	C 15 M 2	C 16 M 1	C 19 M 1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected e.g. BMI, fatmass etc.

Why Multiple Traits?

y_{1}	y_{2}	C 1 M 1	C 1 M 2	C 2 M 1	C 2 M 2	C 15 M 2	C 16 M 1	C 19 M 1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected e.g. BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects

Why Multiple Traits?

y_{1}	y_{2}	C 1 M 1	C 1 M 2	C 2 M 1	C 2 M 2	C 15 M 2	C 16 M 1	C 19 M 1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected e.g. BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects
- Higher precision of estimates

Why Multiple Traits?

y_{1}	y_{2}	C 1 M 1	C 1 M 2	C 2 M 1	C 2 M 2	C 15 M 2	C 16 M 1	C 19 M 1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected e.g. BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects
- Higher precision of estimates
- Separate close linkage from pleiotropy

Why Multiple Traits?

y_{1}	y_{2}	C 1 M 1	C 1 M 2	C 2 M 1	C 2 M 2	C 15 M 2	C 16 M 1	C 19 M 1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected e.g. BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects
- Higher precision of estimates
- Separate close linkage from pleiotropy
- pleiotropy

Why Multiple Traits?

y_{1}	y_{2}	C 1 M 1	C 1 M 2	C 2 M 1	C 2 M 2	C 15 M 2	C 16 M 1	C 19 M 1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected e.g. BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects
- Higher precision of estimates
- Separate close linkage from pleiotropy
- pleiotropy
- one gene, affecting both traits indicating common biochemical pathways

Why Multiple Traits?

y_{1}	y_{2}	C 1 M 1	C 1 M 2	C 2 M 1	C 2 M 2	C 15 M 2	C 16 M 1	C 19 M 1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected e.g. BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects
- Higher precision of estimates
- Separate close linkage from pleiotropy
- pleiotropy
- one gene, affecting both traits indicating common biochemical pathways
- close linkage

Why Multiple Traits?

y_{1}	y_{2}	C 1 M 1	C 1 M 2	C 2 M 1	C 2 M 2	C 15 M 2	C 16 M 1	C 19 M 1
8.8	7.8	AA	AA	AB	AA	AA	AB	AB
9.6	10.1	AA	AA	AB	AB	AB	AB	AB
10.6	9.9	AB	AB	AA	AA	AB	AA	AA
11.1	10.9	AB	AB	AA	AB	AB	AA	AA

- Typically data on more than one phenotype (correlated) are collected e.g. BMI, fatmass etc.
- Higher power to detect weak main and/or epistatic effects
- Higher precision of estimates
- Separate close linkage from pleiotropy
- pleiotropy
- one gene, affecting both traits indicating common biochemical pathways
- close linkage
- two tightly linked genes resulting in collinear genotypes

QTL SUR Model

The QTL SUR Model:

$$
y_{t i}=\mu_{t}+\mathbf{X}_{t i} \boldsymbol{\beta}_{t}+e_{t i}, i=1, \cdots, n ; t=1, \cdots, T
$$

where t corresponds to the phenotypes or traits or dependent variables and i corresponds to the individuals. It is assumed the $\mathbf{e}_{i}=\left\{e_{1 i}, \cdots, e_{T i}\right\} \sim N_{T}(0, \Sigma)$

Model Parameters

Following Godsill (2001) fix the total number of loci/independent variables that can be selected to L Then define:

- Model Indicators: $\gamma=\left\{\gamma_{t 1}, \cdots, \gamma_{t L}\right\}$
- Locus Indices: $\boldsymbol{\lambda}=\left\{\lambda_{t 1}, \cdots, \lambda_{t L}\right\}$

Following special cases of the SURd model can be obtained below:

- SURs : $\lambda_{t i}=\lambda_{i} \forall t=1, \cdots, T$
- Tranditional Multivariate Model (TMV): $\gamma_{t i}=\gamma_{t} \forall t=1, \cdots, T$
- Single Trait Analysis (STA): $\Sigma=I$ will reduce to univariate trait-by-trait analysis

Choice of Priors

Prior on β

- batches
k=add,dom,add-add interaction etc.
- $\beta_{k} \sim \mathcal{N}\left(0, \sigma_{k}^{2}\right)$ and $\sigma_{k}^{2} \sim \operatorname{Inv}-\chi^{2}\left(\nu_{k}, s_{k}^{2}\right)$
- s_{k}^{2} controls the prior heritability per effect

$$
\begin{aligned}
& s_{k}^{2}= \\
& \left(\nu_{k}-2\right) E\left(h_{j}\right) V_{p} /\left(\nu_{k} V_{j}\right)
\end{aligned}
$$

Choice of Priors

Prior on β

- batches
k=add,dom,add-add interaction etc.
- $\beta_{k} \sim \mathcal{N}\left(0, \sigma_{k}^{2}\right)$ and $\sigma_{k}^{2} \sim \operatorname{In} v-\chi^{2}\left(\nu_{k}, s_{k}^{2}\right)$
- s_{k}^{2} controls the prior heritability per effect

$$
\begin{aligned}
& s_{k}^{2}= \\
& \left(\nu_{k}-2\right) E\left(h_{j}\right) V_{p} /\left(\nu_{k} V_{j}\right)
\end{aligned}
$$

