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Abstract
Business Collaboration Platforms like Microsoft Teams

and Slack enable teamwork by supporting text chatting and
third-party resource integration. A user can access online file
storage, make video calls, and manage a code repository, all
from within the platform, thus making them a hub for sensi-
tive communication and resources. The key enabler for these
productivity features is a third-party application model. We
contribute an experimental security analysis of this model
and the third-party apps. Performing this analysis is chal-
lenging because commercial platforms and their apps are
closed-source systems. Our analysis methodology is to sys-
tematically investigate different types of interactions possible
between apps and users. We discover that the access control
model in these systems violates two fundamental security
principles: least privilege and complete mediation. These vio-
lations enable a malicious app to exploit the confidentiality
and integrity of user messages and third-party resources con-
nected to the platform. We construct proof-of-concept attacks
that can: (1) eavesdrop on user messages without having per-
mission to read those messages; (2) launch fake video calls;
(3) automatically merge code into repositories without user
approval or involvement. Finally, we provide an analysis of
countermeasures that systems like Slack and Microsoft Teams
can adopt today.

1 Introduction

Business Collaboration Platforms (BCPs) like Slack and Mi-
crosoft Teams are indispensable collaboration and productiv-
ity tools. Beyond multi-user chat features, BCPs enhance pro-
ductivity by allowing users to integrate third-party resources.
For example, users can make video calls with Zoom, store
files on DropBox, chat with customers, and manage code
repositories, all from within the BCP. A vibrant third-party
app ecosystem allows many such integrations. Thus, BCPs
not only host private communications between users but also

*Equal Contribution.

serve as a hub for all their sensitive resources from third-
party systems. As such, it is vital to understand the security
and privacy properties of this emerging class of distributed
multi-user collaboration platforms.

We contribute to understanding the security of BCPs by
performing an experimental analysis of the third-party app
model. We focus on the app model because it allows BCPs
to access sensitive data from third-party systems. Although
there is work on understanding the operational security issues
of BCPs (e.g., web security flaws [14, 15]), to our knowledge,
no work has examined the third-party app model. We focus
our work on Slack and Microsoft Teams — two of the most
widely-used BCPs with mature app ecosystems [10]. Further-
more, these two systems share design-level commonalities
and potentially with other BCPs. Thus, any security findings
are potentially broadly applicable to BCP design.

Performing the security analysis of Slack and Microsoft
Teams is challenging because these systems, including their
apps, are closed-source. Specifically, apps themselves are
remotely-hosted web services whose endpoints are only
known to the BCP. This precludes classical analysis tech-
niques such as source code and binary analysis or API end-
point testing. As an external party, we can only interact with
apps the way a human user would — through the BCP itself.
Therefore, we focus our analysis efforts on the interactions be-
tween apps and users, such as sending messages and reacting
to them. To conduct the analysis methodically, we first system-
atize an access control model that describes the approaches
taken by Slack and Teams using a uniform vocabulary. We
then explore how an attacker can violate the access control
model by experimentally studying each interaction method.

We find that the BCP app model uses a two-level access
control system consisting of the OAuth protocol and a run-
time policy enforcer. Abstractly, a BCP app requests OAuth
tokens to interact with categories of resources. For example,
an app might request an OAuth token to read chat messages.
However, this token does not entirely dictate what specific
messages the app can read. Thus, the user has to specify
the fine-grained access control policy at runtime. Once the



user installs an app and permits it to read chat messages, the
user can additionally specify that the app may read messages
from specific channels (e.g., the “usenix-security-submission”
channel). Whenever an app issues an API request to the BCP
server to read a chat message from a specific channel, the
access control system first verifies the OAuth token and then
executes a runtime policy check to verify that the app is au-
thorized to read from that specific channel.

By examining each interaction method between BCP apps
and users, we establish that this two-level access control sys-
tem does not adequately confine third-party application be-
havior. Concretely, we have discovered that the BCP access
control system violates two standard security principles: (1)
least privilege and (2) complete mediation [41]. This allows
malicious apps to escalate their privilege and violate the con-
fidentiality and integrity of private chat messages and third-
party resources connected to BCPs. To demonstrate the con-
crete harms posed to end-users, we introduce three attack
classes for BCPs along with attack prototypes:
(1) App-to-App Delegation Attacks (Section 4): BCPs sup-
port apps that can interact with each other for productivity
reasons, independently of human involvement. To support
such meaningful interactions, the BCP access control model
allows apps to act on behalf of a user. We show how malicious
apps can exploit this to violate the confidentiality and integrity
of resources that victim apps manage. Our proof-of-concept
attacks include sending arbitrary emails on a victim’s behalf,
merging code pull requests, and retweeting any links using
the victim’s account.
(2) User-to-App Interaction Hijacking (Section 5): BCP
apps can customize how users interact with them and with
workspace features. For example, an app can introduce new
‘slash commands’ into a workspace or manipulate how URLs
get unfurled. For example, one can start a Zoom video call by
entering /zoom on the Slack UI. We show how a second mali-
cious app can interfere when a user attempts to interact with a
benign app, a problem similar to DNS domain squatting and
voice assistant skill squatting [36, 54].
(3) App-to-User Confidentiality Violations (Section 6): BCP
apps interact with users by participating in any approved chan-
nels or conversations, where a human user explicitly ‘adds’
the app as a member. BCPs implement runtime policy checks
to enforce security policies in these situations. We show how
a malicious app can exploit gaps between OAuth and these
runtime mechanisms to leak private messages it does not have
permission to view.
Contributions.
• We contribute an experimental security analysis of the app

model in two widely-used BCPs — Microsoft Teams and
Slack. To guide the analysis, we derive a common access
control model for these two BCPs and then experimentally
examine each interaction method between apps and users.
We find that the access control model violates the principle
of least privilege and complete mediation.

• We introduce three new attack classes that leverage this
fundamental shortcoming of the access control model: app-
to-app delegation attacks, user-to-app interaction hijacking,
and app-to-user confidentiality violations. We constructed
proof-of-concept attacks for these classes to achieve ef-
fects such as sending arbitrary emails on behalf of victims,
merging code requests, launching fake video calls with
loose security settings, and stealing private messages with-
out having the appropriate permission. In certain cases,
we also demonstrate how an attacker can maintain their
presence even after app uninstallation.

• We build tools to scrape app manifest data to estimate
the potential for such attacks to occur. Of the 2,460 Slack
apps we analyze, we find that 1,493 (61%) are potentially
vulnerable to delegation attacks, and 563 (23%) request
the necessary permissions to carry out these attacks. Of the
1,304 Microsoft Teams apps we analyze, we find that 427
(33%) are vulnerable to delegation attacks. We also find
that 1,266 (51%) Slack apps use slash commands; these
apps are potentially vulnerable to both the user-to-app
attacks and capable of performing user-to-app attacks.
Finally, we propose a set of countermeasures that BCPs

like Microsoft Teams and Slack can adopt today as a tempo-
rary solution to mitigate the attacks (Section 7). For example,
enforcing user confirmation before every app-to-app interac-
tion and command name collision can fix most issues, but this
is undoubtedly a user-hostile solution. As a result, solutions
with acceptable security and usability trade-offs necessitate
rethinking the app and access control model in multi-user
communication platforms.

Ethics and Disclosure. We conducted all experiments inside
private workspaces with the authors as the only members. We
did not exercise cross-workspace features; thus, our investiga-
tions did not influence other workspaces. We did not distribute
or submit our test malicious apps to any BCP app directory,
so our attack did not affect BCP users other than the authors’
testing accounts. We ethically disclosed all attacks we found
to Slack and Microsoft, both of which have confirmed their
existence. Due to their view of the workspace as a trusted
environment, the assumptions that social engineering is a pre-
requisite for the attacks, and that the workspace administrator
will correctly manage app installations, these attacks do not
meet their definitions of a security vulnerability.

