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Data Deluge

“The coming century is surely the century of data”

David Donoho, 2000

“..industrial revolution of data.”

The Economist, 2010

Sources of high dimensional data

I Genetics and Genomics

I Internet portals: e.g Netflix

I Financial data
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High Dimensional Data

In statistics,
I Observations: instances of a particular phenomenon

I Example of instances ↔ human beings
I Typically, n denotes the number of observations.

I Variable or Random variable is vector of values these
observations are measured on

I Example: blood pressure, weight, height.
I Typically, p denotes the number of variables.

I Recent trend: explosive growth of p, ↔ dimensionality.

I p � n classical methods of statistics fail!
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Example 1: Principal Component Analysis

Let Xn×p = [X1 : X2 : · · · : Xp] be i .i .d variables.
Goal: reduce dimensionality by constructing a smaller
number of “derived” variables.

w1 = arg max
||w ||=1

var(W ′X )

Spectral decomposition: X ′X = WLW ′, where
L = diag{`1, ..., `p} are the eigenvalues.
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Population Structure within Europe

1

1J Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/nature07331
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Example 2: Multivariate Regression

One of the most common use of the covariance matrix in
statistics is during a multivariate regression.

Yn×p = Xn×qβq×p + En×p

where ei ∼ Np(0,Σ), i = 1, · · · , n and Σ is p × p.

I Historically p < n; High Dimensional data p >> n or
q >> n

I Estimates can be obtained by maximizing the likelihood

L(β,Σ|X ,Y ) ∝
n∏

i=1

|Σ|−1/2exp

{
−1

2
(Yi − Xiβ)′Σ−1(Yi − Xiβ)

}
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Seemingly Unrelated Regression

Zellner, 1962 introduced the Seemingly Unrelated Regression
model.

Y∗np×1 = X∗np×pqβ
∗
pq×1 + e∗np×1

where Y = vec(Y), X∗ = diag{X1, · · · ,Xp}, β∗ = vec(β)
,e∗ = vec(E) and vec() is the vectorizing operator.

I e∗ ∼ N(0,Σ⊗ In)

I GLS estimates: β̂ = (X ∗
′
Ω−1X ∗)−1(X ∗

′
Ω−1Y )

I where Ω = Σ⊗ In and ⊗ is the Kronecker product.
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Random Matrix Theory

I Covariance matrix Σp×p is a random matrix

I Eigenvalues of Σ, {λ1, · · · , λp} are random

I Properties of interest: joint distribution of eigenvalues,
number of eigenvalues falling below a given value

I Beginning in 1950s, physicists began to use random
matrices to study energy levels of a system in quantum
mechanics.

I Wigner proposed a statistical description of an
“ensemble” of energy levels - properties empirical
distribution and distribution of spacings.



Outline

Motivation

High Dimensional
Data

Examples

Theoretical
Underpinnings

Random Matrices

Shrinkage Estimation

Decision Theory

Bayesian Estimation

QTL Mapping

Background

Statistical Challenges

Bayesian Solution

Bayesian Multiple
Traits

Covariance Matrices

In statistics: X1, · · · ,Xn ∼ Np(0,Σ) and
Xn×p = [X1, · · · ,Xn]′ The usual estimator is

Sample Covariance Matrix

S = X ′X/n

Bayesian Estimation

π(Σ|X ) ∝ p(X |Σ)π(Σ)

Σ̂ = Eπ(.|X )(Σ)
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Gaussian and Wishart Distributions

If X1,X2, · · · ,Xn are n i .i .d samples from a p-variate or
p-dimensional Gaussian distribution Np(0,Σ) with density.

f (X ) = |
√

2πΣ|−1/2exp

{
−1

2
X ′Σ−1X

}
S = X ′X follows a Wishart distribution (named after John
Wishart, 1928)

f (S) = cn,p|Σ|−n/2|S |(n−p−1)/2etr

{
−1

2
Σ−1S

}
where etr() = exp(tr())
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Eigenstructure of sample covariance matrix

It is well known that the eigenvalues of the sample
covariance matrix are more spread out compared to the true
eigenvalues of the population covariance matrix
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Spread of Sample Eigenvalues
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I Counting the
number of times
the sample
eigenvalues are
spread.

