NSF UAB Course 2008 Bayesian Interval Mapping Brian S. Yandell, UW-Madison

www.stat.wisc.edu/~yandell/statgen

- overview: multiple QTL approaches
- Bayesian QTL mapping & model selection
- data examples in detail
- software demos: R/qtl and R/qtlbim

Real knowledge is to know the extent of one's ignorance. Confucius (on a bench in Seattle)

NSF UAB: Yandell © 2008

1

1. what is the goal of QTL study?

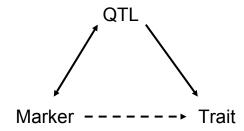
- uncover underlying biochemistry
 - identify how networks function, break down
 - find useful candidates for (medical) intervention
 - epistasis may play key role
 - statistical goal: maximize number of correctly identified QTL
- basic science/evolution
 - how is the genome organized?
 - identify units of natural selection
 - additive effects may be most important (Wright/Fisher debate)
 - statistical goal: maximize number of correctly identified QTL
- select "elite" individuals
 - predict phenotype (breeding value) using suite of characteristics (phenotypes) translated into a few QTL
 - statistical goal: mimimize prediction error

NSF UAB: Yandell © 2008

cross two inbred lines

- → linkage disequilibrium
 - \rightarrow associations
 - → linked segregating QTL

(after Gary Churchill)



NSF UAB: Yandell © 2008

2

problems of single QTL approach

- wrong model: biased view
 - fool yourself: bad guess at locations, effects
 - detect ghost QTL between linked loci
 - miss epistasis completely
- · low power
- · bad science
 - use best tools for the job
 - maximize scarce research resources
 - leverage already big investment in experiment

NSF UAB: Yandell © 2008

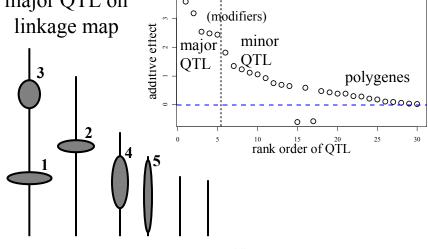
advantages of multiple QTL approach

- improve statistical power, precision
 - increase number of QTL detected
 - better estimates of loci: less bias, smaller intervals
- improve inference of complex genetic architecture
 - patterns and individual elements of epistasis
 - appropriate estimates of means, variances, covariances
 - · asymptotically unbiased, efficient
 - assess relative contributions of different QTL
- improve estimates of genotypic values
 - less bias (more accurate) and smaller variance (more precise)
 - mean squared error = $MSE = (bias)^2 + variance$

NSF UAB: Yandell © 2008

5

Pareto diagram of QTL effects major QTL on



NSF UAB: Yandell © 2008

limits of multiple QTL?

- limits of statistical inference
 - power depends on sample size, heritability, environmental variation
 - "best" model balances fit to data and complexity (model size)
 - genetic linkage = correlated estimates of gene effects
- limits of biological utility
 - sampling: only see some patterns with many QTL
 - marker assisted selection (Bernardo 2001 Crop Sci)
 - 10 QTL ok, 50 QTL are too many
 - phenotype better predictor than genotype when too many QTL
 - increasing sample size may not give multiple QTL any advantage
 - hard to select many QTL simultaneously
 - 3^m possible genotypes to choose from

NSF UAB: Yandell © 2008

7

QTL below detection level?

- problem of selection bias
 - QTL of modest effect only detected sometimes
 - effects overestimated when detected
 - repeat studies may fail to detect these QTL
- think of probability of detecting QTL
 - avoids sharp in/out dichotomy
 - avoid pitfalls of one "best" model
 - examine "better" models with more probable QTL
- rethink formal approach for QTL
 - directly allow uncertainty in genetic architecture
 - QTL model selection over genetic architecture

NSF UAB: Yandell © 2008

3. Bayesian vs. classical QTL study

- classical study
 - maximize over unknown effects
 - test for detection of QTL at loci
 - model selection in stepwise fashion
- Bayesian study
 - average over unknown effects
 - *estimate* chance of detecting QTL
 - sample all possible models
- both approaches
 - average over missing QTL genotypes
 - scan over possible loci

