
NSF UAB: Yandell © 2008 1

NSF UAB Course 2008
Bayesian Interval Mapping

Brian S. Yandell, UW-Madison
www.stat.wisc.edu/~yandell/statgen

• overview: multiple QTL approaches
• Bayesian QTL mapping & model selection
• data examples in detail
• software demos: R/qtl and R/qtlbim
Real knowledge is to know the extent of one’s ignorance. 
Confucius (on a bench in Seattle)
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1. what is the goal of QTL study?
• uncover underlying biochemistry

– identify how networks function, break down
– find useful candidates for (medical) intervention
– epistasis may play key role
– statistical goal: maximize number of correctly identified QTL

• basic science/evolution
– how is the genome organized?
– identify units of natural selection
– additive effects may be most important (Wright/Fisher debate)
– statistical goal: maximize number of correctly identified QTL

• select “elite” individuals
– predict phenotype (breeding value) using suite of characteristics 

(phenotypes) translated into a few QTL
– statistical goal: mimimize prediction error
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QTL

Marker Trait

cross two inbred lines 
→ linkage disequilibrium 

→ associations
→ linked segregating QTL

(after Gary Churchill)
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problems of single QTL approach

• wrong model: biased view
– fool yourself: bad guess at locations, effects
– detect ghost QTL between linked loci
– miss epistasis completely

• low power
• bad science

– use best tools for the job
– maximize scarce research resources
– leverage already big investment in experiment
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advantages of multiple QTL approach
• improve statistical power, precision

– increase number of QTL detected
– better estimates of loci: less bias, smaller intervals

• improve inference of complex genetic architecture
– patterns and individual elements of epistasis
– appropriate estimates of means, variances, covariances

• asymptotically unbiased, efficient
– assess relative contributions of different QTL

• improve estimates of genotypic values
– less bias (more accurate) and smaller variance (more precise)
– mean squared error = MSE = (bias)2 + variance
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limits of multiple QTL?
• limits of statistical inference

– power depends on sample size, heritability, environmental 
variation

– “best” model balances fit to data and complexity (model size)
– genetic linkage = correlated estimates of gene effects

• limits of biological utility
– sampling: only see some patterns with many QTL
– marker assisted selection (Bernardo 2001 Crop Sci)

• 10 QTL ok, 50 QTL are too many
• phenotype better predictor than genotype when too many QTL
• increasing sample size may not give multiple QTL any advantage

– hard to select many QTL simultaneously
• 3m possible genotypes to choose from
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QTL below detection level?
• problem of selection bias

– QTL of modest effect only detected sometimes
– effects overestimated when detected
– repeat studies may fail to detect these QTL

• think of probability of detecting QTL
– avoids sharp in/out dichotomy
– avoid pitfalls of one “best” model
– examine “better” models with more probable QTL

• rethink formal approach for QTL
– directly allow uncertainty in genetic architecture
– QTL model selection over genetic architecture
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3. Bayesian vs. classical QTL study
• classical study

– maximize over unknown effects
– test for detection of QTL at loci
– model selection in stepwise fashion

• Bayesian study
– average over unknown effects
– estimate chance of detecting QTL
– sample all possible models

• both approaches
– average over missing QTL genotypes
– scan over possible loci
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• Reverend Thomas Bayes (1702-1761)
– part-time mathematician
– buried in Bunhill Cemetary, Moongate, London
– famous paper in 1763 Phil Trans Roy Soc London
– was Bayes the first with this idea? (Laplace?)

• basic idea (from Bayes’ original example)
– two billiard balls tossed at random (uniform) on table
– where is first ball if the second is to its left?

• prior: anywhere on the table
• posterior: more likely toward right end of table

Bayesian idea
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QTL model selection: key players
• observed measurements

– y = phenotypic trait
– m = markers & linkage map
– i = individual index (1,…,n)

• missing data
– missing marker data
– q = QT genotypes

• alleles QQ, Qq, or qq at locus

• unknown quantities
– λ = QT locus (or loci)
– µ = phenotype model parameters
– γ = QTL model/genetic architecture

• pr(q|m,λ,γ) genotype model
– grounded by linkage map, experimental cross
– recombination yields multinomial for q given m

• pr(y|q,µ,γ) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters µ (could be non-parametric)

observed X Y

missing Q

unknown λ θ

after
Sen Churchill (2001)

y

λ

q

µ

m

γ
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Bayes posterior vs. maximum likelihood
• LOD: classical Log ODds

