
Practical Data Access Minimization in Trigger-Action Platforms

Yunang Chen, Mohannad Alhanahnah, Andrei Sabelfeld†, Rahul Chatterjee, Earlence Fernandes
University of Wisconsin–Madison, USA †Chalmers University of Technology, Sweden

Abstract
Trigger-Action Platforms (TAPs) connect disparate online
services and enable users to create automation rules in di-
verse domains such as smart homes and business productivity.
Unfortunately, the current design of TAPs is flawed from a
privacy perspective, allowing unfettered access to sensitive
user data. We point out that it suffers from two types of over-
privilege: (1) attribute-level, where it has access to more data
attributes than it needs for running user-created rules; and (2)
token-level, where it has access to more APIs than it needs.
To mitigate overprivilege and subsequent privacy concerns
we design and implement minTAP, a practical approach to
data access minimization in TAPs. Our key insight is that the
semantics of a user-created automation rule implicitly speci-
fies the minimal amount of data it needs. This allows minTAP
to leverage language-based data minimization to apply the
principle of least-privilege by releasing only the necessary
attributes of user data to TAPs and fending off unrelated API
access. Using real user-created rules on the popular IFTTT
TAP, we demonstrate that minTAP sanitizes a median of 4
sensitive data attributes per rule, with modest performance
overhead and without modifying IFTTT.

1 Introduction
Trigger-action platforms (TAPs) enable millions of end-users
to automate interactions between a wide variety of third-
party services and devices ranging from cloud services to
IoT devices and social networks [38]. Popular TAPs include
IFTTT [9], Zapier [51], and Microsoft Power Automate [40].
End-users create simple automation rules using the trigger-
action paradigm. Fig. 1 shows an example rule that uses the
TAP to connect Outlook email with Slack — an email arriving
at the user’s inbox from bank@xyz.com will trigger the rule
that performs the action of sending a Slack notification with
the email sender’s address and subject line if the email arrives
between 9 am and 5 pm (otherwise, no action is performed).

With their widespread adoption, TAPs have unfortunately
become overprivileged hubs of user information [19, 25, 50]
raising privacy concerns [12, 18, 20, 48, 49]. Considering the

Trigger-Action Platform

Automation Rule

Filter Code

if Time before 9am / after 5pm:
skip action

Office 365: New Email from …

bank@xyz.comFrom

Slack: Post to channel …

bobChannel

Received an email
from Sender:Subject

Message

Compatibility Layer

Action Service

Compatibility Layer

Trigger Service

Post to channel …

Channel bob

Message Received an email from
Bank XYZ: Bank Statement

Attributes
Sender: Bank XYZ
Subject: Bank Statement
Body: Your salary is $...
Time: 2020/11/20 12:00

New Email from …?

From bank@xyz.com

Rule Setup Phase Rule Execution Phase

Program and save rule to TAP

Figure 1: An example automation rule in trigger-action plat-
forms. The boxed fields represent various information that
the user needs to specify.

rule in Fig. 1, current TAPs will receive all the emails from
the specified sender, independently of whether emails are rel-
evant to the user-created rule. Even worse, a malicious TAP
can alter the rule parameters to obtain any email received
by the user at any time. Furthermore, current TAP architec-
tures dictate that the sensitive data of all users transits through
a centralized web service, making it an attractive target for
cloud attackers [28, 36]. Consequently, some third-party ser-
vices (e.g., Gmail) have become reluctant to interface with
TAPs citing privacy concerns [30]. At the same time, users
are becoming wary of the insufficient safeguarding of their
data by TAPs [24].

The core issue is that TAPs receive more data than they
need to execute user-created rules. Specifically, there are two
key design flaws in TAPs that can cause data privacy problems.
(1) Attribute-level overprivilege allows exploiting the APIs
designed by third-party services to send significantly more
data attributes than what is necessary to execute the rule.
(2) Token-level overprivilege of the OAuth tokens that TAPs
receive from the third-party services allows exploiting the
tokens to use various APIs on the service, even if they are
completely unrelated to the rule. While Fernandes et al. [25]
consider token overprivilege for integrity, we point out that,
when combined with attribute overprivilege, these tokens also

permit TAPs to read more sensitive information than needed,
thus creating more opportunity for privacy violations.

For our example rule in Fig. 1, the TAP only needs the
email sender and subject line, and only for emails that ar-
rive between 9am and 5pm. However, currently the TAP will
receive all email data from that sender at all times. A fun-
damental design choice in TAPs is to favor ease-of-use for
third-party services and end-users. Coarse-grained APIs and
tokens avoid frequent permission requests, saving users from
going through the authentication prompts multiple times. Un-
fortunately, this comes at the cost of privacy — it violates
the principle of least-privilege [44]. It can also create fric-
tion with legal frameworks like the General Data Protection
Regulation (GDPR) [6] and the California Privacy Rights Act
(CPRA) [8]. These frameworks stipulate data minimization, a
principle restricting data collection to “what is necessary in
relation to the purposes for which they are processed” [6].

Motivated by the above, we explore improving user data
privacy on TAPs, a largely unexplored area in trigger-action
platforms [18]. We design and implement minTAP, a sys-
tem that follows the principle of data minimization to ensure
that the TAP only receives the user data it needs to execute
user-created trigger-action rules. Specifically, our techniques
automatically detect and withhold unnecessary trigger data.
There are two challenges in achieving this property: (1) De-
termine the amount of data a trigger-action rule needs. (2)
Mitigate privacy issues in a practical way that does not re-
quire changes to the TAP while only negligibly impacting
user interaction.

Automatically determining the amount of data that a rule
needs is challenging because that amount can vary depending
on the rule semantics. IFTTT rules may contain user-created
code snippets (called filter code in IFTTT terminology) where
the set of required data depends on code behavior. In our
running example, if the time is outside of the 9am to 5pm win-
dow, then the rule needs no data. Inspired by recent work on
language-based data minimization [17], we leverage program
dependency analysis to enforce data-minimality in rules. Our
approach demonstrates how to construct lightweight static
and dynamic minimizers, which take as input a rule and output
the information needed by the rule while sanitizing unused
data (Section 5). We also provide guidance to trigger service
developers on what types of minimizers would best suit their
needs and the related trade-offs (Section 8).

For the second challenge on remaining compatible with
existing TAPs and not burdening end-users, we decouple trust
in rule creation and execution steps. On current systems, these
steps occur on infrastructure provided by the TAP vendor (e.g.,
rule creation occurs on a webpage that IFTTT hosts while
rule execution occurs in the IFTTT backend). This implies
that a user has to trust this entire stack. Per our threat model,
the TAP is untrustworthy, and thus, rule creation must occur
elsewhere (otherwise, the TAP can simply modify a rule to
request all information independently of the user’s needs).

Inspired by recent work on decentralizing trust in TAPs [25],
we introduce a trusted client application that helps a user cre-
ate rules. Thus, rather than trusting the TAP to correctly help
a user create rules, each user in the system only trusts their
client application. The minTAP client transparently rewrites
user-created rules with program dependency information and
then stores that information on the TAP with cryptographic
integrity protection. We demonstrate this technique on IFTTT
without requiring any cooperation. Finally, minTAP requires
a small modification to the trigger service’s existing IFTTT-
compatibility layer. We build a portable Python library that
services can use to update their compatibility layer and per-
form data minimization based on the program dependency
information when a rule executes.

We evaluate the privacy benefits of minTAP on 34,419 real-
world IFTTT rules that operate on sensitive data — it correctly
identifies and removes a median of 4 sensitive attributes that
IFTTT does not need for rule execution. Examples include
users’ emails and downloadable links to private files. We also
find 376 filter codes inside these rules and detect that 84%
of them may lead to the skipping of actions: when skipped,
minTAP will remove a median of 5 attributes.

The paper offers the following contributions:

• We develop a general model for mitigating the privacy is-
sues due to overprivilege (Section 5). Our system, minTAP,
implements the principle of data minimization by using
static and dynamic dependency analysis of TAP rules.

• We instantiate our model for IFTTT demonstrating how
minTAP achieves practical data access minimization with-
out changing IFTTT itself (Section 6).

• We have collected the first large-scale dataset of IFTTT
rules with filter code and other detailed configurations. We
evaluate the privacy benefits of minTAP on 34,419 rules.
We use large-scale experiments with realistic workloads to
show the performance impact is modest (Section 7).

Designing least-privilege systems often requires tailored
solutions to strike a balance between functionality, secu-
rity, and usability. We contribute to building least-privilege
systems and showcase how one can practically adapt the
recently-proposed theory of data minimization [17] through
lightweight program analysis. Although we contextualize our
work for TAPs, the principles are general and potentially use-
ful for other types of API ecosystems. minTAP is available at
https://github.com/EarlMadSec/minTAP.

2 Trigger-Action Platform Background
Trigger-action platforms (TAPs) connect disparate web ser-
vices and enable end-users to build useful automation through
a simple trigger-action paradigm. These web services range
from digital resources like Dropbox, Gmail, and Slack to phys-
ical resources like IoT devices (e.g., ovens, smart door locks,
smart lights). Web services can create triggers that will notify
the TAP about an event (e.g., “new email arrived” or “door

https://github.com/EarlMadSec/minTAP

let str = Office365Mail.newEmail.Subject
if (str.indexOf('IFTTT') === -1) {
Slack.postToChannel.skip()

} else {
Slack.postToChannel.setMessage('Email ' +

Office365Mail.newEmail.Subject + ' just received!')↪→

}
Figure 2: Example filter code.

unlocked”) or actions that allow the TAP to issue operations
(e.g., “send a message” or “turn on the light”). For each trigger
and action, the services host APIs to handle the communica-
tion with the TAP. Trigger APIs feed trigger data containing
a number of attributes,1 such as Sender, Subject, Body,
and Time in the context of our example rule in Fig. 1.

A rule connects a trigger to an action. The service providing
the trigger is referred to as trigger service, and the service
providing the action as action service. Each trigger and action
can provide multiple user-configurable fields. These fields
represent the parameters that the TAP appends to its API call
to the corresponding services. In Fig. 1, the trigger has a From
field which can be used to customize which email address
can trigger the rule. Similarly, Channel and Message are the
action fields that customize the API call that the TAP sends
to Slack. The user may also specify the values of action fields
with the trigger attribute names.