NSF UAB: Yandell © 2008

ç

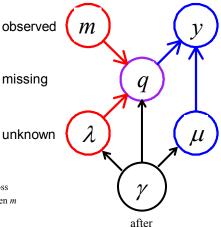
Bayesian idea

- Reverend Thomas Bayes (1702-1761)
 - part-time mathematician
 - buried in Bunhill Cemetary, Moongate, London
 - famous paper in 1763 Phil Trans Roy Soc London
 - was Bayes the first with this idea? (Laplace?)
- basic idea (from Bayes' original example)
 - two billiard balls tossed at random (uniform) on table
 - where is first ball if the second is to its left?
 - prior: anywhere on the table
 - posterior: more likely toward right end of table

NSF UAB: Yandell © 2008

QTL model selection: key players

- · observed measurements
 - y = phenotypic trait
 - m = markers & linkage map
 - -i = individual index (1,...,n)
- missing data
 - missing marker data
 - q = QT genotypes
 - · alleles QQ, Qq, or qq at locus
- · unknown quantities
 - $-\lambda = QT locus (or loci)$
 - $-\mu$ = phenotype model parameters
 - $\gamma = QTL model/genetic architecture$
- $pr(q|m,\lambda,\gamma)$ genotype model
 - grounded by linkage map, experimental cross
 - recombination yields multinomial for q given m
- $pr(y|q, \mu, \gamma)$ phenotype model
 - distribution shape (assumed normal here)
 - unknown parameters μ (could be non-parametric)



Sen Churchill (2001)

NSF UAB: Yandell © 2008

11

Bayes posterior vs. maximum likelihood

- LOD: classical Log ODds
 - maximize likelihood over effects μ
 - R/qtl scanone/scantwo: method = "em"
- LPD: Bayesian Log Posterior Density
 - average posterior over effects μ
 - R/qtl scanone/scantwo: method = "imp"

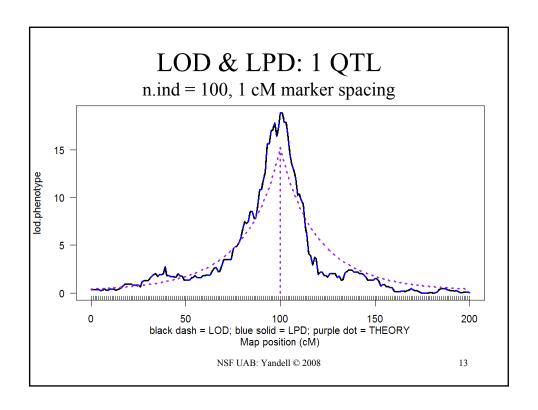
$$LOD(\lambda) = \log_{10} \{ \max_{\mu} pr(y \mid m, \mu, \lambda) \} + c$$

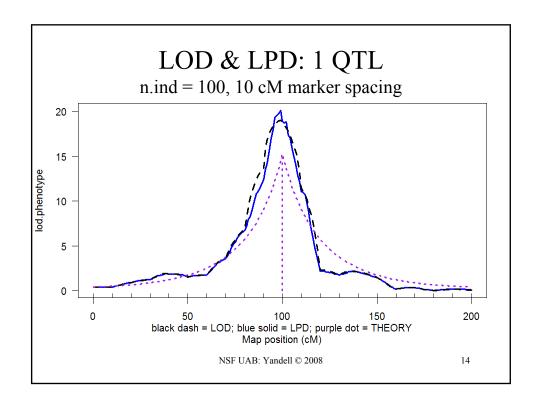
$$LPD(\lambda) = \log_{10} \{ pr(\lambda \mid m) \int pr(y \mid m, \mu, \lambda) pr(\mu) d\mu \} + C$$

likelihood mixes over missing QTL genotypes:

$$pr(y \mid m, \mu, \lambda) = \sum_{a} pr(y \mid q, \mu) pr(q \mid m, \lambda)$$