– maximize likelihood over effects µ
– R/qtl scanone/scantwo: method = “em”

• LPD: Bayesian Log Posterior Density
– average posterior over effects µ
– R/qtl scanone/scantwo: method = “imp”
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LOD & LPD: 1 QTL
n.ind = 100, 1 cM marker spacing
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LOD & LPD: 1 QTL
n.ind = 100, 10 cM marker spacing
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marginal LOD or LPD
• compare two genetic architectures (γ2,γ1) at each locus

– with (γ2) or without (γ1) another QTL at locus λ
• preserve model hierarchy (e.g. drop any epistasis with QTL at λ)

– with (γ2) or without (γ1) epistasis with QTL at locus λ
– γ2 contains γ1 as a sub-architecture

• allow for multiple QTL besides locus being scanned
– architectures γ1 and γ2 may have QTL at several other loci
– use marginal LOD, LPD or other diagnostic
– posterior, Bayes factor, heritability
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LPD: 1 QTL vs. multi-QTL
marginal contribution to LPD from QTL at λ

2nd QTL

1st QTL

2nd QTL
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substitution effect: 1 QTL vs. multi-QTL
single QTL effect vs. marginal effect from QTL at λ

2nd QTL 2nd QTL

1st QTL
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why use a Bayesian approach?
• first, do both classical and Bayesian

– always nice to have a separate validation
– each approach has its strengths and weaknesses

• classical approach works quite well
– selects large effect QTL easily
– directly builds on regression ideas for model selection

• Bayesian approach is comprehensive
– samples most probable genetic architectures
– formalizes model selection within one framework
– readily (!) extends to more complicated problems
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1. Bayesian strategy for QTL study
• augment data (y,m) with missing genotypes q
• study unknowns (µ,λ,γ) given augmented data (y,m,q)

– find better genetic architectures γ
– find most likely genomic regions = QTL = λ
– estimate phenotype parameters = genotype means = µ

• sample from posterior in some clever way
– multiple imputation (Sen Churchill 2002)
– Markov chain Monte Carlo (MCMC) 

• (Satagopan et al. 1996; Yi et al. 2005, 2007)
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what values are the genotypic means?
phenotype model pr(y|q,µ)
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y = phenotype values
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posterior centered on sample genotypic mean
but shrunken slightly toward overall mean

phenotype mean:

genotypic prior:

posterior:

shrinkage:

Bayes posterior QTL means
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partition genotypic effects
on phenotype

• phenotype depends on genotype
• genotypic value partitioned into

– main effects of single QTL
– epistasis (interaction) between pairs of QTL
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λ

1m 2m 3m 4m 5m 6m

pr(q|m,λ) recombination model
pr(q|m,λ) = pr(geno | map, locus) ≈
pr(geno | flanking markers, locus)

distance along chromosome

q?
markers
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what are likely QTL genotypes q?
how does phenotype y improve guess?

90

100

110

120

D4Mit41
D4Mit214

Genotype

bp

AA
AA

AB
AA

AA
AB

AB
AB

what are probabilities
for genotype q
between markers?

recombinants AA:AB

all 1:1 if ignore y
and if we use y?
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posterior on QTL genotypes q
• full conditional of q given data, parameters

– proportional to prior pr(q | m, λ)
• weight toward q that agrees with flanking markers

– proportional to likelihood pr(y | q, µ)
• weight toward q with similar phenotype values

– posterior recombination model balances these two
• this is the E-step of EM computations
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what is the genetic architecture γ?

• which positions correspond to QTLs?
– priors on loci (previous slide)

• which QTL have main effects?
– priors for presence/absence of main effects

• same prior for all QTL
• can put prior on each d.f. (1 for BC, 2 for F2)

• which pairs of QTL have epistatic interactions?
– prior for presence/absence of epistatic pairs

• depends on whether 0,1,2 QTL have main effects
• epistatic effects less probable than main effects
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γ = genetic architecture:

loci:
main QTL
epistatic pairs

effects:
add, dom
aa, ad, dd
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Bayesian priors & posteriors
• augmenting with missing genotypes q

– prior is recombination model
– posterior is (formally) E step of EM algorithm

• sampling phenotype model parameters µ
– prior is “flat” normal at grand mean (no information)
– posterior shrinks genotypic means toward grand mean
– (details for unexplained variance omitted here)

