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Experimental Cross StudyBroman: QTL mapping 9

Figure 1: A backcross experiment begins with two inbred strains that differ in the trait of interest (e.g., the response to an inva-
sive procedure; the numbers on the mice indicate phenotype values). The two strains are crossed to produce the F � generation,
which is then crossed back to one of the parental strains to obtain the backcross generation. The backcross generation exhibits
genetic variation. The objective of the experiment is to identify genomic regions for which genotype predicts phenotype.

[Broman, K. W (2001) Lab Animal.]
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I. A Bayesian network with genetic variations
and biological knowledge



Background

A Bayesian Network is a probabilistic graphical model whose conditional
independence is represented by a directed acyclic graph (DAG), G .

picture from http://www.cs.ubc.ca/∼murphyk/Bayes/bnintro.html

u → v
technical definition: Yv is conditionally dependent on Yu

interpretation: Yv is causally dependent on Yu.
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Properties of Bayesian network

Local directed Markov property Each variable is independent of its
nondescendant variables conditional on its parent variables.

Yt⊥YV\de(t)|Ypa(t) for all t ∈ V

where de(t) is the set of descendants of t, pa(t) is the set of parents of t, V is
the set of all nodes in a DAG G , and Ypa(t) = {Yi : i ∈ pa(t)}.

Factorization theorem.

P(Y1, . . . ,YT ) =
T∏

t=1

P(Yt |Yt−1, . . . ,Y1)

=
T∏

t=1

P(Yt |Ypa(t))
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Previous Work

Friedman et al. (2000): a Bayesian network from microarray data with
time-series measurements

Chaibub Neto et al. (2010): a Bayesian network of phenotypes and causal
QTLs

Werhli and Husmeier (2007): a Bayesian network of phenotypes adjusted by
prior Biological knowledge

Zhu et al. (2008): Incorporate genetic variation and biological knowledge.
But, network is constructed by piecewise merging.
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Likelihood equivalence

Network Structure Joint Likelihood
G 1

Y = Y 1→ Y2 → Y3 P(Y3|Y2)P(Y2|Y1)P(Y1) = P(Y3|Y2)P(Y2,Y1)
G 2

Y = Y 1→ Y2 ← Y3 P(Y2|Y3,Y1)P(Y1)P(Y3)
G 3

Y = Y 1← Y2 → Y3 P(Y2)P(Y3|Y2)P(Y1|Y2) = P(Y3|Y2)P(Y2,Y1)

G 1
Y and G 3

Y are likelihood equivalent.
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causal QTL

Phenotypes are causally dependent on QTLs.

1 In Biology, genotypes influence phenotypes, not the other way. Q → Y .

2 Alleles are randomized during meiosis.

Extended Network Structure Joint Likelihood
G 1 = Q → Y 1→ Y2 → Y3 P(Y3|Y2)P(Y2|Y1)P(Y1|Q)P(Q)
G 3 = Q → Y 1← Y2 → Y3 P(Y2)P(Y3|Y2)P(Y1|Y2,Q)P(Q)

Adding QTL can distinguish G 1 and G 3 by likelihoods.
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Biological knowledge

If P(u → v) > P(u ← v) by prior biological knowledge,

and P(Y |u → v) = P(Y |u ← v),
then posterior P(u → v |Y ) > P(u ← v |Y ).

Transcription factor binding

Protein-protein interaction
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Encoding of Biological Knowledge, B

B is a matrix of number of phenotypes × number of phenotypes.

Transcription factor and DNA binding Suppose we have a p-value about
whether a transcription factor binds to a certain DNA location. As in Bernard and
Hartemink (2005), we assume

Pλ(Pij = p|G (i , j) = 1) =
λe−λp

1− e−λ

Pλ(Pij = p|G (i , j) = 0) = 1.

We assume P(Gi,j = 1) = P(Gi,j = 0) = 1/2. Then, the presence of an edge after
observing p-value is

P(G (i , j) = 1|Pij = p) =
1

λH − λL

∫ λH

λL

λe−λp

λe−λp + (1− e−λ)
dλ

B(i , j) := P(G (i , j) = 1|Pij = p).
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Encoding protein-protein interaction A Bayes classifier by Jansen et al. (2003)
to combine heterogeneous interaction data.