A rule can do further processing of trigger attributes using
filter code. On IFTTT, filter code is a JavaScript code snippet
that may customize the action fields based on trigger data.
Filter code may also skip the action event altogether based on
some condition. Fig. 2 shows an example of filter code that
sends a Slack message only when a new email with a subject
containing the keyword “IFTTT” is received [7]. The variable
Office365Mail.newEmail is an object that holds the trig-
ger attributes, such as Subject, and Slack.postToChannel
provides a list of functions, such as setMessage(), to set the
values for different action fields. When one of these functions
is called, the original value of the corresponding action field
is overwritten. Function skip() is used to skip an action.

For interoperability with third-party services, popular TAPs
like IFTTT and Zapier specify a compatibility layer that the
participating services must implement to host TAP-specific
APIs and translate the service’s original authorization and
data APIs into a format that the TAP understands [33, 52].

3 Data Privacy in Overprivileged Trigger-
Action Platforms

Prior work [25] has examined the integrity issues that over-
privilege causes. We provide a first look at the data privacy
issues that result from overprivilege. This motivates the de-
sign of our data minimization framework.

Attribute-level overprivilege. Typically, each trigger API
contains multiple attributes. Unfortunately, under the current

1Different TAPs may use different terminologies. For example, in IFTTT,
rules are called applets and attributes are called ingredients.

practice, the trigger service transmits all these attributes to
the TAP regardless of whether the rule needs them. These
unneeded attributes can contain sensitive information, lead-
ing to attribute-level overprivilege. Consider the example
rule in Fig. 1, the trigger service provides four attributes (i.e.,
Sender, Subject, Body, and Time) in the trigger data sent to
the TAP. However, one of the attributes (i.e., Body) is never ac-
cessed in the rule’s execution. We give three example IFTTT
rules in Fig. 3 showing that many sensitive attributes are be-
ing sent to IFTTT even though they are not required for rule
execution. Recall that users of TAPs can further customize
the behavior of a rule by writing filter code that can access
trigger attributes and modify action fields. Thus, based on the
execution path of the filter code, the set of attributes a rule
uses can change. Consider the filter code in Fig. 2. When the
condition in the if statement holds, the entire action will be
skipped and hence no trigger attributes are required; other-
wise, the TAP only needs the email’s Subject to correctly
execute the rule.

Token-level overprivilege. Privacy concerns on TAPs ex-
tend beyond attribute overprivilege. As noted in Section 2,
TAPs acquire OAuth tokens with a broad scope for enhanced
usability, so that users can enter their password for a trig-
ger/action service only once even if they create multiple rules
using them. These tokens enable TAPs to execute a large
number of APIs on behalf of the user. If an attacker obtains
such a token (either by compromising the TAP, or by tricking
a user), they can use the token to get unfettered access to all
of the user’s sensitive trigger data serviced by the APIs that
are in the scope of the token, even if these data are not re-
quired for any of the TAP’s supported rules. While this issue
was first identified by Fernandes et al. [25] our experiments
confirm that it is yet to be addressed by current TAPs. Al-
though finely-scoped tokens could mitigate this overprivilege,
they will drastically hamper usability as users will have to
authenticate to services every time they create a rule.

From overprivilege to minimization. The constraints of us-
ability and functionality that lead to attribute- and token-level
overprivilege are fundamental to the design of trigger-action
platforms. Nevertheless, such overprivilege violates the princi-
ple of data minimization that mandates sharing only necessary
user data [6, 8] and puts users’ privacy at risk should the TAP
(or the tokens intended for the TAP) be compromised. Our
work identifies a sweet spot in the design space that mitigates
attribute- and token-level overprivilege while respecting the
usability and functionality constraints, with negligible change
to the user’s experience and no modifications on the TAP.

4 Threat Model and Design Goals
Our goal is to ensure that trigger services release the minimal
amount of data that user-created rules need without modifying
the trigger-action platform or requiring significant changes to
the existing user experience. We first discuss the threat model

IFTTT rule description Trigger Trigger attributes (unused
ones shown in bold italics)

Get notification before
your next event starts [3]

Google Calendar:
Any event starts

Title, Description, Where,
Starts, Ends, EventUrl

Automatically save in
Pocket the first link in a
Tweet you like [2]

Twitter: New
liked Tweet by
you

Text, UserName, Link-
ToTweet, FirstLinkUrl,
CreatedAt, TweetEmbed-
Code

Payments over ___ send
you a phone call [4]

Square: New pay-
ments over a spe-
cific amount

Merchant, ID, TotalCollect-
edMoney, DeviceName, Pay-
mentAt, RecordURL

Figure 3: Examples of IFTTT rules, where several sensitive
attributes of trigger data are not used by a rule but still sent.

under which we want to achieve these goals and then outline
the design requirements of the solution. Finally, we discuss a
few potential approaches and point out why they do not meet
our security or functionality goals.

4.1 Threat Model

In line with prior work on security and privacy of TAPs [22,
23, 25, 45, 50, 53], we assume that the TAP is untrustworthy,
meaning that it may deviate from the protocols with the goal
of stealing user data that it should not know about (i.e., user
data that is not involved in any user-created rules). It can,
for example, try to modify the user’s installed rules or im-
personate the user. Action integrity attacks (e.g., changing or
dropping the action of a rule) are orthogonal to this work and
are addressed in complementary approaches [23, 25], which
we envision will compose well with minTAP. Denial of ser-
vice is also outside of our scope. Therefore, our focus is on
privacy issues arising from overprivilege and how the TAP
can take advantage of this fundamental flaw.

We assume that the third-party trigger services, which are
the originators of user data, are trusted and do not collude
with the TAP. For example, services like Outlook and Dropbox
are the source of sensitive user data and have no incentive
to collude with the TAP to reduce the privacy of their users.
These services have a TAP-mandated compatibility layer to
host APIs that communicate with the TAP. We also assume
that the users who create trigger-action rules never act against
the interests of their own data privacy, but they might be
malicious towards the data of other users. For example, an
attacker can sign up to the TAP as a user with the goal of
trying to steal other user data from trigger services.

As noted earlier, users interact with the trigger-action plat-
form via an app running on a smartphone or computer. We
assume that the client device and the app they use to interface
with the TAP are trusted and not compromised. We adopt
this decentralized trust model from existing work [22, 23, 25].
Unlike the current setting where all users trust a single entity
(i.e., IFTTT), in our design, each user only trusts their own
device and the apps running on it.

4.2 Design Goals

Security. Our primary goal is to ensure that the TAP is cor-
rectly privileged at both the token- and attribute-level, so that
it can only obtain the data that is absolutely necessary for
executing the user-created automation rules. This security
goal is in line with the data minimization principle. Therefore,
the trigger services should only send the necessary amount of
user data to the TAP. Such information may vary dynamically
based on the attributes of trigger events for different execu-
tions of user rules. In addition, the design must not open up
new vulnerabilities in the trigger/action services.

Functionality. The approach to reducing overprivilege in
TAP must abide by the following functionality goals: (1) It
must be compatible with existing trigger-action platforms,
such as IFTTT, Zapier, MS Power Automate, etc., without
any modification. In our case, we prototype with IFTTT, a
widely popular TAP with 20 million users [32]; (2) It should
support current real-world trigger-action rules that can include
filter code; (3) User experience should remain similar and any
security-relevant changes should be handled transparently;
(4) The trusted client that users use to set up rules should
not be required during rule execution; (5) All changes to
the trigger service should be contained within its existing
IFTTT-compatibility layer; (6) It should transparently support
consumers of trigger APIs that are not minTAP-aware (e.g.,
users who do not want privacy preserving features, non-TAP
consumers of trigger APIs). These functionality goals are
necessary to ensure we preserve the characteristics of trigger-
action platforms that made them popular among users and
trigger/action services.

With the threat model and design goals set, we show why
naive solutions do not fulfill our security and design goals.

4.3 Potential Solutions and Challenges
A trigger service could create rule-specific APIs to reduce
attribute-level overprivilege and API-specific tokens to reduce
token-level overprivilege. However, the former will require
the trigger service to know the rules that users create with
their services (a challenge on its own). The latter will require
recurring updates to trigger APIs to provide desirable func-
tionality in the face of changing user demands, increasing
API maintenance burden. The API-specific tokens will also
create a usability burden as users will then have to authorize
the TAP every time they create a new rule.

Another potential solution could be to run the rules on the
trigger service and communicate the results to the action ser-
vice directly, without requiring the TAP. However, this will
break the independence between trigger and action services, a
key property that allows them to evolve independently of each
other. For example, there is no reason for an email service
provider to know the API details of a chat room. With this
naive solution, the trigger service will be required to learn the
API details of every service for which the user creates automa-

tion rules. TAPs provide a critical layer of abstraction that
permits cross-service automation without the services know-
ing about each other. Thus, a practical solution to mitigate
privacy issues resulting from overprivilege cannot require
changes to how the ecosystem functions. A variant of this
potential solution is to run the rule on the trigger service and
only transmit the results of rule execution to the TAP which
then simply forwards the results to the action service. How-
ever, this, in addition to the problem stated above, requires
modifications to the TAP, violating our design goals.

We therefore take a different approach and build minTAP
that operates with existing TAPs and enable trigger services
to apply data minimization to their trigger APIs. During rule
creation on the client device, minTAP will create a data min-
imizer for the rule and store that on the TAP as a trigger
parameter. The trigger service will receive the parameter dur-
ing rule execution, apply the minimizer, and send only the
minimized trigger data to the TAP. The minimizer ensures
all but the attributes necessary for the rule execution are re-
placed with some default values (e.g., empty strings). Next,
we discuss how to generate such practical minimizer functions
(Section 5) and how we design minTAP to use minimizers
without modifying IFTTT (Section 6).

5 Data Minimization Model
Data minimization reduces the set of trigger attributes sent
to TAPs by only transmitting the ones necessary for rule
execution. For rules without filter code, we can identify the
minimized trigger attributes as the ones that are used in the
action fields. For rules with filter code, we develop a practical
minimization model that uses data-flow dependency analysis.

Language-based data minimization. We draw on the re-
cently proposed theory of language-based data minimiza-
tion [17]. Intuitively, a minimizer is a function that reduces
the inputs to a rule without changing the rule’s behavior. An
optimal minimizer removes all redundancy from the inputs. In
an ideal scenario, we want to construct an optimal minimizer
for a given TAP rule. Unfortunately, finding it is undecid-
able [17]. Prior work on building minimizers either resorts
to verification [17] relying on manual intervention or testing
value coverage [43] to produce meaningful results. Automati-
cally building practical minimizers is an open problem.

