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|. A Bayesian network with genetic variations
and biological knowledge



Background

A Bayesian Network is a probabilistic graphical model whose conditional
independence is represented by a directed acyclic graph (DAG), G.
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Background

A Bayesian Network is a probabilistic graphical model whose conditional
independence is represented by a directed acyclic graph (DAG), G.
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technical definition: Y, is conditionally dependent on Y,
interpretation: Y, is causally dependent on Y.
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Properties of Bayesian network

Local directed Markov property Each variable is independent of its
nondescendant variables conditional on its parent variables.

YtJ-YV\de(t)|Ypa(t) forallt e V

where de(t) is the set of descendants of t, pa(t) is the set of parents of t, V is
the set of all nodes in a DAG G, and Yi,¢) = {Yi: i € pa(t)}.
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Previous Work

@ Friedman et al. (2000): a Bayesian network from microarray data with
time-series measurements
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Likelihood equivalence

Network Structure | Joint Likelihood
Gl=Y1->Y,— Ys | P(Y3|Y2)P(Y2|Y1)P(Y1) = P(Y3|Y2)P(Ya, Y1)
GZ=Y1-Y,<—Y; P(Y2|Y3, Yl)P(Yl)P(Yg,)

G\?’/ =Y1 « Y2 — Y3 P(Yz)P(Y3|Y2)P(Y1|Y2) = P(Y3‘Y2)P(Y2, Yl)

Gy and G} are likelihood equivalent.
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Previous Work

@ Friedman et al. (2000): a Bayesian network from microarray data with
time-series measurements

@ Chaibub Neto et al. (2010): a Bayesian network of phenotypes and causal
QTLs
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causal QTL

Phenotypes are causally dependent on QTLs.
@ In Biology, genotypes influence phenotypes, not the other way. @ — Y.
@ Alleles are randomized during meiosis.

Extended Network Structure ‘ Joint Likelihood
Gl=Q—-Y1—=Y,— Y, P(Y3]Y2)P(Ya| Y1) P(Y1|Q)P(Q)
G*=Q— Y1l—Y,— Yz | P(Y2)P(Y3|Y2)P(Y1|Y2, Q)P(Q)

Adding QTL can distinguish G! and G3 by likelihoods.
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Previous Work

@ Friedman et al. (2000): a Bayesian network from microarray data with
time-series measurements

@ Chaibub Neto et al. (2010): a Bayesian network of phenotypes and causal
QTLs

o Werhli and Husmeier (2007): a Bayesian network of phenotypes adjusted by
prior Biological knowledge
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Biological knowledge

If P(u— v) > P(u « v) by prior biological knowledge,
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Biological knowledge

If P(u— v) > P(u « v) by prior biological knowledge,
and P(Y|u — v) = P(Y|u < v),
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Biological knowledge

If P(u— v) > P(u « v) by prior biological knowledge,
and P(Y|u — v) = P(Y|u < v),
then posterior P(u — v|Y) > P(u < v|Y).

@ Transcription factor binding

@ Protein-protein interaction
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Previous Work

@ Friedman et al. (2000): a Bayesian network from microarray data with
time-series measurements

@ Chaibub Neto et al. (2010): a Bayesian network of phenotypes and causal
QTLs

o Werhli and Husmeier (2007): a Bayesian network of phenotypes adjusted by
prior Biological knowledge

@ Zhu et al. (2008): Incorporate genetic variation and biological knowledge.
But, network is constructed by piecewise merging.
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Encoding of Biological Knowledge, B

B is a matrix of number of phenotypes x number of phenotypes.
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Encoding of Biological Knowledge, B

B is a matrix of number of phenotypes x number of phenotypes.

Transcription factor and DNA binding Suppose we have a p-value about
whether a transcription factor binds to a certain DNA location. As in Bernard and
Hartemink (2005), we assume

- Ae P
Px(Pj = plG(i,j) =1) = FRpY

Px(Pj = p|G(i,j) =0) = 1.