2 Business Collaboration Platforms

BCPs provide chatrooms that facilitate online collaboration
among a group of people, who usually belong to the same
workspace, such as a project team or a research group. In
BCPs, one can create a virtual workspace to host all conversa-
tions for a group. It supports discussions among the users who
joined the workspace through various conversation channels.
Users can open a new channel which can be public — any



send message
Welcome!

BCP User BCP Clients BCP Server Cloud Backends of BCP Apps

Interact API Calls

Responses BCP API Call
method : chat.postMessage
text   : Hello, world!
channel: CHANNEL_ID
token  : xxxx-xxxxxxx-xxxx

Event Notification
type   : message
text   : Welcome!
channel: CHANNEL_ID
user   : USER_ID
ts     : TIMESTAMP

Figure 1: Overview of BCP’s ecosystem: A BCP user interacts with their BCP clients to communicate with the BCP server. BCP
apps, which are maintained as separate web services by different third-party developers, communicate with BCP server via API
calls and event notifications. A user has to install and authorize an app before accessing its functionalities.

user can join — or private — only those who are invited can
join. Users can also send direct messages to any other user or
group of users in the workspace. To use a BCP, a human user
interacts with their BCP client on their computer or mobile
device, which then communicates with the backend servers
of the BCP through various APIs. The backend server then re-
sponds to the client, updating what the user sees. We illustrate
this communications framework in Figure 1.

In this paper, we focus on Microsoft Teams and Slack,
due to their popularity and mature third-party app ecosystem.
A recent survey of 900 businesses [10] has shown that they
are the two most popular BCPs1and are the only ones that
provide a list of officially supported third-party apps.

2.1 BCP App
Beyond basic chatting features, modern BCPs usually of-
fer many third-party integrations, commonly known as apps,
which are cloud services providing additional productivity-
enhancing functionalities in the workspace, often connecting
user’s data from other services (such as email or online stor-
age) to the workspace. These BCP apps exist on cloud servers
not maintained by the BCP. These app backends communi-
cate with the BCP servers by subscribing to event notification
APIs and reacting when information about a new event is
received, as depicted in Figure 1. Generally, a BCP app can
simultaneously act in three roles: workspace feature provider,
interactive bot, and user delegate.

Workspace feature provider. The app may enhance a
workspace’s existing features. For example, an app made
by Twitter can customize the default link unfurling feature
to preview tweets linked in messages automatically. The app
may also provide user-invokable actions through slash com-
mands. As another example, Google’s Slack app [5] shows a
user’s recent schedule when the user types /gcal.

Interactive bot. The app can present itself in the workplace
as a bot user and interact with other users the same way as
a typical human user. The user can, for example, chat with

1The original survey listed Skype for Business as the top spot, but it has
since been discontinued and replaced by Microsoft Teams.

the app’s bot user directly, invite it to a channel, or share files
with it. Due to these convenient features, this role has become
the app’s primary communication interface with its users.

User delegate. If permitted, the app may also perform ac-
tions on behalf of users. This role is particularly beneficial
for enhancing productivity. For example, when users visit
Dropbox’s web page and wish to share files with others in
their Slack workspace, they must divert their attention back
and forth between Dropbox and Slack. In contrast, with the
delegation ability, Dropbox enables the user to click a button
without leaving the webpage and let Dropbox’s Slack app [4]
share files on their behalf. As a result, the shared files appear
to have been sent directly from the user.

2.2 Life Cycle of BCP Apps

Microsoft Teams and Slack allow any BCP user to create and
distribute BCP apps without requirements, such as applying
for a developer account. BCP apps generally go through the
following stages in their life cycle: registration, publication,
installation, per-user authorization, in-use, and removal.

Registration. To enable the various functionalities in Sec-
tion 2.1, an app needs to query different web APIs or subscribe
to different event notification APIs on the BCP’s backend
server, which in turn usually require different permissions.
The app developer must register the app in the correspond-
ing BCP’s developer portal by submitting a manifest, which
specifies the app’s backend URL, required permissions, and
subscribed events. We note that, in both Microsoft Teams and
Slack, the developer does not need to submit any of the app’s
codebase, as all their apps are hosted purely inside the de-
veloper’s server. No client-side code is accessible by Slack,
Microsoft, or the end-users.

Publication. After the app has been successfully registered,
the developer can choose to either distribute the app’s public
installation URL through its own advertising channels or
submit the app to the official app directory [11, 13]. For the
second option, the app must follow submission guidelines and
go through the platform’s vetting procedure, which primarily



involves checking if the app’s requested permissions match its
claimed functionality (e.g., through a provided test account).
However, as BCP apps are closed-source and their codes are
not submitted for examination, it is difficult to enforce these
guidelines strictly.

Installation. In Microsoft Teams and Slack, any user2 can
install an app to the workspace. During installation, a permis-
sion request page will be presented to the user, detailing what
the app can do, as illustrated in Appendix C. The user then
either accepts all permissions or rejects all permissions. This
installation is relatively invisible to other users; they are not
notified when a new app is installed, and the list of installed
apps is often hidden in secondary menus in the UI.

Per-User Authorization. If an app wants to act as the dele-
gate of some users in the workspace, it may initiate a separate
permission request to each user, usually by sending the re-
quest link via the app’s bot user. Once the user authorizes it,
the app gains permission to act on behalf of that user.

In-use and Removal. After the app is installed and autho-
rized, it may additionally ask for integration with the user’s
account on third-party services. For example, Google’s Slack
app requests the user to authorize access to their Google ac-
count. BCPs do not manage the communications between
BCP apps and third-party services. If the app developer up-
dates an app to request a different set of permissions, the user
has to reinstall the app and go through the permission prompts
as before. Finally, when a user uninstalls an app, it is deau-
thorized by the BCP. However, there is no guarantee that the
app properly disconnects itself from third-party services.

2.3 Security and Privacy Concerns

The widespread usage of BCPs in remote work environments
implies that a lot of sensitive information passes through it.
With the potential ability to access such information, BCP
apps lead to security and privacy concerns. Moreover, some
of the design choices that we described earlier exacerbate
such concerns: (1) all-or-nothing permissions that disallow
selective toggling of permissions; (2) imperceptible installa-
tion that reduces the chances for users to notice what kinds of
apps are installed and also prevents any workspace-wide con-
sent mechanisms; (3) pure server-side implementation that
prevents BCPs or other entities from inspecting the app’s be-
havior through traditional tools like static or dynamic analysis.
This also allows the app to change its behavior at will.

2Although Microsoft Teams and Slack provide a setting for the adminis-
trators of a workspace to limit which users are allowed to install apps and
which apps can be installed, the default for both BCPs is that any user can
install any apps from any source.
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Figure 2: An example of Slack permission system. We show
three example scopes that App 1 may acquire. The arrow
lines indicate that a token can be used to query all resource
instances of the types allowed by the token’s scope. However,
Slack performs additional runtime policy checks (indicated
by the red crosses) to determine which of these instances can
actually be accessed.

3 Analysis of App Permission Model in BCP

We study the permission systems in Microsoft Teams and
Slack to identify their similarities and differences to under-
stand the potential security design issues and systematically
perform experimental security analysis. We focus on these
two BCPs since they are the top two most popular ones [10]
and have mature app ecosystems. We also introduce a practi-
cal threat model and the methodology we will use to analyze
the third-party apps in these two BCPs.

3.1 App Permission System
At a high level, Microsoft Teams and Slack have designed
their access control model based on a similar permission-
based system. This permission system controls whether or
not an app has access to various resources in a workspace. An
app must first declare a set of permission scopes it requires,
with each scope representing the permission to read or write
a type of resource. However, such scopes are statically de-
fined by the BCPs and thus do not allow more dynamic and
fine-grained access control over the specific instances under a
single type of resource. To solve this problem, the BCP per-
mission system includes runtime policies that are usually
user-configurable. For example, to read a message in a private
channel, a Slack app not only needs the groups:history
scope but also has to be added to the channel’s member list
by some user, as shown in Fig. 2. We now examine this two-
level permission system in detail and show that it has security
design issues that can violate the least privilege principle and



cause privilege escalation.