Prior on number of QTL (ℓ)

- $\ell \sim$ Poission $\left(\ell_{0}\right)$
- Choice of $L=\ell_{0}+3 \sqrt{\ell_{0}}$

Choice of Priors

Prior on β

- batches
k=add,dom,add-add interaction etc.
- $\beta_{k} \sim \mathcal{N}\left(0, \sigma_{k}^{2}\right)$ and $\sigma_{k}^{2} \sim \operatorname{In} v-\chi^{2}\left(\nu_{k}, s_{k}^{2}\right)$
- s_{k}^{2} controls the prior heritability per effect

$$
\begin{aligned}
& s_{k}^{2}= \\
& \left(\nu_{k}-2\right) E\left(h_{j}\right) V_{p} /\left(\nu_{k} V_{j}\right)
\end{aligned}
$$

Prior on number of QTL ($\ell)$

- $\ell \sim$ Poission $\left(\ell_{0}\right)$
- Choice of $L=\ell_{0}+3 \sqrt{\ell_{0}}$

Prior on λ and γ

- independent priors on QTL positions and indicators

Choice of Priors

Prior on β

- batches
k=add,dom,add-add interaction etc.
- $\beta_{k} \sim \mathcal{N}\left(0, \sigma_{k}^{2}\right)$ and $\sigma_{k}^{2} \sim \operatorname{In} v-\chi^{2}\left(\nu_{k}, s_{k}^{2}\right)$
- s_{k}^{2} controls the prior heritability per effect

$$
\begin{aligned}
& s_{k}^{2}= \\
& \left(\nu_{k}-2\right) E\left(h_{j}\right) V_{p} /\left(\nu_{k} V_{j}\right)
\end{aligned}
$$

Prior on number of QTL (ℓ)

- $\ell \sim$ Poission $\left(\ell_{0}\right)$
- Choice of $L=\ell_{0}+3 \sqrt{\ell_{0}}$

Prior on λ and γ

- independent priors on QTL positions and indicators

Prior on Σ
$-p(\Sigma) \propto \frac{1}{|\Sigma| \prod_{i<j}\left(d_{i}-d_{j}\right)}$

Composite Model Space Approach

- The idea is to circumvent the trans-dimensional character of the problem by modeling all parameters simultaneously.
- The joint posterior distribution:

$$
\begin{array}{rc}
p(\gamma, \lambda, \theta, \Sigma \mid Y, X) & \propto p(Y \mid X, \gamma, \lambda, \theta, \Sigma) p\left(\lambda_{\gamma}, \theta_{\gamma} \mid \gamma, \Sigma\right) \\
\times & p\left(\lambda_{-\gamma}, \theta_{-\gamma} \mid \gamma, \Sigma\right) p(\gamma) p(\Sigma, \theta)
\end{array}
$$

- where $\theta=\left\{\beta, \sigma^{2}\right\}$ and $\lambda_{-\gamma}$ is the collection of all $\lambda_{t i}$'s for which $\gamma_{t i}=0$.
- Assume a priori independence

$$
p\left(\lambda_{-\gamma}, \theta_{-\gamma} \mid \lambda_{\gamma}, \theta_{\gamma}, \gamma, \Sigma\right) \propto p\left(\lambda_{-\gamma}, \theta_{-\gamma} \mid \gamma, \Sigma\right)
$$

Real Data Set

Outline
Motivation
High Dimensional Data
Examples
Theoretical Underpinnings

QTL Mapping
Background
Statistical Challenges Bayesian Solution
Bayesian Multiple Traits

M16i: large, obese, rapid growth

Trait Phenotype

log2(GONFAT) adjusted
log2(SUBFAT) adjusted

- GONFAT \rightarrow Right Gonadal fat pad
- SUBFAT \rightarrow Subcutaneous fat pad

Bayes Factor Profile for SUBFAT and GONFAT

Pleiotropic Effect

Outline

Mativation

High Dimensional Data
Examples

Theoretical

Underpinnings

Random Matrices
Shrinkage Estimation
Decision Theory
Bayesian Estimation
QTL Mapping
Background
Statistical Challenges
Bayesian Solution
Bayesian Multiple Traits

Posterior Probability for Pleiotropic Effect

Future Research

Pleiotropy vs. Coincident linkage

- SURd: Models the coincident linkage hypothesis
- TMV: Models pleiotropy
- Bayes Factor comparison of pleiotropy vs coincident linkage

Variety of traits

- Ordinal traits using threshold model
- Survival traits

Future Research

eQTL (expression QTL)

- mRNA expression are considered traits
- Tens of thousands of traits (T)
- Lot of attention recently by researchers
- NIH RFAs
- http://grants.nih.gov/grants/guide/rfa-files/RFA-RM-09-006.html

Covariance matrix modeling

- Current implementation breaks down for large T
- Investigation of different priors

Acknowledgements

- Stefano Monni (Weill Cornell)
- Nengjun Yi (University of Alabama at Birmingham)
- Brian Yandell (University of Wisconsin - Madison)
- CTSC grant