I `1 < λ1|`p > λp
I `1 > `2 > · · · > `p

are the eigenvalues
of the sample
covariance matrix S

I λ1 > λ2 > · · · > λp

are the eigenvalues
of the population
covariance matrix Σ
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Joint Distribution of Eigen Values
Fisher (Cambridge), Girshik (Columbia), Hsu (London), Mood
(Princeton) and Roy (Calcutta)

Theorem

If S is Wp(n,Σ) with n ≥ p the joint density function of the
eigenvalues `1, `2, · · · , `p of S is

∝
p∏

j=1

`
(n−p−1)/2
j

∏
j<k

(`j − `k )×
∫

O(p)
etr

{
−1

2
Σ−1HLH ′

}
dH

where Op is the orthogonal group of p × p matrices, dH is the
normalized Haar measure and L is the diagonal matrix
diag(`1, `2, · · · , `p). Assume `1 > `2 > · · · > `p.

The integral over Op can be expanded by zonal polynomials. If

Σ = I then the joint density simplifies

∝
p∏

j=1

`
(n−p−1)/2
j

∏
j<k

(`j − `k )exp

−1

2

∑
j

`j
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Eigenspectrum

I Empirical Spectrum: how many eigenvalues fall below
a given value.

I Wigner’s Semi-Circle Law: Wigner showed the
limiting density of the “empirical spectrum” of real
symmetric matrices A with i .i .d entries is a semi-circle

I Marc̆enko-Pastur gave the limiting density of the
“empirical spectrum” of the sample eigenvalues for a
special case A ∼Wp(n, I )
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Eigenspectrum

Study of eigenvalue
distributions can be
distinguished into

I Bulk: Refers to the
properties of the full set
`1, `2, · · · , `p

I Extremes: Addresses the
(first few) largest and
smallest eigenvalues
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Largest Eigenvalue

Theorem (Johnstone, 2001)
Let `1 >, · · · , > `p denote the eigenvalues of the sample covariance matrix X ′X ∼ Wp (n, I ). Then

`1 − µnp

σnp
D→W1 ∼ F1

where

µnp = (
√

n − 1 +
√

p)2

σnp = (
√

n − 1 +
√

p)
(

1√
n−1

+ 1√
p

)1/3

F1 is the Tracy-Widom law of order 1 and has the distribution function defined by

F1(s) = exp
{
− 1

2

∫∞
s q(x) + (x − s)q2(x)dx

}
, sεR

where q solves the (nonlinear) Painlevé II differential equation

q(x) = xq(x) + 2q3(x),
q(x) ∼ Ai(x) as x → +∞

where Ai(x) denotes the Airy function.
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Lessons learned

I The Vandermonde determinant
∏

j>k (`j − `k ) of the
joint eigenvalue induces repulsion

I The eigenstructure of the sample covariance is more
spread out compared to that of the population
covariance matrix

I This is less pronounced when p is small

I Both Bulk and Extreme distribution of eigenvalues are
complicated for computation.
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Stein’s Estimator

The sample covariance matrix S can be decomposed into
VLV ′, where V is an orthogonal matrix and
L = diag(`1, · · · , `p) with `1 ≥ `2 ≥ · · · ≥ `p. Stein (1975)
considered the orthogonal invariant estimator:

Σ̂ = V Φ(L)V ′

where Φ(L) = diag(φ1, · · · , φp) with φi = `i/αi ,

αi = (n − p + 1) + 2`i

∑
j 6=i

1

`i − `j
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Stein’s Estimator contd...

Issues with Stein’s estimator:

I The intuitive ordering of φ1 ≥ φ2 ≥ · · ·φp is frequently
violated.

I Sometimes φi can be negative
I Stein suggested an isotonizing algorithm to avoid this

problem by pooling adjacent pairs.

Haff (1991) formally minimized the Bayes risk for an
orthogonally invariant prior by a variational technique.
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Decision Theoretic Tools

Definition (Decision Theory)
Decision theory in philosophy, mathematics and statistics is concerned with identifying the values,
uncertainties and other issues relevant in a given decision, its rationality, and the resulting optimal
decision. It is very closely related to the field of game theory. (source: Wikipedia)

Definition (Loss function)

A loss function is any function L from Θ×D in [0,+∞)

We will consider the following Loss functions for Σ

I Stein’s Loss: L1(Σ, Σ̂) = tr(Σ̂Σ−1)− log |Σ̂Σ−1| − p.

I Quadratic Loss: L2(Σ, Σ̂) = tr(Σ̂Σ−1 − I )2
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Decision Theoretic Tools contd...