NSF UAB: Yandell © 2008



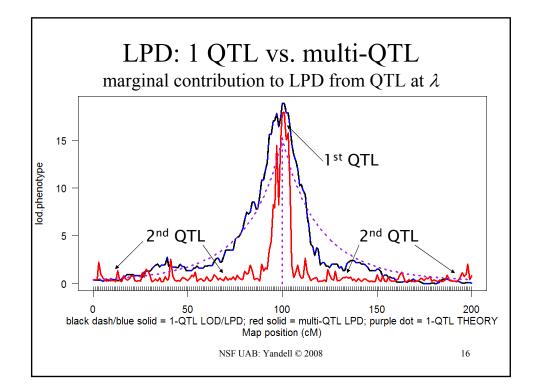


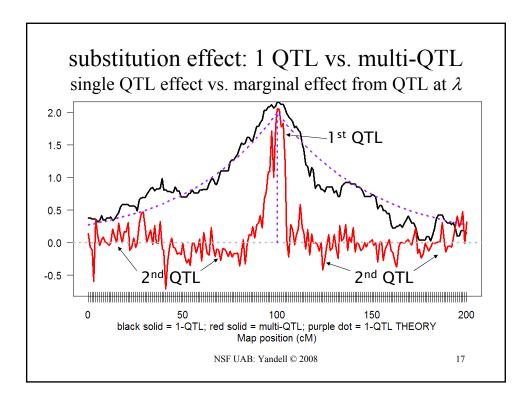
marginal LOD or LPD

- compare two genetic architectures (γ_2, γ_1) at each locus
 - with (γ_1) or without (γ_1) another QTL at locus λ
 - preserve model hierarchy (e.g. drop any epistasis with QTL at λ)
 - with (γ_2) or without (γ_1) epistasis with QTL at locus λ
 - γ_2 contains γ_1 as a sub-architecture
- · allow for multiple QTL besides locus being scanned
 - architectures γ_1 and γ_2 may have QTL at several other loci
 - use marginal LOD, LPD or other diagnostic
 - posterior, Bayes factor, heritability

$$LOD(\lambda \mid \gamma_2) - LOD(\lambda \mid \gamma_1)$$
$$LPD(\lambda \mid \gamma_2) - LPD(\lambda \mid \gamma_1)$$

NSF UAB: Yandell © 2008





why use a Bayesian approach?

- first, do both classical and Bayesian
 - always nice to have a separate validation
 - each approach has its strengths and weaknesses
- classical approach works quite well
 - selects large effect QTL easily
 - directly builds on regression ideas for model selection
- Bayesian approach is comprehensive
 - samples most probable genetic architectures
 - formalizes model selection within one framework
 - readily (!) extends to more complicated problems

1. Bayesian strategy for QTL study

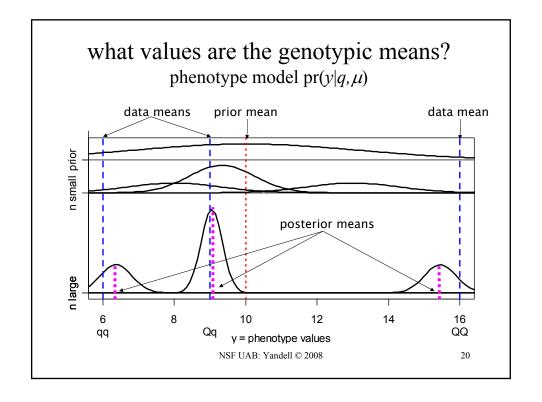
- augment data (y,m) with missing genotypes q
- study unknowns (μ, λ, γ) given augmented data (y, m, q)
 - find better genetic architectures γ
 - find most likely genomic regions = QTL = λ
 - estimate phenotype parameters = genotype means = μ
- sample from posterior in some clever way
 - multiple imputation (Sen Churchill 2002)
 - Markov chain Monte Carlo (MCMC)
 - (Satagopan et al. 1996; Yi et al. 2005, 2007)

$$posterior = \frac{likelihood*prior}{constant}$$

posterior for
$$q, \mu, \lambda, \gamma = \frac{\text{phenotype likelihood*[prior for } q, \mu, \lambda, \gamma]}{\text{constant}}$$

$$\operatorname{pr}(q,\mu,\lambda,\gamma\mid y,m) = \frac{\operatorname{pr}(y\mid q,\mu,\gamma) * [\operatorname{pr}(q\mid m,\lambda,\gamma)\operatorname{pr}(\mu\mid \gamma)\operatorname{pr}(\lambda\mid m,\gamma)\operatorname{pr}(\gamma)]}{\operatorname{pr}(y\mid m)}$$