We assume P(G;; = 1) = P(G;j = 0) =1/2. Then, the presence of an edge after
observing p-value is

1 An e~ P
N AH — AL AL e P 4 (1 - e—’\)

P(G(i,j) = 1|Pj = p) dA

B(i,j) == P(G(i,J) = 1|Pj = p).
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Encoding protein-protein interaction A Bayes classifier by Jansen et al. (2003)

to combine heterogeneous interaction data.

o0 _ P(pos|fy, ..., fr)
posterior = P(neglfy, ..., f)
_ Plpos)  P(f,...,fi|pos)
P(neg) = P(f,...,fi|neg)’

= Oprior x LR

P(fi,...,fL|pos) is obtained in the positive gold standard.

O .
B(i,j) = B(j,i) := —2"" _ — P(pos|fi, ..., f).
( J) (J ) 1+ Oposterior (p ‘ ' L)
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Our Model - QTLnet-prior

We incorporate both causal QTLs and biological knowledge to infer a Bayesian
network of phenotypes.

P(G,W|Y,X,B) x P(Y|G,W,X,B)P(G,W|X,B)

(
(YIG, X)P(Gy, W|X, B)P(Go—v|X, B)
(
(

Y1G, X)P(Gy, W|B)P(Gq-v|X)
Y1G, X)P(Gy|W, B)P(W|B)P(Gq-v|X)

T U U T

G a Bayesian network of phenotypes and causal QTLs
Gy a subgraph of G composed of phenotype nodes
and edges between phenotypes

Ggo—y a subgraph of G composed of phenotypes and causal QTL nodes
and edges from QTL to phenotypes
a matrix of biological knowledge
weight of biological knowledge
expression data
genetic variation information

X< S w
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Q2—Y2
QL—+Y1—~Y3—~Y5~—Q5
Q4—Y4

G
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Y4
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A Bayesian network of phenotypes with causal QTLS,
P(Y|G, X)

We assume the following family of distribution for phenotypes by Chibub Neto et.
al (2010)

Vi = M:,' + Z Bevyvi + €ri, € ~ N(O7U?)

vepa(t)

where pf; = pe + X; diag(v¢) ¢, i+ is the overall mean for a trait t,

0: is a column vector of all genetic effects,

X; is a row vector for individual 7 from X,

B, is the partial regression coefficients relating phenotype t with phenotype v,
€: is the associated independent normal error term.

Joint likelihood is obtained by multiplying all the likelihoods for all traits by
factorization theorem.
Marginal likelihood is

P(Y|G,X) :/P(Y|G,X,GG)P(QG|G)d06.
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Prior on phenotype network structures, P(Gy|B, W)

Assume a Gibbs distribution for the network structure to integrate biological
knowledge from Werhli and Husmeier (2007).

P(Gy|B, W) = W Gy € DAG

-
where £(Gy) = Y |B(i.j) — Gy(i.j).
ij=1
where B is an encoding of biological knowledge ranging from 0 to 1 and

Gy is an adjacency matrix. Gy(i,j) = 1 means the presence of the directed edge
from node i to j.

W controls the contribution of biological knowledge.

@ W — oo : prior on network structures peaks at the biological knowledge
@ W — 0 : influence of knowledge gets negligible. Uniform distribution
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Prior on biological knowledge weights, P(W|B)
and Prior on genetic architectures, P(Gg_.y)

P(WIB) ~ exp(—W)
P(Gg—y) ~ Uniform
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Markov Chain Monte Carlo Sampling

© Sample a new network structure of phenotypes Gy from a network
structure proposal distribution R(GJ*"|Gg9).

Jee Young Moon (2012) Causal Network, bio knowledge and latent variables July 24, 2012 21/ 42



Markov Chain Monte Carlo Sampling

© Sample a new network structure of phenotypes Gy from a network
structure proposal distribution R(GJ*"|Gg9).