Level 1: static permission scopes. An app needs to acquire
several different permission scopes to perform all of its func-
tionality. Each scope represents the permission to read or write
a type of resource in a workspace, such as channel messages
or shared files.

To install the app, the user must accept all of its requested
permissions; neither BCPs provide options to selectively tog-
gle them. Slack’s permission scopes are implemented as stan-
dard OAuth permission scopes. Slack provides two types of
scopes for its apps: bot token scope, which allows an app to
provide workspace features or act as a bot user, and user token
scope, which allows an app to perform actions on behalf of
an authorized user. For example, the chat:write bot token
scope permits the app to send messages with its bot user as the
author, while the chat:write user token scope allows send-
ing messages as the user. Microsoft Teams follows a similar
design: a set of core app capabilities that must be declared in
an app’s manifest is the equivalent of Slack’s bot token scope,
while Microsoft Graph API’s OAuth permission scopes are
equivalent to Slack’s user token scope. The difference is that
only the first type of scope is shown during the app instal-
lation; the second type can only be acquired by initiating a
separate permission request to the user after installation.

These scopes are static, in the sense that they are prede-
fined based on how BCPs categorize the workspace resources,
and therefore might not align with the user’s desired security
policies, which can vary by workspaces and evolve. To com-
pensate for the static nature of scopes, both BCPs impose a
second level of permission checking.

Level 2: runtime policy checks. Microsoft Teams and Slack
implement runtime policies to determine which instances in a
resource type an app can access based on various conditions.
Users can usually control these conditions to express their
desired security policies. For example, users can have more
fine-grained control of which messages in private channels an
app (that has the prerequisite permission scope) can view: in
Slack, they can invite the app to a specific channel, indicating
that the app can view all messages inside this channel; in
Microsoft Teams, they can @-mention the app in the messages
that they wish the app to read. In this way, runtime monitors
grant users some flexibility to dynamically adjust the set of
resources of an app can access.

Security design issues. Despite the two-level checking, we
uncover two design issues in the BCP permission system that
violate basic security principles.

1. The runtime policies are ad-hoc and incomplete. As a
result, not all user security policies can be correctly ex-
pressed. We find that not only do they differ in each
BCP, but even in the same BCP there are often incon-
sistencies between the runtime policies of similar types
of resources. For example, Slack treats public channel

messages and direct messages as two separate types of re-
sources; however, it only imposes a policy on the former
by checking whether the app is invited to the channel, but
provides no mechanism to limit which user the app can
send direct messages to. The incompleteness of runtime
policies leads to coarse-grained access control, violating
the principle of least privilege.

2. The ownership or provenance of some resources is not
properly tracked or enforced. This frequently happens
when a user delegates an app to create resources. For
example, Microsoft Teams does not differentiate be-
tween messages sent by a real user and a delegated app.
In addition, due to the multi-user multi-app nature of
BCP workspace, the ownership of a resource can some-
times be hard to define correctly. When the ownership or
provenance is absent, or the system assumes the wrong
one, the principle of complete mediation can be violated
and potentially lead to privilege escalation.

Although it is possible to build a BCP permission system to
fix the above problems by allowing the user to specify the
security policy for every instance of resources and tracking
every resource’s provenance, we will see in Sections 4 to 5
that such an ideal system is hard to design and often requires
sacrificing usability.

3.2 Threat Model
Based on our analysis of the permission model above, we
derive a threat model for BCP apps. We assume that the at-
tacker has targeted a BCP workspace containing a number of
users and already-installed apps. The attacker has also tricked
one of the users (referred to as the victim) into installing the
attacker-controlled malicious app, i.e., the victim has granted
all the permission scopes requested by the malicious app. We
believe this is a reasonable assumption, because (1) the ma-
licious app can easily mimic a legitimate app by copying its
publicly available manifest, making the two indistinguishable
for the victim during installation, and (2) by default, any user
in the workspace is allowed to install any app from any source.
In our threat model, the attacker can be either an outsider or
a curious user inside the workspace who wants to gain the
information they cannot access. For example, an admin can
recommend everyone in the organization to install a malicious
app (disguised as an innocent management app), hoping to
steal chat logs from private channels they are not invited.

In addition, we assume that the BCP’s clients and its back-
end server are secure and do not collude with the attacker —
attacking such infrastructure is an orthogonal research direc-
tion. Therefore, the capacity of the malicious app is limited
to the functionality defined by the BCP’s API. We also as-
sume that the other apps installed in the workspace are be-
nign and secure, which means they follow the security guide-
lines [12, 16] and do not contain any implementation-level



Attack Slack Teams Prerequisites Attack Effect Surface

Delegation X X
Permission to perform actions (primarily read &
write direct messages) on victim’s behalf.

Invoke actions in victim’s other apps to manipulate data
in victim’s connected third-party accounts.

– post app removal * X
App has acquired the above permission before
removal.

Incur delegation attack after the app is removed.
*In Slack, this can only be achieved via pre-scheduled
messages.

Interaction hijacking

– slash command X Permission to add slash commands.
Hijack any slash command in the workspace stealthily,
affecting everyone using the command.

– link unfurl X Permission to provide customized unfurling.
Replace any other app’s unfurled content stealthily, af-
fecting the links sent by victim.

Message extraction

– via link unfurl X
Permission to read & write direct messages on
victim’s behalf.

Read messages in any private channel where victim is a
member of.

– via pin/star/reaction X
Permission to pin, star, or react to messages on
victim’s behalf.

Read victim’s direct messages and messages in any pri-
vate channel where victim is a member of.

Figure 3: Summary of proof-of-concept attacks and their requirements and threats. Per our threat model, the victim is a user who
has authorized all the app’s requested permissions.

flaws such as exposing their tokens directly.

3.3 Security Analysis Methodology
We perform experimental security analysis on Microsoft
Teams and Slack to study how a malicious app (defined by
our threat model) can exploit the two security design issues
in these two BCPs’ permission systems. Specifically, for each
potential exploit, we evaluate its practicality and prevalence.

To explore potential exploits, we examine every type of
interaction the malicious app can have with other entities in
the workspace and check whether such interaction involves
resources that have incomplete runtime policy or suffer from
improper ownership tracking. If so, we explore attacks caus-
ing security-critical consequences. For each attack, we an-
alyze how it stems from the security design issues in the
permission system, how it violates the security principles, and
how it jeopardizes the workspace’s integrity or confidentiality
guarantees expected by the user. We detail our findings in
Sections 4 to 6, and summarize the prerequisites and effect
surface for each attack in Fig. 3.

For practicality, we build proof-of-concept malicious apps
and, if applicable, target the attack on selected apps. Since
most apps require a valid third-party account to function prop-
erly, running large-scale analysis is infeasible. Thus, we only
select a few targeted apps that connect to sensitive resources
and test them manually. We only install one targeted app at a
time in our test workspace to avoid undesired interference.

For prevalence, we analyze the app’s potential ability to
launch attacks. We collect the requested permissions of all
published apps from the two BCPs’ official app category3, and
count how many apps have sufficient permissions or resources
to launch each attack. It is important to note that our goal is

not to prove that some specific apps are malicious; we only
examine the capabilities granted by various permission scopes
and how they can be abused to perform malicious actions.
This strategy allows for a sound analysis despite apps being
closed-source, as the apps we find indeed have prerequisite
permissions to potentially launch attacks.

4 App-to-App Delegation Attacks

One of the core functionalities provided by BCP apps is to
chat with users through their bot users interactively. However,
a BCP app can also send and receive messages on the user’s
behalf and, therefore, chat with other app bot users. In this
section, we present the delegation attack, where one malicious
app abuses such app-app interactions and causes security-
critical consequences (Sections 4.1 to 4.2). We then show
that the source of this vulnerability roots in the fundamental
design issues of current BCP permission systems (Section 4.3)
— a violation of least privilege.