NSF UAB: Yandell © 2008



Bayes posterior QTL means

posterior centered on sample genotypic mean but shrunken slightly toward overall mean

phenotype mean:
$$E(y | q) = \mu_q$$
 $V(y | q) = \sigma^2$

genotypic prior:
$$E(\mu_q) = \bar{y}_{\bullet}$$
 $V(\mu_q) = \kappa \sigma^2$

posterior:
$$E(\mu_q \mid y) = b_q \overline{y}_q + (1 - b_q) \overline{y}_{\bullet} \quad V(\mu_q \mid y) = b_q \sigma^2 / n_q$$

$$n_q = \operatorname{count}\{q_i = q\} \qquad \overline{y}_q = \sup_{\{q_i = q\}} y_i / n_q$$

shrinkage:
$$b_q = \frac{\kappa n_q}{\kappa n_q + 1} \rightarrow 1$$

NSF UAB: Yandell © 2008

21

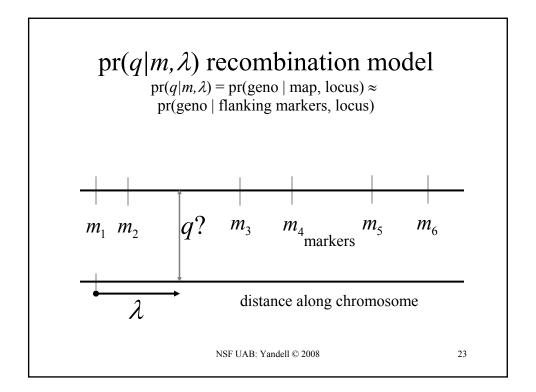
partition genotypic effects on phenotype

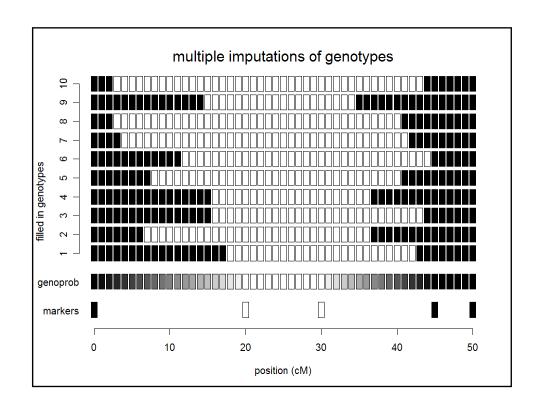
- phenotype depends on genotype
- genotypic value partitioned into
 - main effects of single QTL
 - epistasis (interaction) between pairs of QTL

$$\mu_q = \beta_0 + \beta_q = E(Y;q)$$

$$\beta_q = \beta(q_2) + \beta(q_2) + \beta(q_1,q_2)$$

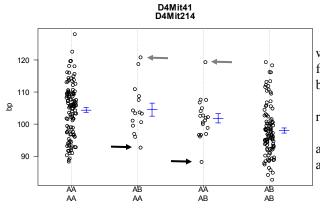
NSF UAB: Yandell © 2008





what are likely QTL genotypes q?

how does phenotype y improve guess?



Genotype

what are probabilities for genotype *q* between markers?

recombinants AA:AB

all 1:1 if ignore *y* and if we use *y*?

NSF UAB: Yandell © 2008

25

posterior on QTL genotypes q

- full conditional of q given data, parameters
 - proportional to prior $pr(q \mid m, \lambda)$
 - weight toward q that agrees with flanking markers
 - proportional to likelihood pr($y \mid q, \mu$)
 - ullet weight toward q with similar phenotype values
 - posterior recombination model balances these two
- this is the E-step of EM computations

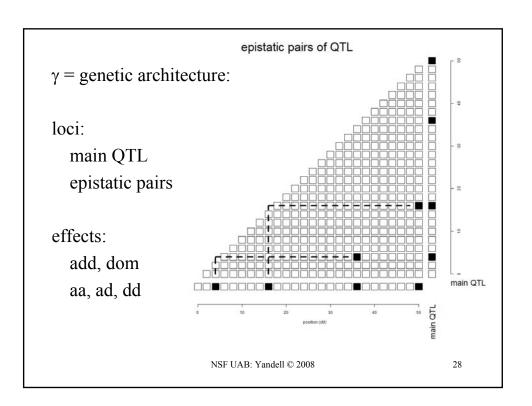
$$\operatorname{pr}(q \mid y, m, \mu, \lambda) = \frac{\operatorname{pr}(y \mid q, \mu) * \operatorname{pr}(q \mid m, \lambda)}{\operatorname{pr}(y \mid m, \mu, \lambda)}$$

NSF UAB: Yandell © 2008

what is the genetic architecture γ ?