We propose an automatic approach to building practical
minimizers for TAP rules. As confirmed by our experiments
from Section 7, filter code consists of small code snippets
not written with adversarial intent [7]. This makes static and
dynamic code data-flow analysis of filter code feasible and
thus opens up opportunities for building practical minimizers
that can protect sensitive user data from unnecessarily being
exposed to the TAP.

Minimization by (in)dependency analysis. Our key insight
is to identify input attributes that have no impact on the rule
functionality, so that they can be dropped by the minimizer.

A function is independent of a subset of input attributes if the
function output never depends on what values those attributes
take. That is varying the values of that subset of attributes will
not affect the function’s result. This relates to the well-studied
notion of noninterference [27]. For our purposes, we term
this regular independence. If the independence is specific
to particular values certain attributes take, then we call it
run independence. Under run independence with respect to a
particular subset of attributes, varying the input values of the
remaining attributes will not affect the function’s result.

We can find independence via static and dynamic program
data-flow analysis techniques [42]. These techniques track
whether a given input is used in computing the output of the
rule. For the example rule from Fig. 1, by statically analyzing
the rule, we infer that the body of the email is never used in
the output. Therefore, the rule function is independent of the
email body. A minimizer can thus withhold the email body
(e.g., by replacing it with the empty string) without changing
the rule’s functionality. Similarly, when invoked outside the
working hours, by dynamically analyzing a run of the rule in
Fig. 1 we establish that the rule becomes run-independent of
all inputs, in which case no data needs to be sent to the TAP.

Practical data minimizers for TAPs. We contribute practi-
cal minimizers that use data-flow analysis. We define a practi-
cal minimizer to be a function that takes as input the trigger
data DT and some auxiliary information m computed based
on the rule r, and outputs modified trigger data where values
of the unused attributes in rule r are removed. minTAP sup-
ports two types of minimizers: static and dynamic. A static
minimizer computes the list of required trigger attributes by
statically analyzing the rule (including the filter code), lever-
aging regular independence. A dynamic minimizer computes
the list of required trigger attributes for rule execution by
running an instrumented version of the filter code that tracks
trigger attribute usage, leveraging run independence.

Generating auxiliary information for minimizers. The
auxiliary information assists the minimizers in comput-
ing the set of required trigger attributes. Algorithm
GenMinimizerInfo in Fig. 4 presents the algorithm for gener-
ating the auxiliary information. It takes a rule r = (T,A, f)
where T is the set of trigger attributes (e.g., Sender and
Subject in the example rule in Fig. 1), A consists of the
value of each action field (e.g., Channel and Message), and
f represents the filter code.

This algorithm first computes the dependency set T ′, which
includes Tai , the set of trigger attributes required by each ac-
tion field ai ∈ A, and Tf , the set of trigger attributes appearing
in the filter code f . In addition, it also transforms f into f ′

by (1) adding data-flow tracking logic to track the access of
trigger attributes and action fields, (2) replacing skip() with
an empty return, and (3) replacing action API calls with stubs.
The last modification serves two purposes: to track which
action fields are overwritten and anonymize the action API

GenMinimizerInfo(r = (T,A, f)):
for ai ∈ A do

Tai ←{t | t ∈ T ∧ t appears in ai}
Tf ←{}
for stmt ∈ AST(f) do

Tf ← Tf ∪{t | t ∈ T ∧ t is accessed by stmt}
T ′←

(
Ta1 , . . . ,Tan ,Tf

)
f ′← transform(f)
Return m = (T ′, f ′)

SMinimizer (DT , m = (T ′, f ′)):
/* f ′ is not used */(
Ta1 , . . . ,Tan ,Tf

)
← T ′

Ta←
⋃

ai∈A Tai
for (t,v) ∈DT do

if t /∈ (Ta ∪Tf) do
DT [t]←⊥

Return DT

DMinimizer (DT , m = (T ′, f ′)):(
Ta1 , . . . ,Tan ,Tf

)
← T ′

/* Tf is not used */(
Tf ′ ,A′

)
← f ′(DT)

Ta←
⋃

ai∈(A\A′) Tai
for (t,v) ∈DT do

if t /∈ (Ta ∪Tf ′) do
DT [t]←⊥

Return DT

Figure 4: Generating the auxiliary information required for
running static and dynamic minimization is shown at the top,
and how this auxiliary information is used is shown in the
bottom two procedures. For a rule r, T is the set of trigger
attributes, A is the values of action fields, f is a filter code,
DT is the trigger data.

semantics because we do not want to leak them to the trigger
service. We name f ′ as the transformed filter code and, along
with the dependency set T ′, they form the minimizer auxiliary
information m.

Executing data minimizers. Once the minimizer informa-
tion is generated, the trigger service can choose to run one of
the minimizers on trigger data DT , which contains the trigger
attributes and their associated values. In case of static min-
imization (SMinimizer), the trigger service simply crosses
off the value (e.g., replaces with some default value ⊥) for
attribute in DT if it does not belong to any of the sets in T ′. In
case of dynamic minimizer (DMinimizer), the trigger service
executes the instrumented filter code f ′ on the current trigger
data DT , which, during the course of its execution, records the
set of trigger attributes accessed (Tf ′) and set of action fields
overwritten (A′). If an action field ai is over-written by f ′, the
minimizer adjusts T ′ by removing Tai . Then, similar to static
minimization, the dynamic minimizer replaces all the values
for attributes that do not belong to any dependency sets.

6 minTAP Framework
We discuss the design of the minTAP framework and show
how it uses the minimizers from the previous section to ensure
that the TAP only receives the necessary amount of sensitive
attributes it needs to execute user-created rules. This tack-
les both the attribute- and token-level overprivilege privacy
issues. We also discuss how the design achieves the func-
tionality and security goals from Section 4.2. We integrate
minTAP with IFTTT due to its wide user base [32]. minTAP
ensures that real-world rules run with the minimum amount

Trigger-Action Platform

Compatibility Layer

Action Service

Compatibility Layer
Apply minimizer

Trigger Service

Post to channel …

Channel bob

Message
Received an email
from Bank XYZ:
Bank Statement

Rule (𝒓)

Filter Code

if Time before 9am / after 5pm:
skip action

Office 365: New Email from …

bank@xyz.comFrom

Slack: Post to channel …

bobChannel

Received an email
from Sender:Subject

Message

Compute from 𝑟

Set up rule
information

Rule Setup Phase Rule Execution Phase

Minimizer Info (𝑚)

Signature (𝜎)

User

Save 𝑟! = (𝑟,𝑚, 𝜎) to TAP

Client

Attributes
Sender: Bank XYZ
Subject: Bank Statement
Body: your salary is $...
Time: 2020/11/20 12:00

Any New Email from …?

From bank@xyz.com

Minimizer 𝑚

Signature σ

Figure 5: minTAP Framework. The blue-shaded background repre-
sents the components of minTAP: a client application and a modifi-
cation to the existing IFTTT-compatibility layer of trigger services.
The user creates a rule r, which is then transformed by the client into
r′ that contains minimizer information (m) with integrity protection
(σ). During rule execution, the TAP contacts the trigger service with
(m,σ). The trigger service returns minimized data by removing at-
tributes not needed for rule execution. All of this works transparently
to users and the TAP.

of trigger attributes they need without changing IFTTT or
the rules themselves. Thus, it is a practical technique that
privacy-conscious trigger services can use with lightweight
changes to their infrastructure.

Design Overview. minTAP framework consists of two com-
ponents (Fig. 5): a compatibility layer (or shim) that trigger
service installs on top of its existing IFTTT-compatibility
layer, and a client for each user in the form of a trusted browser
extension. Together, they ensure that IFTTT is correctly privi-
leged at the attribute- and token-level without requiring any
co-operation from IFTTT. At a high level, when the user con-
figures a rule, the client will read the information on the rule
setup interface to generate the minimizer auxiliary informa-
tion, based on the algorithm described in Section 5, as well
as a signature, which ensures the rule’s integrity. During rule
execution, these information will be forwarded to the trigger
service, which will apply the minimizer (either statically or
dynamically) and filter out unused attributes.

We organize the following discussion around the life-cycle
of a trigger-action rule in the case of IFTTT: (1) Authorizing
IFTTT to trigger/action services (Section 6.1); (2) Setting up
rules (Section 6.2); and (3) Rule execution (Section 6.3).

6.1 Service Authorization Phase
The trigger service has to verify that the information it re-
ceives from IFTTT is authentic and not modified. Our design
achieves this by signing the information. Thus, the trigger ser-
vice needs to receive the public key of the client for signature
verification. This client’s key is service- and user-specific. Al-
though the client could upload this key by initiating a separate
OAuth session with the user and trigger service, it hinders the

IFTTT Service

1. Authorization Request
{Client id, Scope, Callback URL, …} 2. Authorization Request*

{Client id, Scope, Callback URL, …,
Code Challenge}

3. Authorization Code
4. Authorization Code

5*. Client Token Request
{Client id, Authorization Code, …

Code Verifier, Client public key}

5. IFTTT Token Request
{Client id, Authorization Code,

Client Secret, …}

6. Access (+ Refresh) Token
for IFTTT

6*. Access (+ Refresh) Token
for Client

Client

Login +
authorize

Figure 6: minTAP authorization phase: The non-bold text
represents the original OAuth 2.0 authorization code flow
used between IFTTT and the service, while the bold parts
highlight the changes introduced by minTAP’s trusted client.

usability. Therefore, we integrate the OAuth Proof Key for
Code Exchange (PKCE) protocol [5] into the current OAuth
protocol that runs during the service authorization phase to
simultaneously authorize both IFTTT and the client.

Before a user can create a new trigger-action rule, they must
authorize IFTTT to access their data on the trigger and action
services through the standard OAuth 2.0 authorization code
flow. This is a one-time operation that occurs the first time
the user programs a rule with a new service. Subsequent rules
involving the same services do not go through the authoriza-
tion process — this is a key usability trade-off in IFTTT. Our
work maintains this trade-off while mitigating the negative
privacy effects.