4.1 App-to-App Interactions
Both Microsoft Teams and Slack allow their apps to present
themselves in a workspace as bot users so that human users
can send direct messages to these bot users to instruct them
to perform certain tasks. This functionality is commonly used
to let users manage their data in other online services, such as
emails and file storage, without leaving the BCP.

At the same time, these two BCPs also allow apps to per-
form certain actions in the workspace on behalf of the user.

3We collected 2,460 apps from the Slack [11] on April 7, 2021 and 1,304
apps from Microsoft Teams [13] on November 17, 2021.



If an app sends a message in this way, this message will ap-
pear as if the user sent it. Such delegation can be useful to
enhance productivity. For example, Dropbox’s BCP app [4]
utilizes it to share files in channels on behalf of the user.
In Slack, this can be achieved if the app has acquired the
chat:write user token scope in its OAuth permission re-
quest with the user; in Microsoft Teams, although none of its
standard app capabilities grants permissions to delegate, one
can still employ the advanced Microsoft Graph API and ask
for the Chat.ReadWrite scope.

By combining the above two functionalities, we can enable
app-to-app interactions in BCPs: one app that has the dele-
gated permission to send user’s messages can interact with
another app’s bot user. Such interaction can be beneficial; for
example, Dokkio’s Slack app [3] can organize files sent by
Dropbox’s app into a coherent page for the workspace and
tag them as shared by different users. Slack regards app-app
interaction as an important feature with growing demand [30].
However, allowing one app to communicate with other app’s
bot users has severe security implications. When the former
app turns malicious, it can potentially invoke actions from
the latter app, and such actions might affect data in the user’s
connected third-party account. We refer to attacks exploiting
this vulnerability as delegation attacks.

We note app-app interactions can happen in other ways.
Although receiving a message from the user is the most intu-
itive trigger event to indicate when the app should perform its
actions, an app may subscribe to other triggers as well, like
when a file is shared (see Appendix A) or an emoji reaction is
added. As such, apps with delegated permissions to produce
these triggers can also launch potential delegation attacks.

Post-removal interactions. Even after an app’s removal
from the workspace, it can have residual effects that cause
delegation attacks. Slack provides its apps the ability to sched-
ule a message to be sent at a future time (using the same
chat:write user token scope). We find that if the app is
removed before the message’s scheduled time, its message
will still be sent, potentially invoking actions from other apps.
In Microsoft Teams, although there is no scheduling feature,
this issue is more severe due to its two separate permission
schemes. Upon uninstallation, only the app’s standard ca-
pabilities declared in the manifest will be removed, while
its delegation permissions acquired through the Graph API
remain entirely intact. Therefore, a user cannot, by simply
removing a Teams app from the workspace, prevent the app
from continuing to send messages on the user’s behalf and
interact with other apps, allowing the channel for delegation
attacks to remain open.

Current defenses. We note that Microsoft Teams and Slack
do have workarounds that can prevent app-to-app interactions.
They allow apps to interact with users through alternative
ways, such as slash commands and interactive UI windows.
This prevents other apps from interfering since neither BCPs

allow an app to send slash commands or click buttons in a
UI. Slack in particular also tracks which messages are sent
by a real user through the Slack client and which are sent by
a delegated app, so that the app receiving the messages can
choose whether to respond or not. However, both of these
mechanisms require the receiving app’s developer to decide
which actions can be triggered by other apps, but the current
design of BCP permission system does not provide any ways
for it to learn whether the delegated messages align with
the user’s actual intent, making it impossible to arrive at the
correct decision. As we will discuss in Section 7, a principled
fix would trade-off functionality or usability.

4.2 Delegation Attack

We now focus on the delegation attack targeting both Mi-
crosoft Teams apps and Slack apps. We have built a tool that
crawls the information of a targeted app from the two BCPs’
official app directories and analyzes which trigger events the
app is subscribing to. In the case of Microsoft Teams, we
can also extract all message keywords that trigger the tar-
geted app’s actions. We set up a workspace as defined per
our threat model. The attacker app has acquired the appro-
priate delegated permission from a victim user who has also
installed the targeted apps with connection to third-party ser-
vices. The attacker app produces the trigger events, and we
observe whether the targeted app will be tricked into perform-
ing the actions (see Appendix D.1 for more implementation
details). Since most apps require a valid third-party account
to function properly, performing large-scale automated anal-
ysis is infeasible. Thus, in this section, we select a few apps
connecting to sensitive third-party resources and manually
target them, demonstrating that delegation attacks can indeed
trigger security-critical or privacy-violating actions.

1 Send emails on victim’s behalf. MailClark’s Slack app
[7] allows sending emails directly from Slack to include non-
Slack users in a Slack conversation. MailClark provides a
unique email address for a list of non-Slack guests in a channel
configured by the user. The email account and the recipients
are only accessible to MailClark and the user. The attacker
app induces MailClark to send any emails of the attacker’s
choice to recipients configured by the user. Specifically, the
malicious app launches this attack by sending messages to
the channel as the user. During this procedure, MailClark will
automatically send the attacker’s message as an email to all
recipients and indicate the author as the user.

2 Chat with victim’s website visitors. Chatlio [2] is a ser-
vice that lets developers add live chat functionality to their
websites. It also provides an accompanying Slack app that
automatically forwards any messages of the website visitors
to a Slack channel and vice versa. Therefore, website owners
can chat with any visitors in real-time through Slack. Unfor-
tunately, this convenient feature makes Chatlio’s app a victim



of delegation attacks. Our attacker app can post messages di-
rectly into the channels used by Chatlio to chat with website
visitors and thus launch further phishing attacks or harvest
sensitive user info, as it now appears like a trustworthy entity
to the visitors.

3 Merge pull requests in victim’s code repository. Bit-
Bucket’s Microsoft Teams app [1] will merge a given pull
request if it receives a message starting with the keyword
merge. It will then ask for confirmation, at which point the
attacker app can reply with the text yes to approve the merge.
The attacker app may additionally use the list keyword to
ask BitBucket’s app to display all pull requests in the vic-
tim user’s connected repos or the find keyword to locate a
specific pull request. If the repo is public, the attacker can
even submit and merge its own pull request, leading to code
poisoning or backdoor injection.

4 Execute victim’s automation flows. Microsoft Power
Automate has a Teams app [17] that, upon receiving the mes-
sage Run flow [id], will execute the specified automation
flow in the user’s account. These flows can perform various
actions in a wide range of services connected to Power Au-
tomate. The app also accepts messages like List flows and
Describe flow [id] that can be utilized by the attacker to
learn more about the user’s flows and conduct more targeted
attacks.

5 Retweet on victim’s behalf. Ziri [8] is a Slack app that
helps users interact with tweets in a non-disruptive way. It con-
nects to the user’s Twitter account and requests permission to
retweet. After that, whenever a Twitter link is shared in Slack,
and the user adds a Twitter emoji reaction to that message,
Ziri will automatically retweet the shared Twitter on the user’s
behalf. The attacker app can thus send a message containing a
link to a chosen tweet (that includes harmful information) and
add an emoji to the message on behalf of the user. After that,
Ziri will successfully detect the tweet link and retweet it using
the victim user’s account. Such uncontrolled tweets can have
detrimental effects, especially when the connected account is
high profile, such as the organization’s official twitter.

Summary. The first four attacks rely on message events
to trigger the actions in the targeted app, while the last one
relies on a reaction event. We note that once the attacker
and targeted apps are installed and properly authorized, the
attacks do not require additional user inputs and can happen
anytime, even when the user is not logged into its BCP client.
In addition, the attacker app can delete the traces of trigger
events once the attack is finished, making it even sneakier
(since in both BCPs, the permission to send messages or add
emoji reactions also grants for free the permission to delete
them).