@ Given a network structure of phenotypes Gy, sample a new genetic

architecture Gg_.y from an architecture proposal distribution
Id
R(GEy|GE2.y).

—
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Markov Chain Monte Carlo Sampling

ample a new network structure of phenotypes rom a networ
Q@ Sampl twork struct f phenotypes Gy f twork
structure proposal distribution R(GJ*"|Gg9).

@ Given a network structure of phenotypes Gy, sample a new genetic
architecture Gg_.y from an architecture proposal distribution
R(GE™|GE%y).

Q Accept the new extended network structure G™" composed of Gy* and
Go™y given the biological knowledge weights W with a probability

Ag = min{1, ELYIC™XOP(GEIB: W)P(GE™ ) RGY| G )R(GE. 1 |GE™,) y
¢ T P(Y|GLX)P(GYIB,W)P(GEY, ) R(GEIGY)R(Gg™ G52,y )
Jee Young Moon (2012) Causal Network, bio knowledge and latent variables July 24, 2012

21/ 42



Markov Chain Monte Carlo Sampling

ample a new network structure of phenotypes rom a networ
Q@ Sampl twork struct f phenotypes Gy f twork
structure proposal distribution R(GJ*"|Gg9).

@ Given a network structure of phenotypes Gy, sample a new genetic
architecture Gg_.y from an architecture proposal distribution
new old
R(GG™y |GG y)-
© Accept the new extended network structure G"* composed of Gy and
Go™y given the biological knowledge weights W with a probability
Ac = min{1 P(Y|G™ X)P(Gy™|B,W)P(Gg ) R(GY?|Gy™)R (Gs’iy\foﬁy)}

T P(Y|GLX)P(GYIB,W)P(GEY, ) R(GEIGY)R(Gg™ G52,y )

@ For each biological knowledge k,

@ Sample a new W/®" of biological knowledge weight from a proposal
distribution, R(W/ " |We'™).

@ Accept the new biological weight W/®" given phenotype network Gy with a

probability
Aw, = min{1,

k

GYlW‘?EW Wo/d B) P(W;eW‘B) R(W‘f/d‘WknEW)
P(Gy [WO,B)  P(WgH|B) R(W ™ W) "
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Markov Chain Monte Carlo Sampling

ample a new network structure of phenotypes rom a networ
Q@ Sampl twork struct f phenotypes Gy f twork
structure proposal distribution R(GJ*"|Gg9).

@ Given a network structure of phenotypes Gy, sample a new genetic
architecture Gg_.y from an architecture proposal distribution
new old
R(GG™y |GG y)-
© Accept the new extended network structure G"* composed of Gy and
Go™y given the biological knowledge weights W with a probability
Ac = min{1 P(Y|G™ X)P(Gy™|B,W)P(Gg ) R(GY?|Gy™)R (Gs’iy\foﬁy)}

T P(Y|GLX)P(GYIB,W)P(GEY, ) R(GEIGY)R(Gg™ G52,y )

@ For each biological knowledge k,
@ Sample a new W/®" of biological knowledge weight from a proposal
distribution, R(W/ " |We'™).
@ Accept the new biological weight W/®" given phenotype network Gy with a
probability

Aw, = min{1,

k

GYlW‘?EW Wo/d B) P(W;eW‘B) R(W‘f/d‘WknEW)
P(Gy [WO,B)  P(WgH|B) R(W ™ W) "

@ Iterate the steps 1-4 until the chain converges.
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Simulations

Q2—Y2
Q1—~Y1—Y3—Y5+—Q5

Q4—Y4
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Simulations

Genetic map
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Simulations
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Simulations

Genetic map
01
— X for 500 mice in F2 population
Q2+v2 Hzo«
s
S0
1—Y{—Y3—Y5«—Q5 | 1702 Q4Q - Y
Ql—Y1—Y3—Y5-—Q 5 oo Draa~U[0,0.5] vi .
- 504 gdominanceNU[OaO-zs] Y3 fOf 500 mice.
Q4—Y4 Bey~U[—0.5,0.5] Ya
100 - T T T T T Y5
1 2 3 4 5
Chromosome
i Yo Y3 Y4 Y
v 111 0 A
vl O 0 0 1 Red~N/ | X xxx
Gy=vw |0 0 11 , Blue~N—- Xxxx x
w{ 0O 0 O 1
0.0 05 10
w\0 0 0 O

X, Y, B are simulated for 100 times

for each § € {£0.5,+0.25, 0.2, +0.15, +:0.1, +:0.05, 0}.