Frequentist Risk

R(θ, δ) =

∫
X

L(θ, δ(x))f (x |θ)dx

Bayesian Paradigm

I Posterior Expected Loss

ρ(π, d |x) =

∫
Θ

L(θ, δ(x))π(θ|x)dθ

I Integrated Risk

r(π, δ) =

∫
Θ

∫
X

L(θ, δ(x))f (x |θ)dxπ(θ)dθ

I Bayes estimator δπ is that which minimized r(π, δ) and
the corresponding risk is the Bayes risk.
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...“To average over all possible values of x, when
we know the observed value of x, seems to be a
waste of information”

...“Such an evaluation may be satisfactory for the
statistician, but it is not so appealing for a client,
who wants optimal results for her data x, not that
of another’s”

Christian Robert, 2007 (The Bayesian Choice)
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Bayesian Paradigm

π(Σ|X ) ∝ p(X |Σ)π(Σ)

I Posterior mean, maximum a posteriori

I Decision theoretic approach

I Bayes estimator: minimize the integrated risk based on
a certain prior and loss function
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Jeffreys Prior

Jeffreys’ invariant principle: Sir Harold Jeffreys (1961) suggested any
non-informative prior distribution should be justified on the grounds of its
invariance under parameter transformation. So, if θ ∼ π a priori, for any
one-to-one transformation φ = φ(θ) the prior on φ should be π(φ).

π(θ) ∝ I(θ)1/2 where I(θ) = Ex|θ

(
−
∂2L

∂θ2

)
This is easy to see since I(φ) = I(θ)(dθ/dφ)2

I Jeffreys prior for the covariance matrix is

π(Σ) ∝ |Σ|−(p+1)/2

I Under Stein’s loss (L1), the Bayes estimator for the covariance matrix is
the usual unbiased estimator, the sample covariance matrix S/n
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Reference Prior

Reference Prior Principle: (Bernardo, 1992) Let x be the result of an experiment ε = {X ,Θ, p(x|θ)}

and let C be the class of admissible priors. The reference posterior of θ after x has been observed is

defined to be π(θ|x) = lim πk (θ|x) where πk (θ|x) ∝ p(x|θ)πk (θ) is the posterior density

corresponding to the prior πk (θ) which maximizes Iθ{ε(k), p(θ)} =
∫

p(x)
∫

p(θ|x)log
p(θ|x)

p(θ)
dθdx

the expected information (expected Kullback-Leibler divergence of the posterior with respect to the

prior) about θ.

The Reference prior was derived by Yang and Berger (1995). Let Σ = OΛO′

where O is an orthogonal matrix and Λ is a diagonal matrix. The reference
prior formulation is as follows

π(Λ,O)(dΛ)(dO) ∝
1

|Λ|
(dΛ)(dH)

∝
1

|Σ|
∏

i<j (λi − λj )
(dΣ)

where (dH) is the conditional invariant Haar measure over the space of

orthogonal matrices.
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Sampling from the Reference Posterior

The posterior resulting from the reference prior is

πR(Σ|S)(dΣ) ∝
etr(−1

2 Σ−1S)

|Σ|n/2+1
∏

i<j (λi − λj )
(dΣ)

A Metropolis-Hastings Sampler:

I Generate Σnew ∼Wp(n, S)

I Accept Σnew with probability

I α = min

{
1,
|Σold |(p+1)/2

∏
i<j (λ

old
i −λ

old
j )

|Σnew |(p+1)/2
∏

i<j (λ
new
i −λnew

j )

}
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Reference and Jeffreys comparison

Simulation

I n=50,100

I p=2,5,10

I correlation structure: correlated and independent

I 50 replicated

Frequentist Risks of the posterior mean are approximated by
average Loss under the following Loss functions.

I Stein’s Loss: L1(Σ, Σ̂) = tr(Σ̂Σ−1)− log |Σ̂Σ−1| − p

I Quadratic Loss: L2(Σ, Σ̂) = tr(Σ̂Σ−1 − I )2
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What is QTL Mapping?

Quantitative Trait Loci (QTL) Mapping

QT

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

L Mapping

I Quantitative Traits e.g. Blood
pressure, BMI, FatMass, complex
diseases (Alzhiemers) etc.

I Loci → Genomic positions
influencing the traits

I Information from Quantitative
traits combined with genetic
information

I Try to map the positions of the
genome influencing the traits
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What is QTL Mapping?