4.3 Analysis of Root Cause and
Potentially Prevalence

The delegation attack is possible because both BCPs’ permis-
sion systems violate the principle of least privilege. Currently,
the permission to send delegated messages is governed by
Slack’s chat:write or Microsoft Teams’s Chat:ReadWrite
scope; however, these two scopes allow the app to send mes-
sages to any place that the user has access to, be it a public
channel, direct message with other users, or direct message
with other app’s bot user. In addition, neither BCPs provide
additional runtime policies that allows the user to limit the
destinations. Therefore, even if the user wants to install a
simple app that only sends delegated messages to a small
subset of other users for sharing or notification purposes, it
must grant this app such overprivileged scopes that inevitable
comes with the ability to launch delegation attacks.

App’s residual permissions after removal. The reason why
a removed app can still keep some residual permission differs
in two BCPs. Slack’s permission system violates the princi-
ple of complete mediation by failing to check that the proper
provenance of the scheduled message, which is the removed
app, should have no permissions at the time when the message
is sent. Whereas in Microsoft Teams, it is the result of two
separate permission systems: only the app’s core capabilities
are associated with Teams, while the Graph API’s permissions
are tied to the user’s Microsoft Account (outside the permis-
sion system of Teams). Therefore, when the app is uninstalled
in Teams, only the former is revoked while the latter is not
affected. We note this issue is not Teams-specific, but also
exists in other systems when permissions are managed by
different trust domains [53].

Potential Prevalence. We report the number of apps capa-
ble of executing the delegation attack and that are vulnerable
to the attack. For Microsoft Teams, we find vulnerable apps
by counting apps that use bot commands capability, as these
apps will accept text input from the user (or a delegated app)
to perform various actions. We observe that 427 (33%) of
Teams apps use bot commands, implying that they are vul-
nerable to a delegation attack. However, Teams apps do not
list whether they will request any delegated permission since
it is acquired through a separate system. For Slack, we find
563 Slack apps (23%) request at least one ‘write’ user scope,
allowing them to interact with other apps adversarially, while
1,493 Slack apps (61%) request at least one ‘read’ scope, im-
plying that they are subscribing to events in the workspace
and thus can be potentially affected by the attack. We note
that the measurements for Slack’s vulnerable apps are the
worst-case estimation. Since these apps are third-party web
services with hidden endpoints, it is impossible to learn the
app’s behavior directly. Furthermore, most apps only perform
actions after a third-party account is connected, preventing us
from fully automating the evaluation of apps on a large scale.



Thus we may miscount apps that (1) have already employed a
countermeasure by blindly rejecting delegated messages, (2)
subscribe the certain events but never trigger their security-
critical actions based on these events.

5 User-to-App Interaction Hijacking

BCPs provide various features that serve as entry points for
users to interact with apps. Examples of these features in-
cludes ‘@’-mention, slash command, and link unfurling (see
Section 2.1). In this section, we discuss how a malicious
app exploits such interactions between the user and other
apps in the workspace. Specifically, we find two different
ways that this can happen: the malicious app can hijack other
app’s registered slash commands (Section 5.1), and replace
another app’s unfurled link content (Section 5.2). In particu-
lar, we note that both Microsoft Teams and Slack allow apps
to customize their appearance (e.g., name, icon, and descrip-
tion) without restriction. A malicious app can thus completely
mimic the appearance of another app4to exploit the above in-
teractions more stealthily. Finally, we analyze the root cause
and potential prevalence of these attacks.

5.1 Slash Command Hijacking
In Slack’s user-to-app interactions, all apps’ slash commands
share a single namespace, creating the potential for name col-
lisions. A malicious app can hijack another app’s commands,
responding to any user that tries to launch the hijacked com-
mand in the victim app’s stead. Two specific design flaws
enable this attack. First, Slack only invokes the most recently
installed app when multiple apps in a workspace have regis-
tered the same command. Second, both creating and renaming
commands are silent and do not trigger a notification or per-
mission prompt in Slack. As a result, one can hijack a targeted
command in two ways: (1) create a new command with the
same name as the targeted one; (2) rename an existing com-
mand to the targeted one. In other words, the commands scope
becomes over-privileged as it implicitly allows an app to take
over any command within a workspace (by exploiting the
name collision). However, Slack does not recognize this de-
sign issue as a security-critical problem5; we find no runtime
policy checks of an app’s permission to create or rename
commands with a specific name.

We demonstrate the command hijacking attack on Zoom’s
Slack app [9]. From Zoom’s app, users can invoke the com-
mand /zoom to start private Zoom meetings and display a
Zoom call in Slack, as shown in Figure 4a. If the command is

4This may not be the case for apps published in the BCP official catalog,
as per their security guidelines. Although a Slack app can still requests
chat:write.customize to send messages with customized appearance.

5Slack acknowledged this problem in its document, but only suggests
developers to “avoid terms that are ... likely to be duplicated,” and not to
make the command “too complicated for users to easily remember.”

(a) The official Zoom app.

(b) The spoofed Zoom meeting.
Figure 4: Zoom meetings created by official and spoofed
/zoom commands in Slack. The spoofed Zoom meeting is
secretly created by the attacker but publicly shown as started
by the victim. The word “Fake” is added clear demonstration,
it can be removed in practical attacks.

invoked in a private channel, only users in this private chan-
nel will receive this private call. We create a malicious app
that masquerades as the official Zoom app. At the time of
installation, our malicious app requests the commands scope
to implement a benign command called /foo. Once installed,
we rename this command as /zoom to hijack the previous
official /zoom command. After that, the malicious app will
use the attacker’s Zoom account to start meetings every time
a user invokes the /zoom command, as shown in Figure 4b.
We provide more implementation details in Appendix D.1.
Attackers can also treat this vulnerability as a novel entry
point for phishing attacks, as discussed in Appendix B.

Since Microsoft Teams does not allow apps to register their
own commands, it does not suffer from this vulnerability.

5.2 Link Unfurling Hijacking

Microsoft Teams allows an app to provide customized link un-
furling for an authorized user. The app can register a domain
in its manifest. Whenever the user posts a URL under this
domain, the app can append a rich message card containing
texts, images, or even interactive buttons. For example, Lu-
cidchart’s Teams app [6] unfurls a document sharing URL to
preview the document as well as a button to accept the sharing
invitation. Such unfurled content can be hijacked similarly to
Slack’s slash command: a malicious app can register the same
domain as the victim app and, if the malicious app is installed
after the victim app, its unfurled content will be displayed
instead of the victim app’s one. Moreover, the malicious app



can masquerade as the victim app to further deceive the user,
as its name and icon will also be part of the unfurled content.

While Slack also allows multiple apps to register the same
domain, it chooses to display all app’s unfurled contents in
parallel, avoiding the issue of link unfurling hijacking.

5.3 Analysis of Root Cause and
Potential Prevalence

The command and unfurling hijacking attacks work by vio-
lating least privilege and complete mediation, which results
from an overprivileged scope and the improper tracking of
resource ownership. First, the corresponding scope that al-
lows an app to use slash commands or unfurl a domain should
not spontaneously grant the ability to modify the app’s cur-
rently registered command names or domains; an app that
performs such operation should need to be re-installed. Sec-
ond, whenever an app registers a command or a domain, it
should gain ownership of this command or domain, however,
given the namespace collision, both BCPs fail to enforce such
ownership, which thus can be easily taken over by another
newly-installed app.

Potential Prevalence. In Slack, this slash command attack
only exploits the commands scope, which is requested by
1,266 apps (51.5%). These apps can immediately overwrite
each other’s commands to hijack their standard workflows.
Recall, once installed, these apps can change their slash com-
mands at any time, without requiring re-installation or notify-
ing the users (or admins) of the workspace. We also find
that many apps in the Slack App Directory already have
conflicting commands: 270 apps register commands used
by other apps. This implies the wide reuse of conflicting
commands, and thus Slack is likely to preserve this design
choice. In Microsoft Teams, the link unfurl attack relies on
the messageHandlers capability, which is requested by 77
apps (5.9%). We find that 13 of them register a domain that is
also registered by other apps.