• sampling QTL genetic architecture model γ
– number of QTL 

• prior is Poisson with mean from previous IM study
– locations of QTL loci λ

• prior is flat across genome (all loci equally likely)
– genetic architecture of main effects and epistatic interactions

• priors on epistasis depend on presence/absence of main effects
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2. Markov chain sampling
• construct Markov chain around posterior

– want posterior as stable distribution of Markov chain
– in practice, the chain tends toward stable distribution

• initial values may have low posterior probability
• burn-in period to get chain mixing well

• sample QTL model components from full conditionals
– sample locus λ given q,γ (using Metropolis-Hastings step)
– sample genotypes q given λ,µ,y,γ (using Gibbs sampler)
– sample effects µ given q,y,γ (using Gibbs sampler)
– sample QTL model γ given λ,µ,y,q (using Gibbs or M-H)
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MCMC sampling of unknowns 
(µ,q,λ)

for given genetic architecture γ
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Gibbs sampler 
for two genotypic means

• want to study two correlated 
effects β1, β2
– assume correlation ρ is known

• sample from full distribution?
• or use Gibbs sampler:

– sample each effect from its full 
conditional given the other

– pick order of sampling at random
– repeat many times
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Gibbs sampler samples: ρ = 0.6
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Gibbs sampler for loci indicators  

• QTL at pseudomarkers
• loci indicators γ

– γ = 1 if QTL present
– γ = 0 if no QTL present

• Gibbs sampler on loci indicators γ
– relatively easy to incorporate epistasis
– Yi et al. (2005 Genetics)

• (earlier work of Yi, Ina Hoeschele)

1,0   ,)()( 2211 =++= kq qq γβγβγµµ
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R/qtl & R/qtlbim Tutorials

• R statistical graphics & language system
• R/qtl tutorial

– R/qtl web site: www.rqtl.org
– Tutorial: www.rqtl.org/tutorials/rqtltour.pdf
– R code: www.rqtl.org/tutorials/rqtltour.R

• R/qtlbim tutorial
– R/qtlbim web site: www.qtlbim.org
– Tutorial: www.stat.wisc.edu/~yandell/qtlbim/rqtlbimtour.pdf

– R code: www.stat.wisc.edu/~yandell/qtlbim/rqtlbimtour.R
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black = EM
blue = HK

note bias where
marker data
are missing
systematically
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R/qtl: permutation threshold
> operm.hk <- scanone(hyper, method="hk", n.perm=1000)
Doing permutation in batch mode ...

> summary(operm.hk, alpha=c(0.01,0.05))

LOD thresholds (1000 permutations)
lod

1% 3.79
5% 2.78

> summary(out.hk, perms=operm.hk, 
alpha=0.05, pvalues=TRUE)

chr pos  lod pval
1   1 48.3 3.55 0.015
2   4 29.5 8.09 0.000
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R/qtlbim (www.qtlbim.org)
• cross-compatible with R/qtl
• model selection for genetic architecture

– epistasis, fixed & random covariates, GxE
– samples multiple genetic architectures
– examines summaries over nested models

• extensive graphics
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R/qtlbim: www.qtlbim.org
• Properties

– cross-compatible with R/qtl
– new MCMC algorithms

• Gibbs with loci indicators; no reversible jump
– epistasis, fixed & random covariates, GxE
– extensive graphics

• Software history
– initially designed (Satagopan, Yandell 1996)
– major revision and extension (Gaffney 2001)
– R/bim to CRAN (Wu, Gaffney, Jin, Yandell 2003)
– R/qtlbim to CRAN (Yi, Yandell et al. 2006)

• Publications
– Yi et al. (2005); Yandell et al. (2007); …
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R/qtlbim: tutorial
(www.stat.wisc.edu/~yandell/qtlbim)

> data(hyper)
## Drop X chromosome (for now).
> hyper <- subset(hyper, chr=1:19)
> hyper <- qb.genoprob(hyper, step=2) 

## This is the time-consuming step:
> qbHyper <- qb.mcmc(hyper, pheno.col = 1)

## Here we get pre-stored samples.
> data(qbHyper)

## Summary printing and plots
> summary(qbHyper)
> plot(qbHyper)
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R/qtlbim: initial summaries
> summary(qbHyper)

Bayesian model selection QTL mapping object qbHyper on cross object hyper 
had 3000 iterations recorded at each 40 steps with 1200 burn-in steps.