Jee Young Moon (2012) Causal Network, bio knowledge and latent variables July 24, 2012 22 /42



Genetic Variation Information  Biological Knowledge

Method
QTLnet-prior YES YES
QTLnet YES NO
WH-prior NO YES
Expression NO NO
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ROC curves
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ROC curves
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Convergence of W
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The distribution of median W of posterior sample by QTLnet-prior inference.
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Yeast cell cycle analysis
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Conclusion

@ When the prior knowledge is correct, the performance (area under ROC
curve, proportion of recovered edges) is improved by prior knowledge. QTL
mapping does not improve the performance.

@ When the prior knowledge is incorrect, QTL mapping is important.

@ When the prior knowledge is noninformative, we lose some power, but not
too much.
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Il. A causal gene network with genetic variations
and latent variables



Motivation for latent variables

© There could be unmeasured variables in a network.

@ Inference of a network may be done on a subset of candidate variables.
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Motivation for latent variables

© There could be unmeasured variables in a network.

@ Inference of a network may be done on a subset of candidate variables.

If the true network is a Bayesian network of measured and unmeasured variables,
there may not exist a Bayesian network of measured variables.

c
PN
y1i—y2 Yo <— Y3

Let {y1,y2,¥3,va} : observed, ¢ : unmeasured.
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Motivation for latent variables

© There could be unmeasured variables in a network.

@ Inference of a network may be done on a subset of candidate variables.

If the true network is a Bayesian network of measured and unmeasured variables,
there may not exist a Bayesian network of measured variables.

c
PN
y1i—y2 Yo <— Y3

Let {y1,y2,¥3,va} : observed, ¢ : unmeasured.
Conditional independence relations of observed variables:

o X )/4|{)/1,)/3}

nty 3L ya
vilys y3 Ly
1L yalyz y3 L yolya
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Motivation for latent variables

© There could be unmeasured variables in a network.

@ Inference of a network may be done on a subset of candidate variables.

If the true network is a Bayesian network of measured and unmeasured variables,
there may not exist a Bayesian network of measured variables.

c
Yi—y2 Ya<—Y3
Let {y1,y2,¥3,va} : observed, ¢ : unmeasured.

Conditional independence relations of observed variables:

o X }/4|{)/1,)/3}

nty 3L ya
vilys y3 Ly
1L yalyz y3 L yolya

Then, y1 — Yo <= ya and y3 — ya — y».
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Introduction of ancestral graph

An ancestral graph is a graph whose vertexes are connected by at most one of
undirected ( — ), directed (—) or bidirected (<) edges.

o Bidirected (<) edges are associated with marginalization.

@ Undirected ( — ) edges are associated with conditioning.
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Introduction of ancestral graph

An ancestral graph is a graph whose vertexes are connected by at most one of
undirected ( — ), directed (—) or bidirected (<) edges.

o Bidirected (<) edges are associated with marginalization.

@ Undirected ( — ) edges are associated with conditioning.

An ancestral graph holds the following conditions:
@ there are no directed cycles;

@ whenever there is an edge x < y, then there is no directed path from x to y,
or from y to x;

o if there is an undirected edge x — y then there are no vertex v such that
Ve X, Ve Y, Vo X, 0rv—y.
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Model

Y} be the phenotype for individual i and trait t.
Each phenotype is modeled as follows:

Yi=pi+ >, BoYiten,

vepa(t)

where pa(t) = {v : v — t} and p}; = e + Xi diag(7e) 6; is the QTL effect.
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Model

Y} be the phenotype for individual i and trait t.
Each phenotype is modeled as follows:

Yi=pi+ >, BoYiten,

vepa(t)

where pa(t) = {v : v — t} and p}; = e + Xi diag(7e) 6; is the QTL effect.