- which positions correspond to QTLs?
 - priors on loci (previous slide)
- which QTL have main effects?
 - priors for presence/absence of main effects
 - same prior for all QTL
 - can put prior on each d.f. (1 for BC, 2 for F2)
- which pairs of QTL have epistatic interactions?
 - prior for presence/absence of epistatic pairs
 - depends on whether 0,1,2 QTL have main effects
 - · epistatic effects less probable than main effects

NSF UAB: Yandell © 2008



Bayesian priors & posteriors

- augmenting with missing genotypes q
 - prior is recombination model
 - posterior is (formally) E step of EM algorithm
- sampling phenotype model parameters μ
 - prior is "flat" normal at grand mean (no information)
 - posterior shrinks genotypic means toward grand mean
 - (details for unexplained variance omitted here)
- sampling QTL genetic architecture model γ
 - number of QTL
 - prior is Poisson with mean from previous IM study
 - locations of QTL loci λ
 - prior is flat across genome (all loci equally likely)
 - genetic architecture of main effects and epistatic interactions
 - priors on epistasis depend on presence/absence of main effects

NSF UAB: Yandell © 2008

29

2. Markov chain sampling

- construct Markov chain around posterior
 - want posterior as stable distribution of Markov chain
 - in practice, the chain tends toward stable distribution
 - initial values may have low posterior probability
 - · burn-in period to get chain mixing well
- sample QTL model components from full conditionals
 - sample locus λ given q, γ (using Metropolis-Hastings step)
 - sample genotypes q given λ, μ, y, γ (using Gibbs sampler)
 - sample effects μ given q, y, γ (using Gibbs sampler)
 - sample QTL model γ given λ, μ, y, q (using Gibbs or M-H)

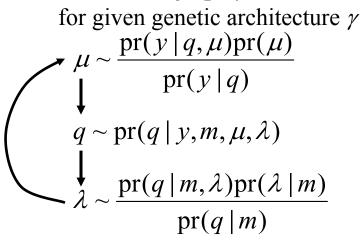
$$(\lambda, q, \mu, \gamma) \sim \operatorname{pr}(\lambda, q, \mu, \gamma \mid y, m)$$

$$(\lambda, q, \mu, \gamma)_1 \rightarrow (\lambda, q, \mu, \gamma)_2 \rightarrow \cdots \rightarrow (\lambda, q, \mu, \gamma)_N$$

NSF UAB: Yandell © 2008

MCMC sampling of unknowns

$$(\mu,q,\lambda)$$



NSF UAB: Yandell © 2008

31

Gibbs sampler for two genotypic means

- want to study two correlated effects β_1 , β_2
 - assume correlation ρ is known
- sample from full distribution?
- or use Gibbs sampler:
 - sample each effect from its full conditional given the other
 - pick order of sampling at random
 - repeat many times

$$\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}$$

$$\beta_1 \sim N(\rho\beta_2, 1-\rho^2)$$

$$\beta_2 \sim N(\rho \beta_1, 1 - \rho^2)$$

NSF UAB: Yandell © 2008

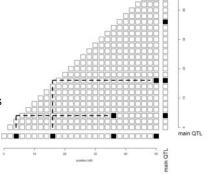
Gibbs sampler samples: $\rho = 0.6$ N = 50 samples N = 200 samples N = 200 samples N = 200 samples N = 200 samples

NSF UAB: Yandell © 2008

33

Gibbs sampler for loci indicators

- QTL at pseudomarkers
- loci indicators γ
 - $\gamma = 1$ if QTL present
 - $-\gamma = 0$ if no QTL present
- Gibbs sampler on loci indicators γ
 - relatively easy to incorporate epistasis
 - Yi et al. (2005 Genetics)
 - (earlier work of Yi, Ina Hoeschele)



epistatic pairs of QTL

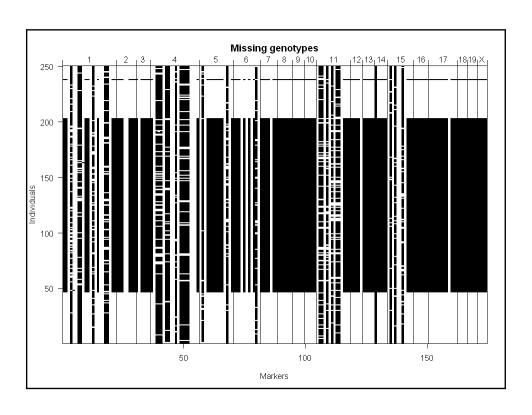
$$\mu_q = \mu + \gamma_1 \beta(q_1) + \gamma_2 \beta(q_2), \ \gamma_k = 0.1$$