During service authorization, minTAP’s client, deployed as
a browser extension, intercepts and transparently modifies the
first two steps of the OAuth sequence, namely, the authoriza-
tion request and code response. This is possible because these
steps are implemented through browser redirects. The client
also creates a service-specific key pair (sk, pk). Fig. 6 shows
the extended OAuth flow. When the client encounters an
authorization request from IFTTT to a service (Step 1), it gen-
erates a large random string and computes its cryptographic
hash value. We refer to this string as code verifier and to its
hash value as code challenge. The client appends the code
challenge to the authorization request (Step 2). After the user
successfully logs into the account and approves the requests,
the service will redirect the browser to the callback URL,
which is an endpoint of IFTTT, with the authorization code
appended (Step 3-4). The client records this authorization
code silently for later use. Then, in the background, IFTTT’s
server will post a request for the access token using its client
secret (Step 5). The service will reply with a special access
token (Step 6), which can access the service’s APIs only when

New IFTTT Rule

Trigger

Trigger Field 1 Trigger Field 2

… Trigger Field n

Trigger Field: Signature

Filter Code

Trigger Field: Minimizer

Action

Action Field 1 Action Field 2

… Action Field m

User Client

4. Statically analyze

2. Extract required
trigger attributes1. Fill in rule

information

Attributes in
action field

5. Compute minimizer information

Client
private key

6. Sign all other
trigger fields

Attributes in
filter code

Transformed
filter code3. Transform

Figure 7: Rule setup phase. The left part represents a high-
level abstraction of IFTTT’s rule setup interface. The right
part details the steps performed by the client (as a browser
extension) in the background.

accompanied by a valid signature.
Concurrent to IFTTT’s token request, the client will also

issue a token request with its code verifier and public key pk
(Step 5*). Upon checking that the code verifier is consistent
with the code challenge, the service will accept and store the
public key pk. Finally, a special token is returned to the client
(Step 6*), which can be used to revoke a public key or upload
a new one if desired.

We note that our protocol combines both the current OAuth
authorization code flow and the PKCE flow, and thus inherits
their security properties (see Appendix A or more details).
Finally, all protocol-level extensions occur transparently to
IFTTT and the end-user, thus achieving our goals of not creat-
ing changes to the user’s experience or to how IFTTT works.

6.2 Rule Setup Phase
In this phase, minTAP achieves two main goals. First, it gen-
erates the auxiliary information for minimizing user-created
rule that can be used by the trigger service to filter out unused
attributes. Second, it computes a digital signature to ensure
the authenticity and integrity of the information, preventing
the attacker (i.e., IFTTT) from modifying it. The signature, in
combination with the access token that IFTTT acquires from
the service authorization phase, serves as a logically-fine-
grained token that uniquely identifies the rule and prevents
token-level overprivilege. If IFTTT tries to invoke a trigger
service API, it must always present a valid token and a valid
signature — any other requests are automatically denied.

Fig. 7 shows the workflow of the setup phase. The user
creates a new rule (or modifies an existing one) through the
interface provided by IFTTT (Step 1). This involves selecting
a trigger and an action from the appropriate services, specify-
ing trigger and action fields, and optionally writing the filter
code. We define the combination of all these data to be the
rule information. Before the user saves the rule to IFTTT, the

client transparently and atomically captures the rule informa-
tion. It then computes the auxiliary information m required
for the static and dynamic minimizers (Step 2-4) as instructed
in Fig. 4.

This information is needed by the trigger service during
rule execution to apply the minimizer. As the trusted client
might not be online during execution (functionality require-
ment, Section 4.2), we store the minimizer as part of IFTTT’s
rule information. To achieve this, minTAP’s compatibility
layer registers an additional trigger field with IFTTT to hold
this special minimizer parameter. This appears as an addi-
tional user-configurable trigger field in the rule setup inter-
face. The client will automatically fill in the value of this new
trigger field with the minimizer information (Step 5).

Because IFTTT could tamper with the minimizer informa-
tion before sending it to the trigger service, the client sets up
another user-configurable trigger field to hold a signature σ.
We additionally observe that even if IFTTT does not modify
the minimizer information, it can still modify other trigger
fields to request unauthorized data — in our running example
(Fig. 1), IFTTT can change the From field to get the email
from another person. Therefore, in addition to the minimizer,
the client signs all of the original trigger fields as well as the
identity of the trigger. The client also automatically fills in
the signature value (Step 6). Once the user hits save, all this
data is persisted inside IFTTT.

The trigger, trigger fields, and minimizer information define
the amount of data the user wants IFTTT to access. Together
with the signature guaranteeing integrity and authenticity, this
forms a correctly-privileged fine-grained token that mitigates
privacy issues from overprivilege.

6.3 Rule Execution Phase
When a rule executes, IFTTT contacts the trigger service to
obtain data attributes [33]. This HTTP request from IFTTT
bundles all the trigger fields as query parameters, including
the auxiliary information of minimizer m and the signature
σ. Upon receiving this information, the trigger service will
first verify the integrity and authenticity of the request, which
includes checking if the access token is valid (per standard
OAuth procedure) and if the signature is correct using the
public key pk corresponding to that user.

Once verified, the trigger service will use the minimizer in-
formation (m) to apply the minimizer on the trigger attributes
to sanitize unused values. As mentioned in Section 5, minTAP
provides two minimizers — static and dynamic — with vary-
ing levels of precision and performance overhead. The trig-
ger service can run one of the two functions SMinimizer or
DMinimizer (in Fig. 4) on the trigger data DT . While running
SMinimizer is straightforward, running DMinimizer could re-
quire executing untrusted client/user-provided code f ′. We
show the dynamic execution flow in Fig. 8. Based on our
threat model, a malicious user could use this opportunity to
violate the security of the trigger service or its other users.

Trigger Data

Isolated
Sandbox

Client’s Public
Key (𝑝𝑘)

𝑚 = 𝑓', 𝑇' ,
𝜎 fails

Verify
signature

success

𝑓'
Merge

𝑇′

Sanitize
trigger data

To IFTTT

From IFTTT

attributes
accessed

by 𝑓′

skips minimized
trigger data

minimized
set of

attributes

Figure 8: Figure shows the rule execution steps with dynamic
minimization at the trigger service. IFTTT queries the service
with the minimizer auxiliary information m = (f ′,T ′) and the
signature (σ). The trigger service applies DynamicMinimizer
on the trigger data m, and responds with the sanitized trigger
data to IFTTT.

Therefore, we deploy an isolated JavaScript container with
strict security policies to prevent the code from affecting any-
thing outside the container. We provide more details on how
to configure the container and integrate it into our system
in Section 7.

The static minimizer is straightforward to deploy, requiring
no additional computing infrastructure on the trigger service.
However, static minimizers are inherently conservative be-
cause they do not have access to the actual values of trigger
data. On the other hand, dynamic minimizers can benefit from
knowing the trigger data when minimizing the set of neces-
sary attributes. For example, if the filter code hits a skip, then
no action will be performed and hence no data will be sent to
IFTTT. This provides significant privacy benefits if the rule
executes only in very specific conditions, such as the example
shown in Fig. 1 and 2. Section 8 provides a set of guidelines
to help trigger services decide which minimizer to run.

We note that the trigger service can continue to support
IFTTT users who do not use minTAP: if the request does
not come with the minimizer information, the trigger service
will reject the request if the user has uploaded its public key
(indicating IFTTT maliciously drops the information), and
accept otherwise (indicating the user does not use minTAP).
In addition, while a user can connect to a mixture of minTAP
services and non-minTAP services, all rules they create with
minTAP service must be minTAP-compatible, since the at-
tacker (per our threat model, an untrustworthy IFTTT) will
gain access to all user data in this service through token- and
attribute-level overprivilege even when just one rule is not
minTAP-compatible.

We provide a security analysis of minTAP’s protocol in
Appendix A, where we show that it upholds three security
invariants: (1) only the user’s client obtains the client access
token, (2) the trigger service only accepts the public keys
from the client, and (3) any modifications to the original
rule configuration or the information generated by the client
will be detected by the trigger service. Together they ensure
that the attacker cannot tamper with the protocol to request
unwarranted data.

7 Evaluation
To evaluate minTAP, we have collected a large-scale dataset
of publicly available IFTTT rules, which includes the detailed
configurations (such as filter code) of each rule (Section 7.1).
Then, we analyze the privacy benefits of minTAP on this
dataset in Section 7.2. Finally, we discuss our implementation
and evaluate its performance overhead in Section 7.3.

7.1 Dataset
Existing IFTTT datasets [39, 46] do not support our evalu-
ation, due to the absence of crucial information like filter
code and configurations of trigger/action fields. These inter-
nal configurations of the rule are necessary to determine the
auxiliary information of the minimizer. To better evaluate the
privacy benefits and performance overhead of minTAP, we
have crawled IFTTT2 and curated a dataset of 59,009 trigger-
action rules that are publicly published on IFTTT. To the best
of our knowledge, this is the first large-scale dataset that col-
lects the internal configurations (including the configurations
of trigger/action fields and filter code) of each rule.

Data collection. IFTTT’s developer platform provides an
API for accessing the rule configurations for all public rules
by their IDs. We obtained the 59,009 valid rule IDs by analyz-
ing the URLs in IFTTT’s public sitemap in April 2021. All
rules in our dataset are accessible by search engines. They
can be installed by IFTTT users and their configurations can
be inspected by IFTTT users. For each rule in the dataset, we
thus obtained its general information, such as title, description,
and the connected trigger/action service, as well as its config-
uration, which includes the configurations of trigger/action
fields and filter code (when available). Out of these rules, 554
contained filter code.

Rules with private triggers. We are only interested in the
rules that can access sensitive trigger attributes. Based on
the classifications proposed by Bastys et al. [19], we find
34,419 (58%) rules that are connected to private triggers (such
as emails, documents, and locations, as opposed to public
triggers like news reports). In addition, out of the rules with
filter code, 376 (68%) are connected to private triggers. For
the rest of the section, we will use these private-trigger rules
and filter code to evaluate minTAP.