€~ NT(O, Q),
where
Q(t,s) = 0 iff there is no bidirected edge between t and s.
Jee Young Moon (2012) Causal Network, bio knowledge and latent variables July 24, 2012
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QTLs to distinguish Markov equivalent directed ancestral graphs.

Theorem

Consider a class of Markov equivalent directed maximal ancestral graphs Gy,. Let
Y1 and Y, be any two adjacent nodes in the graphs in Gy. Assume that for each
such pair there exists at least two variables, Q, directly affecting Y1 but not Y3
and @, directly affecting Y, but not Y;. Let G represent the class of extended
graphs. Then the graphs in G are not Markov equivalent.

Jee Young Moon (2012) Causal Network, bio knowledge and latent variables July 24, 2012 34 /42



QTLs to distinguish Markov equivalent directed ancestral graphs.

Theorem

Consider a class of Markov equivalent directed maximal ancestral graphs Gy,. Let
Y1 and Y, be any two adjacent nodes in the graphs in Gy. Assume that for each
such pair there exists at least two variables, Q, directly affecting Y1 but not Y3
and @, directly affecting Y, but not Y;. Let G represent the class of extended
graphs. Then the graphs in G are not Markov equivalent.

Yl — YQ, Y1<— Y2 and yl — Y2

Jee Young Moon (2012) Causal Network, bio knowledge and latent variables July 24, 2012 34 /42



QTLs to distinguish Markov equivalent directed ancestral graphs.

Theorem

Consider a class of Markov equivalent directed maximal ancestral graphs Gy,. Let
Y1 and Y, be any two adjacent nodes in the graphs in Gy. Assume that for each
such pair there exists at least two variables, Q, directly affecting Y1 but not Y3
and @, directly affecting Y, but not Y;. Let G represent the class of extended
graphs. Then the graphs in G are not Markov equivalent.

Y1—>Y2, Y1<—Y2 and Y1<—>Y2
Qi —=Yi—Yoversus Q1 — Yi+— Yoor Q1 — Y1 < Yo

Jee Young Moon (2012) Causal Network, bio knowledge and latent variables July 24, 2012 34 /42



QTLs to distinguish Markov equivalent directed ancestral graphs.

Theorem

Consider a class of Markov equivalent directed maximal ancestral graphs Gy,. Let
Y1 and Y, be any two adjacent nodes in the graphs in Gy. Assume that for each
such pair there exists at least two variables, Q, directly affecting Y1 but not Y3
and @, directly affecting Y, but not Y;. Let G represent the class of extended
graphs. Then the graphs in G are not Markov equivalent.

Y1—> YQ, Y1<— Y2 and ylH Y2
Qi —=Yi—Yoversus Q1 — Yi+— Yoor Q1 — Y1 < Yo
Ql — Yl — Y2 — Qz VErsus Ql — Yl — Y2 — Q2 Versus Ql — Yl Aad Yg — Qz.
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Search algorithms

@ Constraint-based search : Conditional independence tests for a pair of nodes,
Removes edges, orient edges (FCl)

@ Likelihood-based search : Search over DMAG models by their likelihoods

Jee Young Moon (2012) Causal Network, bio knowledge and latent variables July 24, 2012 35 /42



Search algorithms

@ Constraint-based search : Conditional independence tests for a pair of nodes,
Removes edges, orient edges (FCl)

@ Likelihood-based search : Search over DMAG models by their likelihoods

Markov equivalence of G; and G, < Distribution equivalence of G; and G; in a
(parametric) family F?

@ Markov equivalence: G; and G, represent the same set of conditional
independence relations.