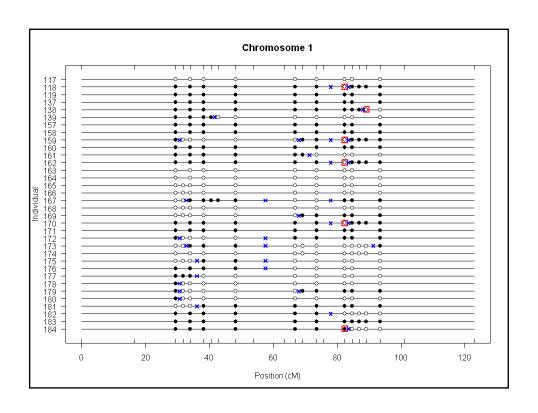
NSF UAB: Yandell © 2008

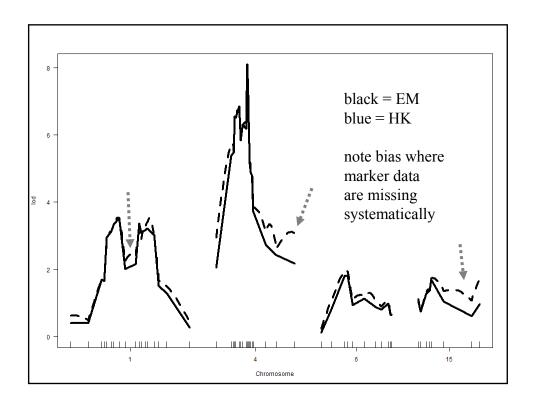
R/qtl & R/qtlbim Tutorials

- R statistical graphics & language system
- R/qtl tutorial
 - R/qtl web site: www.rqtl.org
 - Tutorial: www.rqtl.org/tutorials/rqtltour.pdf
 - R code: www.rqtl.org/tutorials/rqtltour.R
- R/qtlbim tutorial
 - R/qtlbim web site: www.qtlbim.org
 - Tutorial: www.stat.wisc.edu/~yandell/qtlbim/rqtlbimtour.pdf
 - R code: www.stat.wisc.edu/~yandell/qtlbim/rqtlbimtour.R

NSF UAB: Yandell © 2008







R/qtl: permutation threshold

```
> operm.hk <- scanone(hyper, method="hk", n.perm=1000)
Doing permutation in batch mode ...</pre>
```

> summary(operm.hk, alpha=c(0.01,0.05))

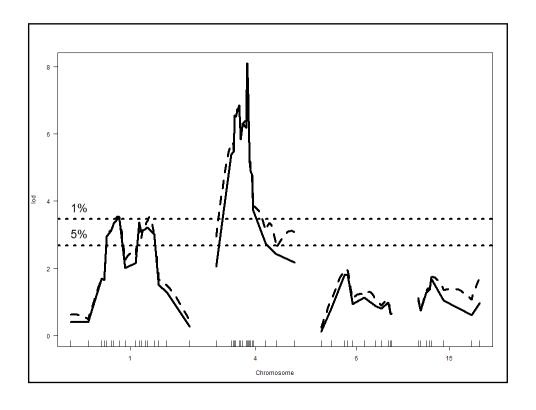
LOD thresholds (1000 permutations) lod 1% 3.79

5% 2.78

> summary(out.hk, perms=operm.hk, alpha=0.05, pvalues=TRUE)

chr pos lod pval 1 1 48.3 3.55 0.015 2 4 29.5 8.09 0.000

NSF UAB: Yandell © 2008



R/qtlbim (www.qtlbim.org)

- cross-compatible with R/qtl
- model selection for genetic architecture
 - epistasis, fixed & random covariates, GxE
 - samples multiple genetic architectures
 - examines summaries over nested models
- extensive graphics

NSF UAB: Yandell © 2008

41

R/qtlbim: www.qtlbim.org

- Properties
 - cross-compatible with R/qtl
 - new MCMC algorithms
 - Gibbs with loci indicators; no reversible jump
 - epistasis, fixed & random covariates, GxE
 - extensive graphics
- Software history
 - initially designed (Satagopan, Yandell 1996)
 - major revision and extension (Gaffney 2001)
 - R/bim to CRAN (Wu, Gaffney, Jin, Yandell 2003)
 - R/qtlbim to CRAN (Yi, Yandell et al. 2006)
- Publications
 - Yi et al. (2005); Yandell et al. (2007); ...