7.2 Privacy Benefits
We study the extent to which minTAP mitigates the privacy
issues arising from attribute- and token-level overprivilege
in IFTTT. The presence of the signature in minTAP’s design
(Section 6.2) ensures that IFTTT’s token can only be used to
query data from the connected trigger API, preventing any
token-level overprivilege. Therefore, we measure the privacy
savings of minTAP in terms of the following two metrics that

2Legal counsel at our institution has confirmed this is considered as fair
use under DMCA and does not violate IFTTT’s terms of use.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

of trigger attributes

Fr
ac

tio
n

of
ru

le
s

Rules w/o filter code

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

of trigger attributes

Rules w/ filter code

total attributes unused attributes
unused and high sensitive attributes

Figure 9: CDFs showing the percentage of rules that have at
least x total / unused / unused-and-highly-sensitive attributes.

Sensitivity Resource Type: Example Attributes % Attr % Rule

Low
Timestamp: CreatedAt, OccurredAt 26.7% 84.0%
Access-controlled link: PublicUrl 2.2% 7.2%

Total 28.9% 86.2%

High

Event description: EventName, About 23.0% 43.7%
User info: FullName, Email, Number 13.0% 32.7%
Location: Longitude, Latitude 9.0% 19.1%
Downloadable link: PhotoUrl, Mp3Url 6.5% 16.9%
Bookmark: Article, Website 5.3% 4.7%
Message: Body, Subject, Message, Text 3.3% 9.4%
Other: SensorValue, Duration, List 4.7% 10.9%

Total 60.7% 79.4%

Unknown
Generic link: Url, Link 5.0% 15.3%
Misc name: SheetName, ChannelName 3.5% 11.1%

Total 8.5% 20.5%

Figure 10: Breakdown of unused attributes by sensitivity.
Each row represents a category of attributes. The third col-
umn denotes, out of all occurrences of unused attributes, the
percentage that contains this category’s keywords (see Ap-
pendix C for detailed keyword lists) and the fourth column
denotes the percentage of rules that have at least one unused
attribute with such keywords.

measure the degree of reduction in attribute-level overprivi-
lege: (1) The number of unused attributes for each rule that
would not be transmitted to IFTTT; and (2) When filter code
is present, the estimated frequency of skips, resulting in no
attributes being transmitted.

Rules without filter code. If a rule does not contain filter
code, minTAP will apply the static minimizer: each trigger
attribute that does not appear in the rule’s default action fields
will be labeled as unused. Across the 34,419 rules that are
connected to private triggers, we find that a median of 4 trigger
attributes (or 3.7 on average) are unused. The orange line in
Fig. 9 shows a cumulative distribution of rules based on the
number of unused attributes. We find that more than 90% of
rules have at least two unused attributes. With minTAP, all
these unused attributes will not be transmitted to the TAP.

We also examine the sensitivity of the unused attributes in
these rules. Even if the trigger is considered a private source,
not every attribute represents a sensitive resource. We con-

ducted a case study by first randomly sampling 10% out of
the 3,255 unique unused attributes and grouping them into
different categories based on the types of resources they rep-
resent (second column of Fig. 10). Then, we picked out the
attributes that, when leaked, do not grant IFTTT access to any
additional information. We labeled the attributes based on the
following sensitivity criteria.

• Low: This attribute does not carry sensitive information
or represents the event’s timestamp. We specifically label
timestamps as low since IFTTT can infer them by observ-
ing the arrival time of the trigger service’s messages.

• High: Exposing this attribute to IFTTT will reveal sensitive
information, including personal identifiable information or
private files. In some cases, the value of an attribute may be
publicly available, such as websites, but the user’s access
to it can be sensitive. These information is also labeled
High. In Fig. 9, the green line shows the distribution of
unused High sensitive attributes in our rule dataset.

• Unknown: Given this attribute’s name alone, we cannot
distinguish its sensitivity. For example, if an attribute is
named URL, it can be either a downloadable link to a private
file or an access-controlled link that does not reveal any
information without user’s login credential, depending on
the corresponding service’s implementation.

Finally, we observed the typical keywords appearing in the
attribute’s names for each category (the detailed criteria are
listed in Appendix C) and estimated the prevalence of each
category in the entire dataset based on the occurrences of
these keywords. In summary, we found that 60% of the unused
attributes are labeled as highly sensitive and 79% of the rules
contain at least one highly sensitive attribute (Fig. 10).

Rules with filter code. We show the CDFs of unused at-
tributes for the 376 rules with filter codes in Fig. 9. Most of
these rules contain very simple snippets with a few lines of
code (left part of Fig. 11). 315 (84%) rules include conditions
that lead to the skipping of actions. For these rules, trigger
service can choose to use either static or dynamic minimizers.
The main benefit of dynamic minimizer is that it can deter-
mine when a rule needs to be skipped, leading to maximum
privacy savings. These 315 rules have a median of 5 attributes
— all of which will be sanitized if the rule skips, compared to
the median of 3 attributes sanitized by the static minimizer.
Even when the skipping does not happen, we still find three
rules where the dynamic minimizer is more precise than the
static one, sanitizing 1.7 attributes more on average. We show
one of these rules in Appendix B. In addition, we found 201
(54%) rules compute their skip conditions purely based on
the trigger timestamp. If we assume that their triggers occur
uniformly throughout the week, then these rules on average
will skip 62% of the time (right part of Fig. 11).

1-5 6-10
11-20

21-30
31-40

> 400

50

100

150

200

Lines of Code

#
of

fil
te

rc
od

e

w/ time-based skip w/ non-time-based skip w/o skip

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Skip probability

Fr
ac

tio
n

of
fil

te
rc

od
e

Figure 11: Filter code characterizations. (left) Histogram of
filter codes based on lines of code. (right) CDF of the simu-
lated skip probability for time-based filter code.

7.3 Performance Evaluation
We evaluate the performance of two components of minTAP,
namely the client-side browser extension and the modified
compatibility layer on the trigger service. To simulate a trig-
ger service with minTAP additions, we build and deploy an
IFTTT-compatible trigger service for testing. The service is
hosted on n1-standard-2 instance with 2 vCPUs and 7.5 GB
memory on Google Cloud. We install the client on a Macbook
Pro with a 2.2 GHz 6-Core CPU and 16 GB memory running
Chrome version 87. We measure the performance of minTAP
based on the execution latency, service throughput, and mem-
ory overhead. Across the board, we find these impacts are
modest and acceptable. We did not observe any noticeable
effect in the performance of TAP rules due to minTAP.

Implementation Notes. We implement the client as a
Chrome extension that monitors the user’s interactions with
the IFTTT webpage by analyzing the endpoints being vis-
ited. For example, it will launch the authorization phase if the
user visits URLs like ifttt.com/[service]/redirect_
to_connect. The shim on service’s compatibility layer con-
sists of two pieces: (1) A Python library that will upgrade the
trigger service’s APIs so that they can engage in minTAP’s
protocol, and (2) A runtime environment that can securely
execute transformed filter code for dynamic minimization. We
use isolated-vm [35] to provide a restricted execution environ-
ment. For efficiency, our implementation maintains a pool of
4 warmed-up isolated-vms and routes each incoming request
into a new sandboxed execution context created inside the
VM with least memory usage. We also compile moment.js, a
library used by IFTTT for advanced date parsing [31], into
the execution context if required. All isolated-vms are config-
ured with an explicit timeout of 15 sec and a memory limit of
128 MB to further protect the trigger service’s infrastructure.

7.3.1 Latency of the Client

The client’s overhead consists of the time it takes to hash the
OAuth PKCE code verifier during service authorization phase
and the time to compute and sign the aux. minimizer info
during the rule setup phase. Hashing for computing the PKCE
code verifier takes less than 0.15 ms, and is thus negligible.
We setup all the rules in our filter code dataset and report the

0 1-5 6-10
11-20

21-30
31-40

> 40
0

50

100

150

Lines of Code

C
lie

nt
’s

se
tu

p
tim

e
(m

s)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Filter code’s execution time (ms)

Fr
ac

tio
n

of
fil

te
rc

od
es

0 1,000 2,000 3,000

baseline

static

dynamic

Throughput (req/sec)

Figure 12: Evaluation results of minTAP. (left) The average execution time for the client during the rule setup. The rules are
separated into different groups, based on the lines of code. (middle) CDF of the filter code’s execution times in the trigger
service’s isolated environment. (right) The throughput of the trigger service for using static or dynamic minimzer, or baseline
(i.e., w/o modification to the compatibility layer).

average latency for setting up each rule. The rule setup time
varies with the size of the filter code, measured in lines of
code (LoC). The latencies for filter codes of different sizes
are shown on the left of Fig. 12.

We observe that the client takes approximately 39 ms to
compute the minimizer information and its signature when
no filter code is present. For the most complicated filter code
in our dataset (with more than 40 LoC), it only takes 128 ms.
This overhead has a negligible impact on user experience
because it hides within larger latencies introduced by the UI
— it takes approximately 6000 ms for the browser to fully load
the rule setup page and 800 ms to save a programmed rule.

7.3.2 Overhead of the Modified Compatibility Layer

During rule execution, minTAP requires the trigger service
to apply (static or dynamic) data minimization of the trigger
data. We examined how it affects the overall throughput and
latency of the trigger service. For static minimization, we
randomly sampled 50 rules from our no-filter-code dataset.
For dynamic minimization, we randomly sampled 50 rules
from filter code dataset and manually prepared input trigger
data to ensure the longest path in each filter code is executed.

Latency. We compute the latency overhead of minTAP as
the relative increase in the request serving time with respect
to the unmodified trigger service (that does not support data
minimization). On average, the latency increases by 5.5 ms
when dynamic minimization is used, and only 0.45 ms when
static minimization is used. Since the end-to-end latency of
a trigger-action rule in IFTTT is more than two minutes on
average [39], the extra latency caused by minTAP’s compat-
ibility layer is not noticeable in practice. We further looked
into the time to execute the transformed filter code inside the
isolated-vm, to understand the impact of different filter codes
on the latency of dynamic minimizer. In the middle of Fig. 12,
we show the CDF of execution times for different filter codes.
We observe that execution is efficient: 96% of the filter codes
take less than 1 ms.