6 App-to-User Confidentiality Violations

We analyze the different ways in which BCP apps interact
with user messages. Our main discovery is that an attacker
can leak messages from private channels without having per-
mission to read from those channels. Concretely, we can ex-
ploit two features in Slack: (1) Link unfurling of message
URLs (Section 6.1); (2) Pinning, starring, or emoji-reacting
to messages (Section 6.2). We additionally find that the root
cause behind this privilege escalation is incomplete media-
tion coupled with a lack of ownership tracking of resources
(Section 6.3). We note that in Microsoft Teams these features
are either absent or inaccessible to apps, so it does not suffer
from this vulnerability.
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Figure 5: Privilege escalation exploiting link unfurling.

6.1 Message Extraction Attack via
Link Unfurls

BCPs have a built-in link unfurling feature that previews the
website content for any URLs contained in a chat message.
We first describe how link unfurling works with message
URLs and then show an attack where a malicious app without
Slack’s groups:history, the permission scope that controls
the read access to messages in private channel, abuses this
feature to effectively monitor all chats in any private channel
joined by an authorized user.

6.1.1 Unfurling of Message URLs

Slack provides a public URL to every message in a workspace.
This URL, if accessed, will only show the message if the login
credential of a user who has access to the message is provided.
We find that when the user sends a message m1 in their own
personal channel (i.e., where users can message themselves)
and m1 contains a URL that links to m2, where m2 can be any
message in any of the channels that the user is a member of,
Slack will automatically unfurl m2, adding its text content (up
to 8001 characters) and author as an additional attribute to the
original message m1.

While this is a reasonable and useful functionality because
the user’s personal channel is intended for drafting messages
and keeping links and files handy (as described by Slack),
it leads to unwarranted access, as illustrated in Fig. 5. Slack
allows an app with im:history user token scope to read the
user’s personal channel. This grants the app the ability to
read m1 with all its attachments. In this case, the attachments
include the unfurled content, which is m2, a message from
a private channel. Therefore, the app is implicitly permitted
to read m2, which is protected under the groups:history
scope, and the app with only im:history does not have

access to originally.

6.1.2 Attack Workflow

Now, we present a powerful attack based on the issue identi-
fied above. Through this attack, a malicious app can achieve
privilege escalation — it gains the ability to monitor all chat



messages in any private channel where the victim user is a
member of, effectively gaining the permissions provided by
the groups:history user token scope but without explicitly
requesting it.

The key insight enabling this attack is that if the attacker
can learn the message URL of a private channel message, it
can then instruct the malicious app to post a generated URL
to the victim user’s personal channel (using the chat:write
scope as we described in Section 4), actively leaking messages
from that private channel. We additionally find that Slack’s
message URL always follows the format:

“https://[workspace].slack.com/archives/
[channel-ID]/p[message-ID]”

Therefore, the attacker’s job becomes learning valid combina-
tions of channel ID and message ID.

We have discovered several ways to obtain such combi-
nations without resorting to groups:history and detailed
them in Appendix D.3. Here we describe one method that
utilizes groups:read. This user token scope provides the
read access to the metadata of the user’s private channels,
including the channel ID and the ID of the latest message in
the channel. By constantly querying a channel’s metadata, the
attacker can pull every message from any private channel the
victim user has joined. We note that even if multiple messages
occur between two queries, the attacker can still guess their
IDs since Slack’s message ID is a counter that increments for
consecutive messages (see Appendix D.3 for details).

Extracting other types of messages and files. This attack
also works for other types of messages. An app’s bot user
can use this to view any public channel messages without
the corresponding bot token scope or invitation to join that
channel. Additionally, it can even be applied to read files
shared with the user. Unlike message URL, there is no easy
way to obtain a valid file URL through alternative approaches;
yet, whenever a file is uploaded in a chat message, the file’s
public URL will also be included in that message. The attacker
can then instruct Slack to unfurl the public URL to obtain a
direct-downloadable link. Therefore, the attacker can access
files by reading all the messages in the user’s joined channels.

6.2 Message Extraction Attack via
Pins, Stars, or Reactions

We demonstrate another message extraction attack exploiting
the incompleteness of resource ownership tracking in Slack.
This time we leverage the productivity feature of pinning and
starring messages (that add them to a user’s saved message
list) and the convenience feature of adding emoji reactions
to messages. The attack builds upon the same message ID
guessing technique from the prior attack.

To pin, star, or react to a message, the app needs to present
the message ID and the ID of the message’s channel to
the corresponding Slack API, with the pins:, stars:, or

reactions:write user token scope respectively. However,
the read counterpart of these scopes (pins:, stars:, or
reactions:read) does more than permit the app to view
the IDs of the pinned, starred, and reacted messages; they also
allow the app to view the contents of these messages. There-
fore, after a valid channel ID and message ID is obtained, the
app with both read and write scopes can either pin, star, or
react to the message, effectively allowing itself to read the
given message. As we have seen in the prior attack, an app
without permission to read a user’s private channel message
is still able to acquire the channel ID and message IDs of
that channel’s messages. Hence, a malicious app can repeat-
edly pin, star, or react to these messages and read through all
messages in the channel. We note that the app can also undo
these operations using the corresponding write scope again to
prevent the user from spotting any suspicious activity. With
this attack, the malicious app can read all the messages that
the user has access to, using only these seemingly harmless
operations.

6.3 Analysis of Root Cause and
Potential Prevalence

In both message extraction attacks, the malicious app obtains
the ability to read any messages that the user has access to,
with only some irrelevant permission scopes. We consider
this behavior as a violation of the user’s privacy expectations.
When a user grants the im:history scope to an app, there is
no description in the authorization prompt that suggests the
app can read private channels6. In addition, it puts the privacy
of other users in these channels at risk — the messages they
posted may suddenly become accessible to an app that they
never authorized. Even worse, they have no way of knowing
the leakage, since all it takes is for one user to install the
app, an action that is hardly perceptible to them (Section 2.2),
while the app itself is never a member of the channel.

An adversarial admin can use these attacks to monitor
chats in private channels they are not invited to by forcing
everyone to install their malicious app that disguises itself as
an innocent management app.

Such privacy violation in the first attack is a failure of not
enforcing complete mediation, which results from the im-
proper tracking of resource provenance in Slack. Take Fig. 5
for example: when Slack finds a link to m2 in m1, it blindly ap-
pends the content of m2 as m1’s attachments, without tracking
where m2 originates from. As such, any entity that can read
m1 can also read m2, whereas these two messages have differ-
ent provenances and should be checked against two separate
permissions. The second attack can also be mitigated if Slack
tracks and checks who performed the operation. While Slack
needs to allow apps to read the content of pinned, starred, or

6Accessing private channel messages with only im:history will cause
Slack API to return an missing_scope error and a message saying that
groups:history is needed.



emoji-reacted messages for functionality purposes, this rule
should not apply if the app trying to read the message is the
one who performed the operation (since it does not make
sense for an app to pin a message it does not already know).

Potential Prevalence. Out of all 1,640 apps (66.7%) that
do not request explicit scopes to read private channels (i.e.,
groups:history), we only counted 11 apps with the neces-
sary permissions to extract messages via pins, stars, reactions,
or link unfurls.

7 Potential Countermeasures

We discuss countermeasures for the attacks we previously dis-
cussed. We note that these countermeasures are point fixes for
the BCP permission model as it currently exists. The attack
classes we’ve identified exist because the BCP permission
model violates classic security principles. As such, even with
these countermeasures, we cannot guarantee that all future is-
sues will be prevented. We characterize each countermeasure
from three perspectives: which design issues it attempts to
solve, how much it helps mitigate the attacks, and what the
cost or trade-off is.

