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glucose insulin

(courtesy AD Attie)
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studying diabetes in an F2
• mouse model: segregating panel from inbred lines

– B6.ob x BTBR.ob → F1 → F2
– selected mice with ob/ob alleles at leptin gene (Chr 6)
– sacrificed at 14 weeks, tissues preserved

• physiological study (Stoehr et al. 2000 Diabetes)
– mapped body weight, insulin, glucose at various ages

• gene expression studies
– RT-PCR for a few mRNA on 108 F2 mice liver tissues

• (Lan et al. 2003 Diabetes; Lan et al. 2003 Genetics)
– Affymetrix microarrays on 60 F2 mice liver tissues

• U47 A & B chips, RMA normalization
• design: selective phenotyping (Jin et al. 2004 Genetics)
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The intercross (from K Broman)

λ
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mRNA expression as phenotype:
interval mapping for SCD1 is complicated
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taking a multiple QTL approach
• improve statistical power, precision

– increase number of QTL detected
– better estimates of loci: less bias, smaller intervals

• improve inference of complex genetic architecture
– patterns and individual elements of epistasis
– appropriate estimates of means, variances, covariances

• asymptotically unbiased, efficient
– assess relative contributions of different QTL

• improve estimates of genotypic values
– less bias (more accurate) and smaller variance (more precise)
– mean squared error = MSE = (bias)2 + variance
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Bayesian model assessment:
number of QTL for SCD1 with 

R/bim
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Bayesian model assessment
genetic architecture: chromosome pattern
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trans-acting QTL for SCD1
Bayesian model averaging with R/bim

additive QTL?

dominant QTL?
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Bayesian LOD and h2 for SCD1
(summaries from R/bim)
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SCD mRNA expression phenotype 
2-D scan for QTL (R/qtl)

epistasis
LOD
peaks

joint
LOD
peaks
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sub-peaks can be easily overlooked
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interval mapping basics
• observed measurements

– Y = phenotypic trait
– X = markers & linkage map

• i = individual index 1,…,n
• missing data

– missing marker data
– Q = QT genotypes

• alleles QQ, Qq, or qq at locus
• unknown quantities

– M = genetic architecture
– λ = QT locus (or loci)
– µ = phenotype model parameters

• pr(Q=q|X,λ) genotype model
– grounded by linkage map, experimental cross
– recombination yields multinomial for Q given X

• f(Y|µq) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters µ (could be non-parametric)

observed X Y

missing Q

unknown λ θafter
Sen & Churchill
(2001 Genetics)

µ

M
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• heterogeneity: many genes can affect phenotype
– different allelic combinations can yield similar phenotypes
– multiple genes can affecting phenotype in subtle ways
– multiple genes can interact (epistasis)

• genetic architecture: model for explained genetic variation
– loci (genomic regions) that affect trait
– genotypic effects of loci, including possible epistasis 

M = {λ1, λ2, λ3, (λ1, λ2)} = 3 loci with epistasis between two

µq = β0 + βq1 + βq2 + βq3 + βq (1,2) = linear model for genotypic mean

λ = (λ1, λ2, λ3) = loci in model M
q  = (q1, q2, q3) = possible genotype at loci λ
Q = (Q1, Q2, Q3) = genotype for each individual at loci λ

genetic architecture: heterogeneity
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multiple QTL interval mapping
• genotypic mean depends on model M
µq = β0 + ∑{q in M} βqk

• interval mapping between flanking markers
f(Y | X, M) = Σq f(Y | µq) f(Q = q | X, λ)

• model selection
– choice of distribution: f is normal
– sample many possible architectures
– compare based on Bayes factors (BIC)
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2M observations
30,000 traits
60 mice
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modern high throughput biology
• measuring the molecular dogma of biology

– DNA → RNA → protein → metabolites
– measured one at a time only a few years ago

• massive array of measurements on whole systems (“omics”)
– thousands measured per individual (experimental unit)
– all (or most) components of system measured simultaneously

• whole genome of DNA: genes, promoters, etc.
• all expressed RNA in a tissue or cell
• all proteins
• all metabolites

• systems biology: focus on network interconnections
– chains of behavior in ecological community
– underlying biochemical pathways

• genetics as one experimental tool
– perturb system by creating new experimental cross
– each individual is a unique mosaic
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• reduce 30,000 traits to 300-3,000 heritable traits

• probability a trait is heritable
pr(H|Y,Q) = pr(Y|Q,H) pr(H|Q) / pr(Y|Q) Bayes rule

pr(Y|Q) = pr(Y|Q,H) pr(H|Q) + pr(Y|Q, not H) pr(not H|Q)