Service throughput. We measured the throughput of the
trigger service as the number of requests handled per second
under concurrent requests. We gradually increase concurrency

levels until the throughput saturates (and latency increases).
We measure throughput in three conditions: (1) baseline (with-
out minTAP modification to the compatibility layer); (2) with
dynamic minimizer; (3) with static minimizer. The throughput
for different settings is shown on the right of Fig. 12. Over-
all the compatibility layer is lightweight, throughput is only
reduced by less than 50% when dynamic minimizer is used,
and by less than 20% when static minimizer is used. Prior
work has characterized trigger rates on popular services and
determined that the most popular one executes approximately
1,702,353 times, while IFTTT contacts the trigger service
every 15 minutes [39], which translates to an average of
1,892 requests per second. With minTAP enabled, the trigger
service can handle 1,404 requests per second with dynamic
minimizer or 2462 requests per second with static minimizer
even on our basic test setup. Considering that many rules
do not contain filter code and, therefore, no need to use the
dynamic minimizer, even with very limited computational
budgets, it will be easy for trigger service to use minTAP
modifications on their existing IFTTT compatibility layer.

Memory and storage overhead. With a pool of four
isolated-vm, we recorded a maximum memory usage of 341
MB under the peak throughput (with dynamic minimizer en-
abled). minTAP’s compatibility layer imposes little storage
overhead on the trigger service that only needs to store one
public key for each user. Considering IFTTT already requires
compatible services to store the data of the past 50 events and
recommends them to store a unique trigger id [29] for every
rule, the additional overhead of minTAP is negligible.

8 Discussion
Adopting minTAP. Trigger services who wish to protect
their user data (and possibly reduce friction with legal frame-
works) can use minTAP as a lightweight method to mitigate
data misuse. They obtain these benefits at the minimal cost
of upgrading their existing IFTTT-compatibility layers to in-
clude minTAP improvements. As described in Section 2, this
layer hosts a number of APIs that follow IFTTT’s specifi-
cations for authorization and data querying, and handles all
communications between IFTTT and the service. We provide
minTAP as a portable Python library that enables a seamless

upgrade. The service provider could potentially increase its
computational capacity for the modest performance overhead
(Section 7.3), however, existing elastic services might handle
this automatically. Finally, we note that other parts of the
service’s infrastructure do not need to be changed. The tech-
nique of minTAP also applies to other commercial TAPs (e.g.,
Zapier) with slight adjustments in implementation.

minTAP-Client usage. Each end-user trusts only their
minTAP-client and it serves as the main contact point be-
tween users and the TAP. While the client can take many
forms (e.g., mobile or desktop app), we prototyped it as a
browser extension for ease-of-use. Once the client is installed,
the user does not need to perform any extra operations to
create minTAP rules. The client only has permission to inter-
act with ifttt.com and send requests to compatible services
authorization APIs. It does not save any personal data except
OAuth tokens and cryptographic keys using local storage. As
mentioned in Section 6.1, these tokens cannot be used to re-
quest user data from the services. We envision that the client
and the cloud-based TAP will be separate entities adhering
to the minTAP protocol (e.g., similar to the current diversity
of Telnet, FTP, SSH client and server software). A user can
switch between multiple clients (e.g., if a client device is
lost) if they support encrypted cloud backups of the keys and
tokens. We leave implementing this as future work.

Deleting/modifying rules. If a user deletes or modifies a
rule, the minimizer and signature for the old version should
be invalidated — a problem similar to certificate revocation.
minTAP-client creates a new signing keypair during a rule-
update operation and sends the public key to the trigger ser-
vice using its special OAuth token. It also transparently up-
dates the signature on existing rules in a background page.

Static vs. dynamic minimization. minTAP offers the trig-
ger services a choice of whether to run static or dynamic
minimization. Recall that static minimization determines nec-
essary attributes at rule setup time, whereas the dynamic min-
imizer instruments filter code during rule setup and then re-
quires the trigger service to run the instrumented version to
learn about necessary attributes. We outline a few considera-
tions to help trigger services make an informed decision.

The advantages of static minimization are: (1) Lower over-
head on trigger services; (2) No additional security challenge
of sandboxing filter code; and (3) Possibility to run distributed
minimizers [17]. Distributed minimizers focus on minimizing
data that is provided by multiple sources. This is relevant to
IFTTT’s emerging feature of queries [34] that allow pulling
data from multiple trigger services. A static extension to han-
dle queries is straightforward: based on the filter code, the
client can determine the set of used attributes and pass this
information to the relevant trigger services. Note that queries
are a challenge for the dynamic approach because the trigger
service has no access to data from the other services that is

required to run the filter code.
The advantages of dynamic minimization are: (1) High

precision because the set of used attributes may depend on
runtime values passed to filter code (static analysis approxi-
mates these values). In some extreme cases, the imprecision
of JavaScript’s static analysis may also in theory deem a used
attribute as redundant, although we have not encountered such
imprecision in our evaluation due to the non-adversarial na-
ture of filter code. (2) Precise modeling of skips and timeouts.
When filter code reaches a skip or times out, there is no need
to send any attributes to IFTTT. Predicting skip and timeout
reachability is particularly hard for static analysis.

Multiple actions. TAPs sometimes allow rules to have mul-
tiple actions, a feature enabled, for example, for IFTTT’s
premium users. Our approach straightforwardly generalizes
to multiple actions. Static minimization remains largely un-
changed, tracking access of trigger attributes in the action
fields of all actions combined. Similarly, dynamic minimiza-
tion will track the access of trigger attributes in the sanitized
filter code with the only modification that the trigger service
will skip as a whole only if it detects calls to skip for each of
the actions in the rule.

Encrypting trigger fields and attributes. The OTAP sys-
tem encrypts trigger attributes and fields when no filter code is
present [23]. We sketch a simple approach to extend minTAP
to fully integrate OTAP’s approach. During the service au-
thorization phase, minTAP’s client exchanges an additional
symmetric encryption key with the trigger and action services.
During rule setup, the client encrypts the trigger fields with
this key and stores them in the TAP. During rule execution, the
trigger service receives the encrypted trigger fields, obtains
the minimized trigger data, encrypts the trigger data using
the same key, and sends them to the TAP. Thus, minTAP can
support OTAP guarantees when no filter code is present.

Performance benefits of minTAP. We remark that in addi-
tion to the privacy benefits, minTAP collaterally brings some
performance benefits. While there are performance penalties
incurred by minTAP’s additional computation, minTAP liber-
ates trigger services from generating and sending redundant
attributes. The results of the privacy evaluation from Sec-
tion 7.2 are thus encouraging not only for boosting privacy
but also for reducing communication overhead.

Data-specific minimization. The precision of dynamic min-
imizer can be further improved by incorporating symbolic ex-
ecution to achieve data-specific attribute minimization. Sym-
bolic execution allows for automated exploration of the pro-
gram control-flow graph, precise program state reasoning, and
generation of the input that leads to a given program point.
For example, if a string attribute is used only in a condition
for substring matching, we can replace this attribute with just
the substring. Currently, as shown on the left of Fig. 11, only
a small fraction of filter codes that have non-time-based con-

ditions can benefit from such symbolic analysis. However,
rules in other types of trigger-action settings (such as Node-
RED [11] and OpenWhisk [10]) where more complicated pro-
gramming paradigms are required may benefit from symbolic
execution. We leave this for future work, bearing in mind that
when filter codes contain nested conditions symbolic analysis
may become inefficient due to path explosion [37].

9 Related work
We refer the reader to the recent work [13, 18, 20] outlining
the state-of-the-art on securing TAPs. Our work is inspired by
the principles of least privilege and need-to-know [44].

Privileges on TAPs. Prior work has shown that TAPs obtain
overprivileged access to trigger/action APIs [25] allowing
them to harvest private information without the user know-
ing [50] and opening for malicious rule makers to exploit
TAP’s privileges [12, 19]. This motivates our work.

The DTAP system protects the integrity of rules under a
malicious TAP [25]. By contrast, we address the orthogonal
question of data privacy. In addition to mitigating the pri-
vacy issues that arise from token-level overprivilege, minTAP
goes further and addresses the attribute-level overprivilege.
DTAP relies on extending the OAuth protocol with so-called
XTokens to express fine-grained privileges and requires mod-
ifications to existing TAPs for deployment, whereas minTAP
is fully compatible with existing unmodified TAPs.

The OTAP system uses encryption and cover-traffic
schemes to protect the confidentiality of data while it transits
through an untrusted TAP [23]. This approach can protect
data end-to-end, but it does not allow computations (i.e., filter
code) — a primary feature on TAPs. By contrast, minTAP
only releases the attributes that rules need, supports compu-
tations on data, making it practical and readily deployable.
OTAP and minTAP occupy different points in the design spec-
trum but can be unified and supported in a single framework
leveraging the minTAP infrastructure.

The eTAP system uses garbled circuits for rule execu-
tion [22]. It provides strong confidentiality and integrity guar-
antees, but at the price of requiring extensive architectural
changes to the TAP, supporting a limited subset of filter code
and higher overhead. By contrast, minTAP works with un-
modified TAPs and supports more expressive filter code with
minimal overhead.

Filter-and-Fuzz analyzes how events from a smart home
can be sanitized to ensure that IFTTT does not learn more
information than necessary [50]. It relies on textual analysis
to identify unnecessary events. By contrast, minTAP uses
program analysis to identify unused data attributes. minTAP
can benefit from hiding statistical patterns of sensitive events
by composing them with the Fuzzing piece of Filter-and-Fuzz.

Secure hardware. Recent efforts leverage secure hardware
for protecting users’ data from TAPs. Hardware-based trusted
execution environments (TEEs) enable computing over the

trigger data on the TAP, while preserving the confidential-
ity [45, 53]. Besides requiring hardware changes to the TAP
backends, current TEEs suffer from fundamental security de-
sign issues [21, 41, 47].

Language-based data minimization. Data minimization is
a principle restricting data collection to “what is necessary
in relation to the purposes for which they are processed” [6].
Antignac et al. [17] formalize the notions of monolithic and
distributed minimization for programs with single and multi-
ple sources of information, respectively. They reason about
best minimizers that remove all redundant information be-
fore passing the data to the data processor. They demonstrate
that although computing the best minimizers is in general
undecidable, it is possible to approximate data minimizers
by symbolic execution techniques. Unfortunately, these tech-
niques require coming up with invariants for programs with
loops, a long-standing challenge in program verification [26].
Pinisetty et al. [43] utilize testing techniques to improve the
precision of minimizers for programs and leave synthesizing
minimizers as future work. Drawing on the work by Antignac
et al., we contribute a lightweight data minimization technique
that focuses on the attributes used by programs. We generalize
the definition by Antignac et al. to be sensitive to individual
program runs and show that a simple (and fully automatic)
dependency analysis can be used for data minimization by
ruling out unused attributes in program runs.