Quantitative Trait Loci (QTL) Mapping

QT

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

L

Mapping

I Quantitative Traits e.g. Blood
pressure, BMI, FatMass, complex
diseases (Alzhiemers) etc.

I Loci → Genomic positions
influencing the traits

I Information from Quantitative
traits combined with genetic
information

I Try to map the positions of the
genome influencing the traits
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Genetic Design (Backcross Experiment)

- Broman, 1997

I Controlled experiments → not possible with humans
I Example of traits: BMI, fatmass, Obesity related traits

etc.
I Big impact on public health
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Importance of QTL Mapping

I Identifying QTL in experimental animals is critical for
the understanding biochemical pathways underlying
complex traits.

I These understanding translate to drug targets and
eventual clinical trials.

I QTL mapping is also important for animal/plant
breeding.
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Interval Mapping

observed markers

pseudomarkers

Chromosome

I Insert arbitrary positions (pseudomarkers) into marker intervals

I Enables us to detect QTL within marker intervals

I Pseudomarkers and markers are considered as putative QTL

I Pseudomarkers not observed – Hidden Markov Model to
reconstruct genotypes



Outline

Motivation

High Dimensional
Data

Examples

Theoretical
Underpinnings

Random Matrices

Shrinkage Estimation

Decision Theory

Bayesian Estimation

QTL Mapping

Background

Statistical Challenges

Bayesian Solution

Bayesian Multiple
Traits

Interval Mapping

observed markers

pseudomarkers

Chromosome

I Insert arbitrary positions (pseudomarkers) into marker intervals

I Enables us to detect QTL within marker intervals

I Pseudomarkers and markers are considered as putative QTL

I Pseudomarkers not observed – Hidden Markov Model to
reconstruct genotypes



Outline

Motivation

High Dimensional
Data

Examples

Theoretical
Underpinnings

Random Matrices

Shrinkage Estimation

Decision Theory

Bayesian Estimation

QTL Mapping

Background

Statistical Challenges

Bayesian Solution

Bayesian Multiple
Traits

Interval Mapping

observed markers

pseudomarkers

Chromosome

I Insert arbitrary positions (pseudomarkers) into marker intervals

I Enables us to detect QTL within marker intervals

I Pseudomarkers and markers are considered as putative QTL

I Pseudomarkers not observed – Hidden Markov Model to
reconstruct genotypes



Outline

Motivation

High Dimensional
Data

Examples

Theoretical
Underpinnings

Random Matrices

Shrinkage Estimation

Decision Theory

Bayesian Estimation

QTL Mapping

Background

Statistical Challenges

Bayesian Solution

Bayesian Multiple
Traits

Interval Mapping

observed markers

pseudomarkers

Chromosome

I Insert arbitrary positions (pseudomarkers) into marker intervals

I Enables us to detect QTL within marker intervals

I Pseudomarkers and markers are considered as putative QTL

I Pseudomarkers not observed – Hidden Markov Model to
reconstruct genotypes



Outline

Motivation

High Dimensional
Data

Examples

Theoretical
Underpinnings

Random Matrices

Shrinkage Estimation

Decision Theory

Bayesian Estimation

QTL Mapping

Background

Statistical Challenges

Bayesian Solution

Bayesian Multiple
Traits

Interval Mapping

observed markers

pseudomarkers

Chromosome

I Insert arbitrary positions (pseudomarkers) into marker intervals

I Enables us to detect QTL within marker intervals

I Pseudomarkers and markers are considered as putative QTL

I Pseudomarkers not observed – Hidden Markov Model to
reconstruct genotypes



Outline

Motivation

High Dimensional
Data

Examples

Theoretical
Underpinnings

Random Matrices

Shrinkage Estimation

Decision Theory

Bayesian Estimation

QTL Mapping

Background

Statistical Challenges

Bayesian Solution

Bayesian Multiple
Traits

Challenges in QTL Mapping

Complex Traits

I interacting network of
multiple genes and
environmental factors

I small-to-moderate sized
effects

I high sample size required

Question

What combination of genes
and interactions should one
consider?