NSF UAB: Yandell © 2008

R/qtlbim: tutorial

(www.stat.wisc.edu/~yandell/qtlbim)

```
> data(hyper)
## Drop X chromosome (for now).
> hyper <- subset(hyper, chr=1:19)
> hyper <- qb.genoprob(hyper, step=2)

## This is the time-consuming step:
> qbHyper <- qb.mcmc(hyper, pheno.col = 1)

## Here we get pre-stored samples.
> data(qbHyper)

## Summary printing and plots
> summary(qbHyper)
> plot(qbHyper)
```

NSF UAB: Yandell © 2008

43

R/qtlbim: initial summaries

```
Bayesian model selection QTL mapping object qbHyper on cross object hyper had 3000 iterations recorded at each 40 steps with 1200 burn-in steps.

Diagnostic summaries:

nqt1 mean envvar varadd varaa var

Min. 2.000 97.42 28.07 5.112 0.000 5.112
1st Qu. 5.000 101.00 44.33 17.010 1.639 20.180
Median 7.000 101.30 48.57 20.060 4.580 25.160
Mean 6.543 101.30 48.80 20.310 5.321 25.630
3rd Qu. 8.000 101.70 53.11 23.480 7.862 30.370
Max. 13.000 103.90 74.03 51.730 34.940 65.220

Percentages for number of QTL detected:
2 3 4 5 6 7 8 9 10 11 12 13
2 3 9 14 21 19 17 10 4 1 0 0

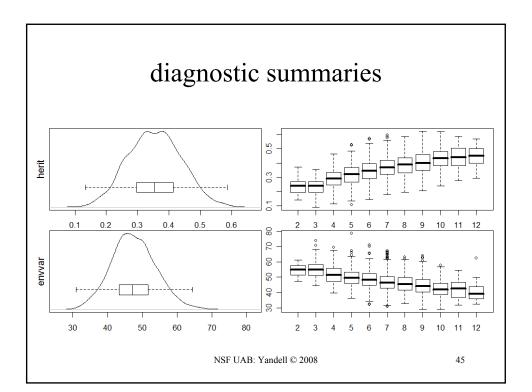
Percentages for number of epistatic pairs detected:
pairs
1 2 3 4 5 6
29 31 23 11 5 1

Percentages for common epistatic pairs:
6.15 4.15 4.6 1.7 15.15 1.4 1.6 4.9 1.15 1.17 1.5 5.11 1.2 7.15 1.1 63 18 10 6 6 5 4 4 3 3 3 2 2 2 2 2

> plot(qb.diag(qbHyper, items = c("herit", "envvar")))
```

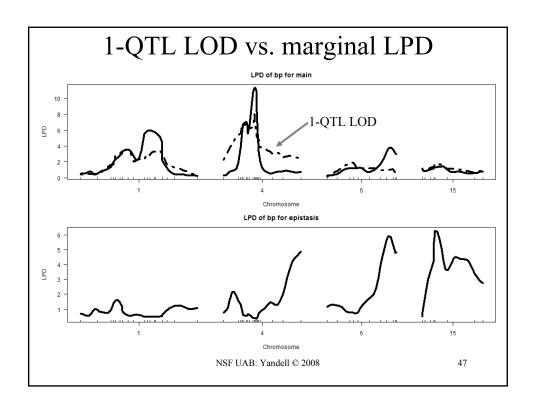
> summary(qbHyper)

NSF UAB: Yandell © 2008



R/qtlbim: 1-D (not 1-QTL!) scan

```
> one <- qb.scanone(qbHyper, chr = c(1,4,6,15), type = "LPD")
> summary(one)
LPD of bp for main, epistasis, sum
    n.qtl pos m.pos e.pos main epistasis
c1 1.331 64.5 64.5 67.8 6.10
                                    0.442 6.27
c4 1.377 29.5
                                    0.375 11.61
               29.5
                     29.5 11.49
c6 0.838 59.0 59.0
                     59.0 3.99
                                    6.265 9.60
c15 0.961 17.5 17.5 17.5 1.30
                                    6.325 7.28
> plot(one, scan = "main")
> plot(out.em, chr=c(1,4,6,15), add = TRUE, lty = 2)
> plot(one, scan = "epistasis")
```