Minimum exposure. Related to our ideas is the line of work
on minimum exposure in data collection by authorities. An-
ciaux et al. [14–16] focus on the case of collecting forms
(like tax forms) for governments. They consider the num-
ber of inputs to withhold for the privacy of the applicants
and discuss data-dependent minimum exposure. However, the
computational model is that of assertions on particular shapes
of formulas that represent form collection logic, making their
algorithmic solutions less applicable to scenarios of general
programs. By contrast, our approach naturally extends the
language-based approach to data minimization which applies
to arbitrary (runs of) programs.

10 Conclusion
We have presented minTAP, a framework for practical data ac-
cess minimization in trigger-action platforms. We study two
levels of overprivileges that are common on TAPs: attribute-
level overprivileges, e.g., sending to the TAP the content of
emails even if the rule only involves the headers, and token-
level overprivileges, e.g., granting the TAP full access to
cloud services. To address both types of overprivilege, we put
language-based data minimization to work and demonstrate
how dependency analysis can identify redundant attributes.
We deploy minTAP on IFTTT, showing how to minimize
trigger data before it is sent, thus boosting privacy while
preserving the functionality. We evaluate the security and
performance of minTAP on a set of realistic benchmarks to

conclude that minTAP on median sanitizes 4 sensitive trigger
attributes per rule, with a tolerable performance overhead.

Acknowledgements We thank Adwait Nadkarni, Sandro
Stucki, Musard Balliu, Benjamin Eriksson, and the anony-
mous reviewers for useful feedback. This work was partially
supported by the University of Wisconsin-Madison Office of
the Vice Chancellor for Research and Graduate Education
with funding from the Wisconsin Alumni Research Founda-
tion. It was also partially supported by the Swedish Foun-
dation for Strategic Research (SSF), the Swedish Research
Council (VR), and Facebook.

References
[1] Add All Day Event For Office. https://ifttt.com/applets/

CfSd6B9w.

[2] Automatically save in Pocket the first link in a Tweet
you like. https://ifttt.com/applets/DfUKrQkt.

[3] Get a notification 15 minutes before your next GCal
event starts. https://ifttt.com/applets/cFX5ETAs.

[4] Payments on Square send you a phone call. https://ifttt.
com/applets/TafsT2nY.

[5] Proof Key for Code Exchange by OAuth Public Clients.
https://tools.ietf.org/html/rfc7636, 2015.

[6] General Data Protection Regulation (GDPR). Art. 5
Principles relating to processing of personal data. https:
//gdpr-info.eu/art-5-gdpr/, May 2018.

[7] Building with filter code. https://help.ifttt.com/hc/en-us/
articles/360052451954-Building-with-filter-code,
2020.

[8] California Privacy Rights Act (CPRA). https://oag.ca.
gov/privacy/, Nov. 2020.

[9] IFTTT: If This Then That. https://ifttt.com, 2020.

[10] Apache OpenWhisk is a serverless, open source cloud
platform. https://openwhisk.apache.org, 2021.

[11] Node-RED. https://nodered.org, 2021.

[12] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson,
and A. Sabelfeld. SandTrap: Securing JavaScript-driven
Trigger-Action Platforms. In USENIX Security Sympo-
sium, 2021.

[13] M. Alhanahnah, C. Stevens, and H. Bagheri. Scalable
analysis of interaction threats in iot systems. In Pro-
ceedings of the 29th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA 2020,
page 272–285, New York, NY, USA, 2020. Association
for Computing Machinery.

[14] N. Anciaux, W. Bezza, B. Nguyen, and M. Vazirgiannis.
Minexp-card: limiting data collection using a smart card.
In EDBT, pages 753–756. ACM, 2013.

[15] N. Anciaux, D. Boutara, B. Nguyen, and M. Vazirgian-
nis. Limiting data exposure in multi-label classifica-
tion processes. Fundam. Informaticae, 137(2):219–236,
2015.

[16] N. Anciaux, B. Nguyen, and M. Vazirgiannis. Limiting
data collection in application forms: A real-case appli-
cation of a founding privacy principle. In PST, pages
59–66. IEEE Computer Society, 2012.

[17] T. Antignac, D. Sands, and G. Schneider. Data minimi-
sation: A language-based approach. In SEC, volume 502
of IFIP Advances in Information and Communication
Technology, pages 442–456. Springer, 2017.

[18] M. Balliu, I. Bastys, and A. Sabelfeld. Securing IoT
Apps. IEEE Security & Privacy Magazine, 2019.

[19] I. Bastys, M. Balliu, and A. Sabelfeld. If This Then
What? Controlling Flows in IoT Apps. In ACM Confer-
ence on Computer and Communications Security, 2018.

[20] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. D.
McDaniel. Program Analysis of Commodity IoT Appli-
cations for Security and Privacy: Challenges and Oppor-
tunities. ACM Computing Surveys, 2019.

[21] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H.
Lai. Sgxpectre: Stealing intel secrets from sgx enclaves
via speculative execution. In 2019 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pages 142–
157, 2019.

[22] Y. Chen, A. R. Chowdhury, R. Wang, A. Sabelfeld,
R. Chatterjee, and E. Fernandes. Data Privacy in Trigger-
Action Systems. In IEEE Symposium on Security and
Privacy, 2021.

[23] Y.-H. Chiang, H.-C. Hsiao, C.-M. Yu, and T. H.-J. Kim.
On the privacy risks of compromised trigger-action plat-
forms. In L. Chen, N. Li, K. Liang, and S. Schneider,
editors, Computer Security – ESORICS 2020, 2020.

[24] djblend777. Private links and photos from
https://locker.ifttt.com - how to clear history?
https://www.reddit.com/r/ifttt/comments/ao3sfr/
private_links_and_photos_from_httpslockeriftttcom/,
2019.

[25] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. De-
centralized action integrity for trigger-action iot plat-
forms. In Proceedings 2018 Network and Distributed
System Security Symposium, 2018.

https://ifttt.com/applets/CfSd6B9w
https://ifttt.com/applets/CfSd6B9w
https://ifttt.com/applets/DfUKrQkt
https://ifttt.com/applets/cFX5ETAs
https://ifttt.com/applets/TafsT2nY
https://ifttt.com/applets/TafsT2nY
https://tools.ietf.org/html/rfc7636
https://gdpr-info.eu/art-5-gdpr/
https://gdpr-info.eu/art-5-gdpr/
https://help.ifttt.com/hc/en-us/articles/360052451954-Building-with-filter-code
https://help.ifttt.com/hc/en-us/articles/360052451954-Building-with-filter-code
https://oag.ca.gov/privacy/
https://oag.ca.gov/privacy/
https://ifttt.com
https://openwhisk.apache.org
https://nodered.org
https://locker.ifttt.com
https://www.reddit.com/r/ifttt/comments/ao3sfr/private_links_and_photos_from_httpslockeriftttcom/
https://www.reddit.com/r/ifttt/comments/ao3sfr/private_links_and_photos_from_httpslockeriftttcom/

[26] C. Flanagan and S. Qadeer. Predicate abstraction for
software verification. In POPL, pages 191–202. ACM,
2002.

[27] J. Goguen and J. Meseguer. Security policies and secu-
rity models. In IEEE S&P, 1982.

[28] A. Hern. Uber employees ’spied on ex-
partners, politicians and Beyoncé’, 2016. https:
//www.theguardian.com/technology/2016/dec/13/
uber-employees-spying-ex-partners-politicians-beyonce.

[29] IFTTT. Applets Cookbook. https://platform.ifttt.com/
docs/applets#applets-cookbook, 2018.

[30] IFTTT. Important update about the Gmail ser-
vice. https://help.ifttt.com/hc/en-us/articles/
360020249393-Important-update-about-the-Gmail-service,
2019.

[31] IFTTT. IFTTT: Creating Applets. https://platform.ifttt.
com/docs/applets, 2020.

[32] IFTTT. IFTTT: Number of Users and Online Services.
https://platform.ifttt.com/plans, 2020.

[33] IFTTT. IFTTT: Service API requirements. https://
platform.ifttt.com/docs/api_reference, 2020.

[34] IFTTT. IFTTT’s Glossary: Query. https://platform.ifttt.
com/docs/glossary#query, 2020.

[35] M. Laverdet. Secure & Isolated JS Environments for
Node.js. https://github.com/laverdet/isolated-vm, 2020.

[36] D. Lee. Uber concealed huge data breach, 2017. http:
//www.bbc.com/news/technology-42075306.

[37] B. Loring, D. Mitchell, and J. Kinder. Expose: prac-
tical symbolic execution of standalone javascript. In
Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, pages
196–199, 2017.

[38] J. A. Martin and M. Finnegan. What is IFTTT? How
to use If This, Then That services. Computerworld.
https://www.computerworld.com/article/3239304/
what-is-ifttt-how-to-use-if-this-then-that-services.
html, 2019.

[39] X. Mi, F. Qian, Y. Zhang, and X. Wang. An empirical
characterization of ifttt: ecosystem, usage, and perfor-
mance. In Proceedings of the 2017 Internet Measure-
ment Conference, pages 398–404, 2017.

[40] Microsoft Power Automate. https://flow.microsoft.com/,
2020.

[41] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck,
D. Gruss, and F. Piessens. Plundervolt: Software-based
fault injection attacks against intel sgx. In Proceedings
of the 41st IEEE Symposium on Security and Privacy
(S&P’20), 2020.

[42] F. Nielson, H. R. Nielson, and C. Hankin. Principles of
program analysis. Springer, 1999.

[43] S. Pinisetty, T. Antignac, D. Sands, and G. Schneider.
Monitoring data minimisation. CoRR, abs/1801.02484,
2018.

[44] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, 1975.

[45] S. Schoettler, A. Thompson, R. Gopalakrishna, and
T. Gupta. Walnut: A low-trust trigger-action platform,
2020. https://arxiv.org/pdf/2009.12447.pdf.

[46] B. Ur, M. Pak Yong Ho, S. Brawner, J. Lee, S. Men-
nicken, N. Picard, D. Schulze, and M. L. Littman.
Trigger-action programming in the wild: An analysis of
200,000 ifttt recipes. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems,
pages 3227–3231, 2016.