Model Selection

I For a BC (backcross)
population with 40
genetic markers

I 240 = 1012 =
1, 000, 000, 000, 000
models
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Statistical structure

QTL

Markers

Traits

Two aspects of the QTL mapping problem

1. The missing data problem: Markers ↔ QTL

2. The model selection problem: QTL → Traits
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Bayesian Interval Mapping Framework

observed M y

↘ ↗ ↑
missing Q |

↗ ↑ |
unknown λ | β

↖ | ↗
H

I Observed: y (traits) and M
(marker and linkage map)

- trait model
p(y | Q, β, λ,H)

I Missing markers and QTL
genotypes (Q)

- genetic model
p(Q | M, λ,H)

I Unknown parameters
(λ, β,H,Q)

posterior = likelihood × prior

p(λ, β,H,Q | y ,M) ∝ p(y | β, λ,Q,H)p(Q |
M, λ,H)p(β, λ,H)
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Why Multiple Traits?

y1 y2 C1M1 C1M2 C2M1 C2M2 C15M2 C16M1 C19M1
8.8 7.8 AA AA AB AA AA AB AB
9.6 10.1 AA AA AB AB AB AB AB

10.6 9.9 AB AB AA AA AB AA AA
11.1 10.9 AB AB AA AB AB AA AA

I Typically data on more than one phenotype (correlated)
are collected e.g. BMI, fatmass etc.

I Higher power to detect weak main and/or epistatic
effects

I Higher precision of estimates
I Separate close linkage from pleiotropy

I pleiotropy

I one gene, affecting both traits indicating common
biochemical pathways

I close linkage

I two tightly linked genes resulting in collinear genotypes
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QTL SUR Model

The QTL SUR Model:

yti = µt + Xtiβt + eti , i = 1, · · · , n; t = 1, · · · ,T

where t corresponds to the phenotypes or traits or
dependent variables and i corresponds to the individuals. It
is assumed the ei = {e1i , · · · , eTi} ∼ NT (0,Σ)
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Model Parameters
Following Godsill (2001) fix the total number of
loci/independent variables that can be selected to L Then
define:

I Model Indicators : γ = {γt1, · · · , γtL}
I Locus Indices : λ = {λt1, · · · , λtL}

Following special cases of the SURd model can be obtained
below:

I SURs : λti = λi∀t = 1, · · · ,T
I Tranditional Multivariate Model (TMV):
γti = γt∀t = 1, · · · ,T

I Single Trait Analysis (STA): Σ = I will reduce to univariate
trait-by-trait analysis
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Choice of Priors

Prior on β

I batches
k=add,dom,add-add
interaction etc.

I βk ∼ N (0, σ2
k ) and

σ2
k ∼ Inv − χ2(νk , s

2
k )

I s2
k controls the prior

heritability per effect
s2

k =
(νk − 2)E (hj )Vp/(νkVj )

Prior on Σ

I p(Σ) ∝ 1
|Σ|
∏

i<j (di−dj )

Prior on number of QTL (`)

I ` ∼ Poission(`0)

I Choice of L = `0 + 3
√
`0

Prior on λ and γ

I independent priors on
QTL positions and
indicators
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Composite Model Space Approach

I The idea is to circumvent the trans-dimensional
character of the problem by modeling all parameters
simultaneously.

I The joint posterior distribution:

p(γ, λ, θ,Σ|Y ,X ) ∝ p(Y |X , γ, λ, θ,Σ)p(λγ , θγ |γ,Σ)

× p(λ−γ , θ−γ |γ,Σ)p(γ)p(Σ, θ)

I where θ = {β, σ2} and λ−γ is the collection of all λti ’s
for which γti = 0.

I Assume a priori independence

p(λ−γ , θ−γ |λγ , θγ , γ,Σ) ∝ p(λ−γ , θ−γ |γ,Σ)
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Trait Phenotype

I GONFAT → Right Gonadal fat pad

I SUBFAT → Subcutaneous fat pad
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Future Research

Pleiotropy vs. Coincident linkage

I SURd: Models the coincident linkage hypothesis

I TMV: Models pleiotropy

I Bayes Factor comparison of pleiotropy vs coincident
linkage

Variety of traits

I Ordinal traits using threshold model

I Survival traits
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Future Research

eQTL (expression QTL)

I mRNA expression are considered traits

I Tens of thousands of traits (T )

I Lot of attention recently by researchers

I NIH RFAs

I http://grants.nih.gov/grants/guide/rfa-files/RFA-RM-
09-006.html

Covariance matrix modeling

I Current implementation breaks down for large T

I Investigation of different priors
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