7.1 Finer-grained Scopes
The BCPs we examined define several coarse-grained scopes
that manage multiple resources of different types. For exam-
ple, Slack’s chat:write user scope allows an app to send
messages to any target with the identity of the authorizing user.
The Microsoft Teams Graph API Chat.ReadWrite scope
grants a Microsoft Teams app similar permissions. Therefore,
even if the app’s functionality only requires sending messages
to human users, it needs to acquire one of these broad scopes,
which inevitably comes with the permission to send messages
to apps and thus the ability to perform impersonation attacks
on other apps. These scopes are coarse-grained as they allow
an app to send messages to separate targets (app and non-
app). BCPs can break down these scopes into two separate
scopes: one that allows sending messages to non-app targets,
and another that allows messages to app targets. However, this
countermeasure cannot handle the attacks exploiting scopes
that do not have finer-grained concepts (such as command
hijacking).

7.2 Stricter Runtime Policy Checks
Stricter runtime checks can help address the message extrac-
tion attacks found in Slack. Specifically, Slack first needs to
fix its coarse-grained modeling of the message resources by
decoupling the unfurled content from the message and treat-
ing it as a separate type of resource. Slack also needs to track
the origin of the unfurled content, for example, whether it
is a message from another channel or a file shared with the

user. Then, whenever an app requests to read a message, Slack
should enforce an additional dynamic condition check to ex-
amine whether the provided token has the correct privilege
to access the origin of the unfurled content. If not, only the
message should be returned to the app, but not the appended
unfurled content.

For the attack via pins, stars, or reactions, we present two
options. The first is that when an app wants to read the pinned
or starred messages, Slack should send the message content
only if the app has the privilege to read the original message;
otherwise, only the message ID is returned. However, this
may inversely encourage malicious apps to request more priv-
ileges to maintain their original functionality. The second is
for the BCP to consider the entity that issued the pin, star, or
react operation. For example, an app can only read the content
of a pinned/starred/reacted message if the pinning/starring/re-
acting is done by a human user or a different app; if it is done
by the requesting app itself, then the BCP only returns the
message ID. The tracking should occur even when a user has
delegated control of their account to an app. When an app
performs actions on behalf of a user, those actions should still
be tracked as having been taken by an app. This should not
hurt any benign app’s functionality because if a message is
pinned, starred, or reacted on by a benign app, it is reasonable
to assume that the app should already know the message’s
content.

However, this countermeasure does not apply to situations
where it is difficult for an app or Slack to determine whether
an action is malicious or user-intended. In Section 4.1, we
demonstrated various legitimate scenarios in which users in-
deed want apps to perform actions on their behalf.

7.3 Indicate Identity of Action Issuer
To counter delegation attacks, the victim app should be able
to determine if a received event comes from a human or an
impersonated user and thus choose whether to respond or not.
Thus, BCPs should indicate the identity of the action issuer
(i.e., whether a real or delegated user performed the action)
and therefore allow for identity checks on the victim app’s
side. Slack has provided this information for a few actions,
such as posting messages but ignored it for other actions such
as reacting to a message, which might also lead to exploits.
However, as mentioned earlier, in some cases, even if the app
knows the action is coming from another app, it is hard to tell
whether the intent of the action is malicious or not.

7.4 Explicit User Confirmation
The final countermeasure is to request confirmation from
users. From the perspective of victim users, all attacks stem
from the fact that either victim apps or the BCPs automati-
cally reacted to malicious events (in an unwanted way). There-
fore, before accessing sensitive data, both the apps and the



BCP should prompt the user for confirmation. For example,
they can create a consent popup UI that involves clicking a
button. Based on the current design of Microsoft Teams and
Slack, only human users can perform such actions, making
it hard to forge UI actions. This will prevent both delegation
and message extraction attacks.

To resolve namespace collision attacks, BCPs should ac-
tively check for namespace collisions when apps are being
installed. For example, Slack should detect when an app
attempts to register a command with the same name as a
command already registered in the workspace, and Microsoft
Teams should detect when an app has the same name as an-
other app already installed in the workspace. We outline three
solutions that BCPs may adopt. First, they can refuse to install
the new app whose command would conflict with an existing
one. However, this robs BCPs of functionality and unfairly
penalizes apps installed later. Second, they can permit instal-
lation but require the user to make a selection whenever a
namespace collision arises during use, but this requires the
user to pay attention at all times. Third, after detecting a colli-
sion, they can provide an alias mechanism where users can
change the conflicting names. In conclusion, runtime user
confirmation can mitigate namespace collision attacks, but at
the expense of productivity and user convenience.

8 Related Work

To the best of our knowledge, this is the first paper to ana-
lyze the security and privacy of third-party apps in business
communication platforms. However, considerable work has
been done in other types of app platforms that share varying
degrees of similarities with BCPs.

Social networks. Facebook and other social network plat-
forms allow third-party applications that offer users additional
functionality and services but generally at the cost of user pri-
vacy [23, 40]. These apps are similar to BCP apps in terms
of pure server-side implementations and all-or-nothing per-
mission, but they are installed in a single-user home space,
whereas BCP apps are in a multi-user workspace. Symeoni-
dis et al. show Facebook apps lead to collateral informa-
tion collection [47], where they can collect not only data
of the users who install them but also of their friends. This
is akin to our findings of BCP apps; however, BCP apps
can also actively affect other users’ actions, such as through
interaction hijacking. On the other hand, several studies pro-
pose different access control schemes for apps in social net-
works [19, 25, 43, 44, 48, 49]. While these solutions aim to
solve the problem of coarse-grained permissions, they usually
require the social network provider to host some part of the
application codes, which does not suit the current communi-
cation framework of BCP apps.

Voice assistants. Amazon Alexa, a voice assistant often built
into smart home devices, allows users to install third-party

apps called skills. Similar to BCP apps, Alexa skills often ap-
pear in the form of chatbots; however the primary way of inter-
acting with Alexa skills is through voice commands. Studies
have shown that Alexa skills can be easily squatted to enable
phishing attacks [36, 54], similar to how Slack’s commands
can be hijacked. However, skill squatting relies on the inher-
ent ambiguity of voices, whereas we exploit the namespace
collisions of commands. In an orthogonal direction, many
works try to measure the privacy practices of current Alexa
skills and find that many skills do not honor their privacy
policy and request overprivileged access [18, 32, 37, 45].

Android. Many studies have analyzed the security and pri-
vacy of Android apps. The closest related attacks to this work
are the confused deputy and collusion attacks [20, 26, 38, 39,
42]. Just as in BCPs, the app-to-app communications in An-
droid can be used with malicious intent; however, they usually
aim to achieve privilege escalation to access more user data
instead of attacking users’ accounts in other services. In ad-
dition, the problem of coarse-grained permission scopes is
also found in Android, granting apps powerful capabilities
that can be used to exploit various vulnerabilities [34]. Mean-
while, defenses proposed for Android apps usually require
static or dynamic analysis [27, 29, 31, 51, 52], making them
incompatible with BCP apps, which have no client-side codes.

Other OAuth-based systems. Studies have shown that over-
privileged attacks are a common issue in OAuth-based sys-
tems [21,22,28,33,35]. In addition, despite its wide adoption,
OAuth is usually poorly designed and implemented by de-
velopers [24, 46, 50]. BCPs use coarse-grained scopes for
certain operations and couple them with separate runtime
policy checks that we have shown to be incomplete.

9 Limitations

For ethical reasons, we did not publish our attack apps to the
Slack app directory or Microsoft Teams app store, and thus
cannot comment on their vetting processes. However, we did
analyze their security guidelines [12, 16] for publishing apps
and found no obvious restrictions that would fundamentally
prevent the attacks described in this paper. These attacks rely
on abusing permissions acquired for benign purposes, caus-
ing the information-limited vetting to be ineffective. BCPs
do, however, prohibit two apps from sharing the same name,
making it harder for a published app to mimic the appear-
ance of another app; but as we noted in Section 5, a Slack
app can circumvent this restriction by requesting the chat:
write.customize permission scope, which allows the app
the send messages using customized name and icon, avoiding
the need to modify the app’s own name and icon declared in
the manifest.