Diagnostic summaries:
nqtl mean envvar varadd varaa var

Min.     2.000  97.42  28.07  5.112  0.000  5.112
1st Qu.  5.000 101.00  44.33 17.010  1.639 20.180
Median   7.000 101.30  48.57 20.060  4.580 25.160
Mean     6.543 101.30  48.80 20.310  5.321 25.630
3rd Qu.  8.000 101.70  53.11 23.480  7.862 30.370
Max.    13.000 103.90  74.03 51.730 34.940 65.220

Percentages for number of QTL detected:
2  3  4  5  6  7  8  9 10 11 12 13 
2  3  9 14 21 19 17 10  4  1  0  0 

Percentages for number of epistatic pairs detected:
pairs
1  2  3  4  5  6 

29 31 23 11  5  1 

Percentages for common epistatic pairs:
6.15  4.15   4.6   1.7 15.15   1.4   1.6   4.9  1.15  1.17   1.5  5.11   1.2  7.15   1.1 

63    18    10     6     6     5     4     4     3     3     3     2     2     2     2 

> plot(qb.diag(qbHyper, items = c("herit", "envvar")))
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diagnostic summaries
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R/qtlbim: 1-D (not 1-QTL!) scan

> one <- qb.scanone(qbHyper, chr = c(1,4,6,15), type = "LPD")
> summary(one)

LPD of bp for main,epistasis,sum

n.qtl pos m.pos e.pos main epistasis sum
c1  1.331 64.5  64.5 67.8  6.10     0.442  6.27
c4  1.377 29.5  29.5 29.5 11.49     0.375 11.61
c6  0.838 59.0  59.0 59.0 3.99     6.265  9.60
c15 0.961 17.5  17.5 17.5 1.30     6.325  7.28

> plot(one, scan = "main")
> plot(out.em, chr=c(1,4,6,15), add = TRUE, lty = 2)
> plot(one, scan = "epistasis")
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1-QTL LOD vs. marginal LPD

1-QTL LOD
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most probable patterns
> summary(qb.BayesFactor(qbHyper, item = "pattern"))

nqtl posterior    prior    bf  bfse
1,4,6,15,6:15        5   0.03400 2.71e-05 24.30 2.360
1,4,6,6,15,6:15      6   0.00467 5.22e-06 17.40 4.630
1,1,4,6,15,6:15      6   0.00600 9.05e-06 12.80 3.020
1,1,4,5,6,15,6:15    7   0.00267 4.11e-06 12.60 4.450
1,4,6,15,15,6:15     6   0.00300 4.96e-06 11.70 3.910
1,4,4,6,15,6:15      6   0.00300 5.81e-06 10.00 3.330
1,2,4,6,15,6:15      6   0.00767 1.54e-05  9.66 2.010
1,4,5,6,15,6:15      6   0.00500 1.28e-05  7.56 1.950
1,2,4,5,6,15,6:15    7   0.00267 6.98e-06  7.41 2.620
1,4                  2   0.01430 1.51e-04  1.84 0.279
1,1,2,4              4   0.00300 3.66e-05  1.59 0.529
1,2,4                3   0.00733 1.03e-04  1.38 0.294
1,1,4                3   0.00400 6.05e-05  1.28 0.370
1,4,19               3   0.00300 5.82e-05  1.00 0.333

> plot(qb.BayesFactor(qbHyper, item = "nqtl"))
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hyper: number of QTL
posterior, prior, Bayes factors

prior

strength
of evidence

MCMC
error
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what is best estimate of QTL?
• find most probable pattern

– 1,4,6,15,6:15 has posterior of 3.4%
• estimate locus across all nested patterns

– Exact pattern seen ~100/3000 samples
– Nested pattern seen ~2000/3000 samples

• estimate 95% confidence interval using quantiles

> best <- qb.best(qbHyper)
> summary(best)$best

chrom locus locus.LCL locus.UCL n.qtl
247     1  69.9  24.44875   95.7985 0.8026667
245     4  29.5  14.20000   74.3000 0.8800000
248     6  59.0  13.83333   66.7000 0.7096667
246    15  19.5  13.10000   55.7000 0.8450000

> plot(best)
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what patterns are “near” the best?

• size & shade ~ posterior
• distance between patterns

– sum of squared attenuation
– match loci between patterns
– squared attenuation = (1-2r)2

– sq.atten in scale of LOD & LPD
• multidimensional scaling

– MDS projects distance onto 2-D
– think mileage between cities
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