Oposterior =
P(pos|f1, . . . , fL)
P(neg |f1, . . . , fL)

= Oprior × LR

=
P(pos)

P(neg)
× P(f1, . . . , fL|pos)

P(f1, . . . , fL|neg)
.

P(f1, . . . , fL|pos) is obtained in the positive gold standard.

B(i , j) = B(j , i) :=
Oposterior

1 + Oposterior
= P(pos|f1, . . . , fL).
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Our Model - QTLnet-prior

We incorporate both causal QTLs and biological knowledge to infer a Bayesian
network of phenotypes.

P(G ,W |Y ,X ,B) ∝ P(Y |G ,W ,X ,B)P(G ,W |X ,B)

= P(Y |G ,X )P(GY ,W |X ,B)P(GQ→Y |X ,B)

= P(Y |G ,X )P(GY ,W |B)P(GQ→Y |X )

= P(Y |G ,X )P(GY |W ,B)P(W |B)P(GQ→Y |X )

G a Bayesian network of phenotypes and causal QTLs
GY a subgraph of G composed of phenotype nodes

and edges between phenotypes
GQ→Y a subgraph of G composed of phenotypes and causal QTL nodes

and edges from QTL to phenotypes
B a matrix of biological knowledge
W weight of biological knowledge
Y expression data
X genetic variation information
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A Bayesian network of phenotypes with causal QTLS,
P(Y |G , X )

We assume the following family of distribution for phenotypes by Chibub Neto et.
al (2010)

yti = µ∗ti +
∑

v∈pa(t)

βtvyvi + εti , εti ∼ N(0, σ2
t )

where µ∗ti = µt + Xi diag(γt) θt , µt is the overall mean for a trait t,
θt is a column vector of all genetic effects,
Xi is a row vector for individual i from X ,
βtv is the partial regression coefficients relating phenotype t with phenotype v ,
εti is the associated independent normal error term.

Joint likelihood is obtained by multiplying all the likelihoods for all traits by
factorization theorem.
Marginal likelihood is

P(Y |G ,X ) =

∫
P(Y |G ,X , θG )P(θG |G )dθG .
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Prior on phenotype network structures, P(GY |B , W )

Assume a Gibbs distribution for the network structure to integrate biological
knowledge from Werhli and Husmeier (2007).

P(GY |B,W ) =
exp(−W E(GY ))

Z (W )
, GY ∈ DAG

where E(GY ) =
T∑

i,j=1

|B(i , j)− GY (i , j)|.

where B is an encoding of biological knowledge ranging from 0 to 1 and
GY is an adjacency matrix. GY (i , j) = 1 means the presence of the directed edge
from node i to j .
W controls the contribution of biological knowledge.

W →∞ : prior on network structures peaks at the biological knowledge

W → 0 : influence of knowledge gets negligible. Uniform distribution
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Prior on biological knowledge weights, P(W |B)
and Prior on genetic architectures, P(GQ→Y )

P(W |B) ∼ exp(−W )

P(GQ→Y ) ∼ Uniform
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Markov Chain Monte Carlo Sampling

1 Sample a new network structure of phenotypes G new
Y from a network

structure proposal distribution R(G new
Y |G old

Y ).

2 Given a network structure of phenotypes G new
Y , sample a new genetic

architecture GQ→Y from an architecture proposal distribution
R(G new

Q→Y |G old
Q→Y ).

3 Accept the new extended network structure G new composed of G new
Y and

G new
Q→Y given the biological knowledge weights W with a probability

AG = min{1,
P(Y |G new ,X )P(G new

Y |B,W )P(G new
Q→Y )

P(Y |G old ,X )P(G old
Y |B,W )P(G old

Q→Y )

R(G old
Y |G new

Y )R(G old
Q→Y |G

new
Q→Y )

R(G new
Y |G old

Y )R(G new
Q→Y |G

old
Q→Y )

}.
4 For each biological knowledge k,

1 Sample a new W new
k of biological knowledge weight from a proposal

distribution, R(W new
k |W old

k ).
2 Accept the new biological weight W new

k given phenotype network GY with a
probability

AWk = min{1,
P(GY |W new

k ,W old
−k ,B)

P(GY |W old ,B)

P(W new
k |B)

P(W old
k
|B)

R(W old
k |W new

k )

R(W new
k

|W old
k

)
}.