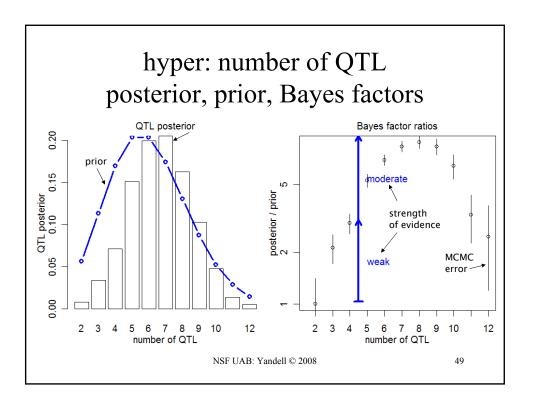
most probable patterns

```
> summary(qb.BayesFactor(qbHyper, item = "pattern"))
```

```
nqtl posterior
                                  prior
                                           bf bfse
1,4,6,15,6:15
                  5 0.03400 2.71e-05 24.30 2.360
1,4,6,6,15,6:15
                    6 0.00467 5.22e-06 17.40 4.630
1,1,4,6,15,6:15
                       0.00600 9.05e-06 12.80 3.020
                    7 0.00267 4.11e-06 12.60 4.450
1,1,4,5,6,15,6:15
                    6 0.00300 4.96e-06 11.70 3.910
1,4,6,15,15,6:15
                    6 0.00300 5.81e-06 10.00 3.330
1,4,4,6,15,6:15
1,2,4,6,15,6:15
                    6
                       0.00767 1.54e-05 9.66 2.010
                       0.00500 1.28e-05 7.56 1.950
1,4,5,6,15,6:15
                    6
1,2,4,5,6,15,6:15
                       0.00267 6.98e-06 7.41 2.620
1,4
                       0.01430 1.51e-04 1.84 0.279
                        0.00300 3.66e-05 1.59 0.529
1,1,2,4
                        0.00733 1.03e-04 1.38 0.294
1,2,4
1,1,4
                        0.00400 6.05e-05 1.28 0.370
1,4,19
                       0.00300 5.82e-05 1.00 0.333
```

> plot(qb.BayesFactor(qbHyper, item = "nqtl"))

NSF UAB: Yandell © 2008



what is best estimate of QTL?

- find most probable pattern
 - 1,4,6,15,6:15 has posterior of 3.4%
- · estimate locus across all nested patterns
 - Exact pattern seen ~100/3000 samples
 - Nested pattern seen ~2000/3000 samples
- · estimate 95% confidence interval using quantiles
- > best <- qb.best(qbHyper)
- > summary(best)\$best

```
        chrom
        locus
        locus.LCL
        locus.UCL
        n.qtl

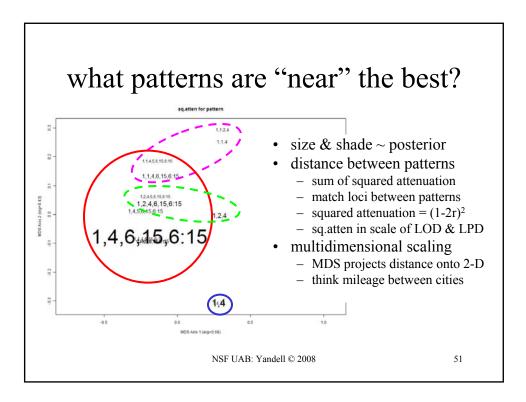
        247
        1
        69.9
        24.44875
        95.7985
        0.8026667

        245
        4
        29.5
        14.20000
        74.3000
        0.8800000

        248
        6
        59.0
        13.83333
        66.7000
        0.7096667

        246
        15
        19.5
        13.10000
        55.7000
        0.8450000
```

> plot(best)



many thanks

Alan Attie

U AL Birmingham

UW-Madison Stats

U AL Birmingham	Alan Attle	Yandell lab
Nengjun Yi	Jonathan Stoehr	Jaya Satagopan
Tapan Mehta	Hong Lan	Fei Zou
Samprit Banerjee	Susie Clee	Patrick Gaffney
Daniel Shriner	Jessica Byers	Chunfang Jin Elias Chaibub
Ram Venkataraman	Mark Gray-Keller	W Whipple Neely
David Allison	Tom Osborn	Jee Young Moon Elias Chaibub
Jackson Labs	David Butruille	Michael Newton
Gary Churchill	Marcio Ferrera	Karl Broman
Hao Wu	Josh Udahl	Christina Kendziorski
Hyuna Yang	Pablo Quijada	Daniel Gianola
Randy von Smith		Liang Li
		Daniel Sorensen
USDA Hatch, NIH/NIDDK (Attie), NIH/R01s (Yi, Broman)		

NSF UAB: Yandell © 2008