@ Distribution equivalence with respect to F: Vfg,, there exists a f¢, such that
p(Y | 06, G1) = p(Y | bg,, Gz), and vice versa.
They represent the same set of joint probability distributions.
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Parametric Family

Yo=ni+ Y, BuYviten

vEpa(t)
€~ NT(O, Q)
Q(t,s) = 0 iff there is no bidirected edge between t and s.

Property

A set of linear equations and correlated errors fall into a homogeneous conditional
Gaussian (HCG) family.
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Parametric Family

Yi = pg + Z Brv Yoi + €

vEpa(t)
€~ NT(O, Q)
Q(t,s) = 0 iff there is no bidirected edge between t and s.

Property
A set of linear equations and correlated errors fall into a homogeneous conditional
Gaussian (HCG) family.

A conditional Gaussian (CG) family : the joint distribution of continuous variables
are Gaussian conditional on discrete variables.

A homogeneous conditional Gaussian (HCG) family: the covariance in the
conditional Gaussian distribution is independent of discrete variable values.
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Markov equivalence < Distribution equivalence in a HCG family

Theorem
For two Markov equivalent DMAGs Gy and G,, Gy and G, differ only by t — v in Gy
and t <> v in Gy. In a Gaussian distribution family, suppose the recursive equations for
G; regarding t and v is represented by
Yi = pe + Be(Ypa(e) — Hpa(t)) + €t
Y, = By + BV(Ypa(v)\{t} - Npa(v)) + btv(Yt - /’Lt) +ev
where cov(et, €,) = 0. Then, the re-parametrization below for G, regarding t and v
gives out the same joint probability to the joint probability of Gj.
Yt = N: + Bt*(ypa(t) - N:a(t)) + 6:
Y, = //'t + B\t(ypa(v)\{t} - lu;a(v)) + Ei

where
(] B\T = Bv + btht
Q var(el) = o, + b2, 0;
(5] COV(Eé, 6sp(v)) = Ov,sp(v) + btvUt,sp(v)
Q cov(er, €)= bryor
Q@ B=8B:
Q Var(ef) = o
o COV(&:,Esp(t)) = ”t.sp(t)-
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Algorithm - MCMC

© Divide a DMAG Gy into bidirected graph G£ and directed graph and GP.

© Propose a new directed graph GP from GP by a DAG proposal distribution
R(GP|GP).

© For each node, get a list of ancestors or descendants in GP. Then, get a list
of possible bidirected edges in G \ GP. Propose new bidirected edges GZ by
Bernoulli distribution for each possible bidirected edge with probability pB.

Q If G = GP @ GB is not a maximal ancestral graph, make it to be maximal:
Max(G). Obtain several GB and their proposal probabilities to become
equivalent to Max(G). Its proposal distribution is R(Max(G)|GP).

@ Accept the new DMAG G; = Max(G) with a probability,

P(Y[G1) R(GoDIGf’)R(GolG(?)}
" P(Y]Go) R(GP1G)R(GolGP) ™

min{1
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Simulations

@ ()
V Voo

Yi—>Yo<>Ys<—1)3

y

Y5

0244 ~ UJ0,0.5]

Bdominance ~ U[0,0.25]

B ~ U[0.2,0.5] x Bernoulli((—1,1))
for 500 individuals.
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Simulations

@ ()
V Voo

YI—>)Yo<>Y4<—V3

y

Y5

0244 ~ UJ0,0.5]

Budominance ~ U[0,0.25]

Be ~ U[0.2,0.5] x Bernoulli((—1,1))
for 500 individuals.

Preliminary Result: The inferred skeleton has 1.35 edge difference to the true
skeleton on average from 20 simulations.
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Conclusion

@ QTL can be included to distinguish Markov equivalent ancestral graphs.
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Conclusion

@ QTL can be included to distinguish Markov equivalent ancestral graphs.
@ Our model is a homogeneous conditional Gaussian (HCG) family.

@ Distribution equivalence in a HCG family < Markov equivalence.
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