5 Iterate the steps 1-4 until the chain converges.
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Simulations

Y1

Y2

Y3

Y4

Y5Q1

Q2

Q4

Q5

100

80

60

40

20

0

Chromosome

Lo
ca

tio
n 

(c
M

)

1 2 3 4 5

Genetic map

Q1 Q2 Q4 Q5

→ X for 500 mice in F2 population

−−−−−−−−−−→
θadd∼U[0,0.5]

θdominance∼U[0,0.25]
βtv∼U[−0.5,0.5]

( Y1

Y2

Y3

Y4

Y5

)
for 500 mice.

GY =



Y1 Y2 Y3 Y4 Y5

Y1 1 1 1 0
Y2 0 0 0 1
Y3 0 0 1 1
Y4 0 0 0 1
Y5 0 0 0 0


0.0 0.5 1.0

N+N−

2δ

−−−−→
Red∼N+

Blue∼N−
B =

(
x x x x

x x x x
x x x x
x x x x
x x x x

)

X, Y, B are simulated for 100 times

for each δ ∈ {±0.5,±0.25,±0.2,±0.15,±0.1,±0.05, 0}.
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Method Genetic Variation Information Biological Knowledge
QTLnet-prior YES YES

QTLnet YES NO
WH-prior NO YES
Expression NO NO
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ROC curves
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Convergence of W
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The distribution of median W of posterior sample by QTLnet-prior inference.
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Yeast cell cycle analysis
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Conclusion

When the prior knowledge is correct, the performance (area under ROC
curve, proportion of recovered edges) is improved by prior knowledge. QTL
mapping does not improve the performance.

When the prior knowledge is incorrect, QTL mapping is important.

When the prior knowledge is noninformative, we lose some power, but not
too much.
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II. A causal gene network with genetic variations
and latent variables



Motivation for latent variables

1 There could be unmeasured variables in a network.

2 Inference of a network may be done on a subset of candidate variables.

If the true network is a Bayesian network of measured and unmeasured variables,
there may not exist a Bayesian network of measured variables.

c

~~}}
}}

  A
AA

A

y1 // y2 y4 y3oo

Let {y1, y2, y3, y4} : observed, c : unmeasured.
Conditional independence relations of observed variables:

y2 6⊥ y4|{y1, y3}
y1 6⊥ y2 y3 6⊥ y4

y1 ⊥ y4 y3 ⊥ y2

y1 6⊥ y4|y2 y3 6⊥ y2|y4

Then, y1 → y2 ← y4 and y3 → y4 ← y2.
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Introduction of ancestral graph

An ancestral graph is a graph whose vertexes are connected by at most one of
undirected ( — ), directed (→) or bidirected (↔) edges.

Bidirected (↔) edges are associated with marginalization.

Undirected ( — ) edges are associated with conditioning.

An ancestral graph holds the following conditions:

there are no directed cycles;

whenever there is an edge x ↔ y , then there is no directed path from x to y ,
or from y to x ;

if there is an undirected edge x — y then there are no vertex v such that
v ↔ x , v ↔ y , v → x , or v → y .
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Model

Yti be the phenotype for individual i and trait t.
Each phenotype is modeled as follows:

Yti = µ∗ti +
∑

v∈pa(t)

βtvYvi + εti ,

where pa(t) = {v : v → t} and µ∗ti = µt + Xi diag(γt) θt is the QTL effect.

ε ∼ NT (0,Ω),

where

Ω(t, s) = 0 iff there is no bidirected edge between t and s.
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QTLs to distinguish Markov equivalent directed ancestral graphs.

Theorem
Consider a class of Markov equivalent directed maximal ancestral graphs GY . Let
Y1 and Y2 be any two adjacent nodes in the graphs in GY . Assume that for each
such pair there exists at least two variables, Q1 directly affecting Y1 but not Y2

and Q2 directly affecting Y2 but not Y1. Let G represent the class of extended
graphs. Then the graphs in G are not Markov equivalent.