10 Conclusions

We performed an experimental security analysis of the app
model of two popular BCPs: Slack and Microsoft Teams.
Our methodology was to study each BCP-facilitated interac-
tion method between apps and users. We found that these
BCPs violate two standard security principles: least access
and complete mediation. We created proof-of-concept attacks
that exploit these violations to (1) impersonate users and trick
victim apps into performing unwanted actions; (2) hijack
commands; (3) steal messages from private channels without
appropriate permissions. Our discussion of countermeasures
indicates that while point fixes for these attacks can be de-
ployed at the cost of BCP usability, preventing further issues
requires redesigning the BCP app access control model.
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A Exploiting File-based Interactions

Dokkio [3] is a cloud service that provides a single place
to manage a user or team’s files stored in different cloud
storage services, including DropBox, Google Drive, Gmail,
and Slack. To manage files in Slack, it connects to the user’s
Slack account and request permission to read files uploaded in
the workspace. Once the user shares a file in Slack, Dokkio’s
Slack app will automatically collect this file and provides
numerous add-on services such as content organizing and
cognitive services. In this case, the user’s Dokkio account is a
resource that only Dokkio and the user can access. Similar to
the attacks discussed above, once an app can share files on the
user’s behalf, it implicitly gains access to Dokkio’s backend
resources.

In this attack, we show that the attacker, though not autho-
rized to access the user’s Dokkio account, can add any files
to the user’s file management portal in Dokkio. We design a
malicious app that requests the files:write user scope and
launch the attack by uploading arbitrary files to Slack on the
user’s behalf. After that, Dokkio will automatically collect
the shared files and add them to the user’s Dokkio account.

B Phishing Attacks based on Command Hi-
jacking

Attackers can treat the design issue of command namespace
collisions as a novel entry point for phishing attacks. For
example, the malicious app can request the user to authorize
third-party services. In Figure 6, we demonstrate a phishing
attack by hijacking the /gcal command from the Google
Calendar app.

Figure 6: Demonstration of phishing attacks using the Com-
mand Hijacking attack in Slack. The two messages are sent
to the user after invoking the official and hijacked /gcal
command, respectively. The attacker can start a valid OAuth
authorization process to acquire access to the user’s account.



C BCP App Installation Page

Figures 8 and 9 show the installation of BCP apps (e.g., Slack)
requesting bot scopes and user scopes. Note that in Figure 9,
the app is able to perform actions on behalf of the user, such
as sending messages and direct messages.

User Action Counter Increment

User Posting a message with text 200
App Posting a message with text 100
Posting a message with only file 100
Saving a draft (happens automatically 10
seconds after the user stops typing)

100

Figure 7: Slack Message Counter Increment. For each consec-
utive message, the counter value is increased by 100x, where
x starts at 0 and gradually increases based on actions of the
users in the channel.

Figure 8: Installing Slack apps with bot scopes.

D Implementation Details of Attacker Apps

In this section, we provide more implementation details of
our attacker apps demonstrated in Sections 4 to 6. All apps
are implemented by following the official guideline and APIs.

D.1 App-to-App Delegation Attacks
In Section 4.2, we demonstrate five delegation attacks. For
each attack, the attacker registers a malicious app that pro-
vides benign functionality and requests a legitimate set of
permissions (detailed below). After that, the attacker either in-
stalls the malicious app to their workspace (where the attacker
is a curious user) or tricks a user into installing apps in the
user’s workspace. Once installed and granted permission, the

Figure 9: Installing Slack apps with user scopes.

malicious app gets notified and starts the attack by interacting
with other targeted apps in the workspace.

The first four malicious apps request permission to send
messages on behalf of the user. They launch the attack by
sending specific messages that the targeted apps were de-
signed to read and process. The last malicious app requests
permission to react to messages on behalf of the user. It
launches the attack by reacting with an emoji that the tar-
geted app is designed to notice and retweet.

D.2 User-to-App Interaction Hijacking

In Section 5, we demonstrate the command hijacking attack
on Zoom, which requires implementing a malicious app that
mimics the appearance and behavior of the official Zoom app.
To this end, we register an app with slash command permis-
sion but deliberately implement the command responses with
Zoom APIs (of the attacker’s controlled Zoom account) to
mimic the official Zoom app. As BCPs permit installing apps
from just a public URL, we do not have to publish the apps
on official app stores. This approach avoids any accidental
distribution of malicious apps to other BCP users.



Furthermore, this attack can be extended to hijack any other
apps, as long as the attacker can re-implement the proper
functionalities of the targeted app. The appearance of an app
is publicly available in the official app directory.

D.3 App-to-User Confidentiality Violations
We provide more details of how the attacker can obtain the
channel and message IDs described in Section 6.1.

Obtaining channel ID. Each channel ID is a random string.
The direct way to learn the ID of a private channel is by re-
questing a less alarming scope, groups:read, which provides
the read access to a private channel’s metadata. Alternatively,
if the attacker knows the name of the channel (through side
channels or guessing; per our threat model the attacker can be
a curious workspace member who has some prior knowledge),
it can use the chat:write scope to write a new message.
It can just provide the channel name to the corresponding
chat.postMessage API, which will accept this request and
return the channel ID as part of the response.

Obtaining message ID. The direct way to learn the message
ID requires groups:history, which also grants the ability
to directly read messages, avoiding the need for any attack
because an app can simply misuse that permission to leak
messages. However, unlike channel ID which is completely
randomized, the format of a message ID follows a simple,
intuitive pattern, consisting of only the current timestamp and
a counter value. An example message ID is shown below:

1616604187︸ ︷︷ ︸
Timestamp

0000600︸ ︷︷ ︸
Counter

The first 10 digits represent the UNIX epoch timestamp of the
message in seconds, and the last 7 digits is a counter that gets
increased for each consecutive message and resets to 0 after
approximately 5 days of inactivity. We conducted a series of
controlled experiments and empirically found that the counter
increments according to the following rules:
1) The increment between two consecutive messages is al-

ways a multiple of 100. Although this increment is usu-
ally 200, it may change based on the user actions listed in
Fig. 7.

2) The counters are independent across different channels,
as well as user actions in different channels.

Due to the first rule, the attacker cannot predict the exact
message ID given the previous ID, as Slack does not provide
a way to learn how many drafts are saved internally. However,
if the attacker is given two valid IDs separated by a small
time interval, then it is straightforward to guess the valid IDs
in between. We describe two ways of learning a valid ID.
The first way is, again, to rely on the groups:read scope,
since the metadata of the channel includes the ID of the latest
message in the channel. The second way is to write a new

message to the channel, which will cause the Slack API to
return the ID of the newly posted message.

Attack workflow.
1) The attacker obtains a valid combination of channel ID

and message ID using the techniques described above. We
refer to the message ID as (t0,c0). If it obtains the message
ID via posting new messages, then it immediately deletes
the message to hide its trace, which is also permitted by
the chat:write scope.

2) After a short time τ, the attacker obtains another valid
message ID (t0 + τ,c1).

3) The attacker guesses all possible message IDs, which is
the cartesian product of (t0, t0 + 1, ..., t0 + τ) and (c0 +
100,c0 +200, ...,c1−100).

4) The attacker uses the guessed IDs to generate the message
URL and posts it to the user’s personal channel. The URLs
of the valid IDs will get unfurled.

By repeating this attack over and over again for different
message IDs, the attacker can eventually pull every message
from any private channel that the victim user has joined, ef-
fectively granting the malicious app the power of the groups
:history scope even though this scope is never explicitly
requested. We note that the attacker should adjust the time
interval τ dynamically based on the messaging frequency to
aim for c1− c0 ≤ 500, so that it can post all possible IDs in
step 3 under Slack’s rate limit (which allows unfurling of up
to 5 URLs per second).
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