• phenotype averaged over genotypic mean µ
pr(Y|Q, not H) = f0(Y) = ∫ f(Y|µ ) pr(µ) dµ if not H
pr(Y|Q, H) = f1(Y|Q) = ∏q  f0(Yq ) if heritable

Yq = {Yi | Qi =q} = trait values with genotype Q=q

finding heritable traits
(from Christina Kendziorski)
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hierarchical model for expression phenotypes
(EB arrays: Christina Kendziorski)

( )⋅pr~qµ

Qqµ qqµ

( )QQQQQQ ~ µµ ⋅fY
( )QqQqQq ~ µµ ⋅fY

( )qqqqqq ~ µµ ⋅fY

QQµ

mRNA phenotype models
given genotypic mean µq

common prior on µq across all mRNA
(use empirical Bayes to estimate prior)

qqµQqµ

QQµ
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expression meta-traits: pleiotropy
• reduce 3,000 heritable traits to 3 meta-traits(!)
• what are expression meta-traits?

– pleiotropy: a few genes can affect many traits
• transcription factors, regulators

– weighted averages: Z = YW
• principle components, discriminant analysis

• infer genetic architecture of meta-traits
– model selection issues are subtle

• missing data, non-linear search
• what is the best criterion for model selection?

– time consuming process
• heavy computation load for many traits
• subjective judgement on what is best
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PC for two correlated mRNA
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PC across microarray functional groups
Affy chips on 60 mice
~40,000 mRNA

2500+ mRNA show DE
(via EB arrays with
marker regression)

1500+ organized in
85 functional groups
2-35 mRNA / group

which are interesting? 
examine PC1, PC2 

circle size = # unique mRNA
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factor loadings for PC1&2
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how well does PC1 do?
lod peaks for 2 QTL at best pair of chr

data (red) vs. 500 permutations (boxplots)

blue bars at 1%, 5%; width proportional to group size

3 November 2004 UAB: Yandell © 2004 27

84 PC meta-traits by functional group
focus on 2 interesting groups
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red lines: peak
for PC meta-trait

black/blue: peaks
for mRNA traits

arrows: cis-action?
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(portion of) chr 4 region chr 15 region

?
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DA meta-traits: separate pleiotropy
from environmental correlation

pleiotropy only bothenvironmental
correlation only Korol et al. (2001)



3 November 2004 UAB: Yandell © 2004 31

interaction plots for DA meta-traits
DA for all pairs of markers: 

separate 9 genotypes based on markers
(a) same locus pair found with PC meta-traits
(b) Chr 2 region interesting from biochemistry (Jessica Byers)
(c) Chr 5 & Chr 9 identified as important for insulin, SCD
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genotypes from 
Chr 4/Chr 15 
locus pair
(circle=centroid) 

PC captures 
spread without 
genotype

DA creates best 
separation by 
genotype
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comparison of PC and DA meta-traits on 1500+ mRNA traits

correlation of
PC and DA meta-traits

note better
spread of circles

PC ignores genotype DA uses genotype
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relating meta-traits to mRNA traits
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DA: a cautionary tale
(184 mRNA with |cor| > 0.5; mouse 13 drives heritability)
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building graphical models

• infer genetic architecture of meta-trait
– E(Z | Q, M) = µq = β0 + ∑{q in M} βqk

• find mRNA traits correlated with meta-trait
– Z ≈ YW for modest number of traits Y

• extend meta-trait genetic architecture
– M = genetic architecture for Y
– expect subset of QTL to affect each mRNA
– may be additional QTL for some mRNA
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posterior for graphical models
• posterior for graph given multivariate trait & architecture

pr(G | Y, Q, M) = pr(Y | Q, G) pr(G | M) / pr(Y | Q)
–pr(G | M) = prior on valid graphs given architecture

• multivariate phenotype averaged over genotypic mean µ
pr(Y | Q, G) = f1(Y | Q, G) = ∏q f0(Yq | G)
f0(Yq | G) = ∫ f(Yq | µ, G) pr(µ) dµ

• graphical model G implies correlation structure on Y

• genotype mean prior assumed independent across traits
pr(µ) = ∏t pr(µt)
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from graphical models to pathways

• build graphical models
QTL → RNA1 → RNA2
– class of possible models
– best model = putative biochemical pathway

• parallel biochemical investigation
– candidate genes in QTL regions
– laboratory experiments on pathway components
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graphical models (with Elias Chaibub)
f1(Y | Q, G=g) = f1(Y1 | Q)  f1(Y2 | Q, Y1)

R2D2 P2

QTL R1D1 P1

observable
trans-action

unobservable
meta-traitQTL RNADNA

observable
cis-action?

protein