Y1 → Y2, Y1 ← Y2 and Y1 ↔ Y2

Q1 → Y1 → Y2 versus Q1 → Y1 ← Y2 or Q1 → Y1 ↔ Y2

Q1 → Y1 → Y2 ← Q2 versus Q1 → Y1 ← Y2 ← Q2 versus Q1 → Y1 ↔ Y2 ← Q2.
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Search algorithms

1 Constraint-based search : Conditional independence tests for a pair of nodes,
Removes edges, orient edges (FCI)

2 Likelihood-based search : Search over DMAG models by their likelihoods

Markov equivalence of G1 and G2 ⇔ Distribution equivalence of G1 and G2 in a
(parametric) family F?

1 Markov equivalence: G1 and G2 represent the same set of conditional
independence relations.

2 Distribution equivalence with respect to F : ∀θG1 , there exists a θG2 such that
p(Y | θG1 ,G1) = p(Y | θG2 ,G2), and vice versa.
They represent the same set of joint probability distributions.
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Parametric Family

Yti = µ∗ti +
∑

v∈pa(t)

βtvYvi + εti

ε ∼ NT (0,Ω)

Ω(t, s) = 0 iff there is no bidirected edge between t and s.

Property

A set of linear equations and correlated errors fall into a homogeneous conditional
Gaussian (HCG) family.

A conditional Gaussian (CG) family : the joint distribution of continuous variables
are Gaussian conditional on discrete variables.
A homogeneous conditional Gaussian (HCG) family: the covariance in the
conditional Gaussian distribution is independent of discrete variable values.
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Markov equivalence ⇔ Distribution equivalence in a HCG family

Theorem
For two Markov equivalent DMAGs G1 and G2, G1 and G2 differ only by t → v in G1

and t ↔ v in G2. In a Gaussian distribution family, suppose the recursive equations for
G1 regarding t and v is represented by

Yt = µt + Bt(Ypa(t) − µpa(t)) + εt

Yv = µv + Bv (Ypa(v)\{t} − µpa(v)) + btv (Yt − µt) + εv

where cov(εt , εv ) = 0. Then, the re-parametrization below for G2 regarding t and v
gives out the same joint probability to the joint probability of G1.

Yt = µ∗t + B∗
t (Ypa(t) − µ∗pa(t)) + ε∗t

Yv = µ∗v + B∗
v (Ypa(v)\{t} − µ∗pa(v)) + ε∗v

where

1 B∗
v = Bv + btvBt

2 var(ε∗v ) = σv + b2
tvσt

3 cov(ε∗v , εsp(v)) = σv ,sp(v) + btvσt,sp(v)
4 cov(εt , ε

∗
v ) = btvσt

5 B∗
t = Bt

6 Var(ε∗t ) = σt
7 cov(ε∗t , εsp(t)) = σt,sp(t).

Jee Young Moon (2012) Causal Network, bio knowledge and latent variables July 24, 2012 37 / 42



Algorithm - MCMC

1 Divide a DMAG G0 into bidirected graph GB
0 and directed graph and GD

0 .

2 Propose a new directed graph GD from GD
0 by a DAG proposal distribution

R(GD |GD
0 ).

3 For each node, get a list of ancestors or descendants in GD . Then, get a list
of possible bidirected edges in G \ GD . Propose new bidirected edges GB by
Bernoulli distribution for each possible bidirected edge with probability pB.

4 If G = GD ⊕ GB is not a maximal ancestral graph, make it to be maximal:
Max(G ). Obtain several GB and their proposal probabilities to become
equivalent to Max(G ). Its proposal distribution is R(Max(G )|GD).

5 Accept the new DMAG G1 = Max(G ) with a probability,

min{1,
P(Y |G1)

P(Y |G0)

R(GD
0 |GD

1 )R(G0|GD
0 )

R(GD
1 |GD

0 )R(G0|GD
1 )
}.
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Simulations

Q1

��

Q3

��

Q2

��
y1 // y2 oo // y4

��

y3oo

y5

θadd ∼ U[0, 0.5]

θdominance ∼ U[0, 0.25]

βtv ∼ U[0.2, 0.5]× Bernoulli((−1, 1))

for 500 individuals.

Preliminary Result: The inferred skeleton has 1.35 edge difference to the true
skeleton on average from 20 simulations.
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Conclusion

QTL can be included to distinguish Markov equivalent ancestral graphs.

Our model is a homogeneous conditional Gaussian (HCG) family.

Distribution equivalence in a HCG family ⇔ Markov equivalence.
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