[47] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting the
keys to the Intel SGX kingdom with transient out-of-
order execution. In Proceedings of the 27th USENIX Se-
curity Symposium. USENIX Association, August 2018.

[48] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A.
Gunter. Charting the attack surface of trigger-action iot
platforms. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

[49] Q. Wang, W. U. Hassan, A. Bates, and C. A. Gunter. Fear
and logging in the internet of things. In 25th Annual
Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-
21, 2018. The Internet Society, 2018.

[50] R. Xu, Q. Zeng, L. Zhu, H. Chi, X. Du, and M. Guizani.
Privacy leakage in smart homes and its mitigation:
IFTTT as a case study. IEEE Access, 7:63457–63471,
2019.

[51] Zapier. https://zapier.com, 2020.

[52] Zapier. Zapier Platform CLI Docs. https://platform.
zapier.com/cli_docs/docs, 2020.

https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce
https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce
https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce
https://platform.ifttt.com/docs/applets#applets-cookbook
https://platform.ifttt.com/docs/applets#applets-cookbook
https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://platform.ifttt.com/docs/applets
https://platform.ifttt.com/docs/applets
https://platform.ifttt.com/plans
https://platform.ifttt.com/docs/api_reference
https://platform.ifttt.com/docs/api_reference
https://platform.ifttt.com/docs/glossary#query
https://platform.ifttt.com/docs/glossary#query
https://github.com/laverdet/isolated-vm
http://www.bbc.com/news/technology-42075306
http://www.bbc.com/news/technology-42075306
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://flow.microsoft.com/
https://arxiv.org/pdf/2009.12447.pdf
https://zapier.com
https://platform.zapier.com/cli_docs/docs
https://platform.zapier.com/cli_docs/docs

[53] I. Zavalyshyn, N. Santos, R. Sadre, and A. Legay. My
House, My Rules: A Private-by-Design Smart Home
Platform. In EAI MobiQuitous, 2020.

A Security of minTAP
We consider an adaptive attacker (per our threat model, an
untrustworthy TAP) who, given knowledge of how minTAP
works, tries to circumvent its protections. minTAP enforces
three security invariants: (1) only the client should obtain the
client access token, (2) the trigger service should only accept
the public keys from the client, and (3) the attacker cannot
modify the user’s intended rule configuration or minimizer
information without being detected. We consider each phase
of a trigger-action rule’s lifecycle and discuss how minTAP
maintains the invariants despite the attacker’s actions without
introducing new security vulnerabilities.

A.1 Service Authorization Phase
This phase has to ensure the first two security invariants: only
the user’s client can obtain the client token and successfully
upload its public key to the trigger service. As the attacker
is not a global network attacker and has not compromised
the victim’s browser, it cannot manipulate communication
between the client and the trigger service (Step 2-3, 5*-6*).
However, it can try to trick the trigger service by impersonat-
ing the user’s client in the following ways:

Directly request client token. The attacker could try to di-
rectly request a client token for a specific victim user by
initiating the OAuth protocol in the background. However,
this requires either the user’s credential for the trigger service
account or the code verifier generated by the client — neither
is accessible to the attacker per our threat model.

Interfere with ongoing authorization. IFTTT could try to
tamper with an ongoing authorization session (e.g., by ap-
pending its own code challenge). However, per our threat
model, the client is trusted (and in the case of our implemen-
tation, the client is an extension that is protected from IFTTT
by the browser security model), thus preventing IFTTT from
manipulating this process — the client extension will always
intercept any redirects pertaining to OAuth.

Modify OAuth parameters. If the attacker modifies any
OAuth parameters (e.g., scope or redirect URL), it will deviate
from the original OAuth code authorization flow and result
in an authorization failure, amounting to a denial of service
(outside the scope of our work).

Upload its own key. As mentioned in Section 6.1, the ac-
cess token acquired by IFTTT in Step 6 does not have the
permission to upload new public keys to the trigger service —
only the client token has such permission. As we have shown
above, the attacker cannot obtain the client token under our
threat model. Therefore, the second invariant holds.

A.2 Rule Setup Phase
The attacker could try to manipulate the rule and any support
information that minTAP generates. We discuss how minTAP
detects any manipulation during this phase. At a high level,
the client only retrieves a trusted list of triggers and actions
directly from service endpoints and directly communicates the
entire rule and signature information to the IFTTT backend.

Modify trigger and action fields. The attacker may present
false information to the user client during Step 1. For example,
it may add a fake action field, tricking the user to use more
trigger attributes. As discussed, minTAP’s compatibility layer
provides an API for the client to directly retrieve a trusted set
of triggers and attributes.

Modify user’s inputs. This is not possible because the user
only interacts with the client that is isolated from the IFTTT
frontend code by the browser security model. The client even-
tually communicates the programmed rule and its signature
directly to the IFTTT backend. At that point, the attacker can
attempt to manipulate the information, but that will violate
the signature, as we show next.

A.3 Rule Execution Phase
Finally, we discuss how minTAP prevents the attacker from
changing its request to the trigger service, which consists of
the rule configuration and the minimizer-signature tuple, to
access unwarranted user data. This completes the analysis
and fully ensures the third security invariant.

Modify trigger fields. This will cause the signature verifica-
tion to fail, since all of the original trigger fields are among
the information signed during Step 5 of the rule setup phase.

Modify minimizer-signature tuple (m,σ). Dropping the
(m,σ) tuple for users who have uploaded their public keys
will lead to a denial of service. As ensured by the second
security invariant, the attacker cannot upload its own public
key to the trigger service and thus cannot forge the signature.
However, it may attempt to swap the correct (m,σ) tuple of
this rule with another tuple, (m′,σ′), from a different rule. If
(m′,σ′) is generated by another user, σ′ will not match the
current user’s public key. If (m′,σ′) is generated by the same
user but for a different trigger provided by the same service,
it will also lead to a signature mismatch, as the trigger info
(trigger name and trigger fields) is also among the information
signed. If (m′,σ′) is generated by the same user and for the
same trigger but more overprivileged (i.e. requires more trig-
ger attributes compared to the one in question), this request
will be accepted but the attacker cannot gain any new infor-
mation, as it may also acquire this information by honestly
executing that overprivileged rule (which is just another valid
rule created by the user). Finally, the attacker can send (m,σ)
for a rule that was previously deleted — this attack will not
work because deletion would trigger a change in the signing
key, invalidating older signatures (Section 8).

Rule: Add All Day Event For Office

Filter Code

……

Google Calendar: New event added

Google Calendar: Add detailed event

In The OfficeTitle

Title: Title
Description: Description

Location: Where
Starts: Starts
Ends: Ends

Created: CreatedAt

Description

Title starts StartsLocation

if (GoogleCalendar.newEventAdded.Where.indexOf("[some street address]") < 0)
{

GoogleCalendar.addDetailedEvent.skip();
} else {

GoogleCalendar.addDetailedEvent.setDescription("In the office from "
+ GoogleCalendar.newEventAdded.Starts + " to "
+ GoogleCalendar.newEventAdded.Ends);

GoogleCalendar.addDetailedEvent.setAllDay("true");
GoogleCalendar.addDetailedEvent.setStartTime(GoogleCalendar.newEventAdded.Starts);
GoogleCalendar.addDetailedEvent.setEndTime(GoogleCalendar.newEventAdded.Ends);

}

Figure 13: Example IFTTT rule with filter code.

All attributes
With static With dynamic minimizer
minimizer when not skip-

ping
when skipping

Title, Descrip-
tion, Where,
Starts, Ends,
EventUrl, Video-
CallUrl, Create-
dAt

Title, Descrip-
tion, Where,
Starts, Ends,
EventUrl, Video-
CallUrl, Create-
dAt

Title, Descrip-
tion, Where,
Starts, Ends,
EventUrl, Video-
CallUrl, Create-
dAt

Title, Descrip-
tion, Where,
Starts, Ends,
EventUrl, Video-
CallUrl, Create-
dAt

Figure 14: The outcomes of applying different minimizers to
the example rule in Fig. 13.

B Example IFTTT Rule
In Fig. 13, we present an IFTTT rule [1] with filter code in
our dataset. This rule converts a Google Calendar event that
occurs in the user’s office location to a detailed all-day event.
We compare the outcomes of applying different minimizers
in Fig. 14.

C Attribute Category Criteria
We list below the detailed criteria for how we determine which
category each attribute belongs to in our evaluation of privacy
benefits (Section 7.2). We note that there are overlappings
between different categories. For example, an attribute named
LocationMapImageUrl counts as both location and down-
loadable link. However, we use the third criteria to ensure
there are no overlappings between categories of different sen-
sitivity levels.

Timestamp. In IFTTT, attributes representing timestamps
are conventionally named in the format of xxxxAt, such as
OccurredAt or CreatedAt. Other common attribute names
include Date and Time.

Link. For all attributes we inspected of this category,
their names include either Link or Url. Furthermore,
we found that, out of these attributes, the ones whose
links are access-controlled (i.e. user’s login creden-

tials are required to access the information) are usu-
ally named as PublicUrl or EventUrl. On the con-
trary, links that can be used to directly download files
often start with one of the following keywords in
their names: Image, File, Video, Download, Record,
Document, Mp3, Photo, Audio, Picture, Share, and
Source.

Location. Location attributes contain one of these key-
words: Location, Longitude, Latitude, Where, and
Address.

User Info. Attributes in this category reveal information
about the user, including the user’s real name (FullName), on-
line identity (Username, User, Member), and their contact
information (Contact, Email, Number, From, To).

Event description. Attributes in this category provide
descriptive texts to the trigger event, including ProjectName,
TaskName, EventName, Description, About,
Note, Title, Tag, Summary, HTML, Section,
Field, Column, Row, Caption, FirstLinkUrl, and
EmbeddedCode.

Message. Attributes pertain to a text message or an email
includes Message, Body, Text, Content, and Subject.

Bookmark. Attributes related to a article or webpage book-
marked by the user usually includes the keywords Article,
Website, or Page.

Other. Other attributes that we found containing sensitive
information include financial information (Transaction,
Money, Payment, Amount), smart home (Temp, Pm, Co2,
Humidity, Indoor, Air, Concentration, Device,
Sensor, Camera,Thermostat, Switch, Doorbell,
Home, EnterOrExited), event duration (Ends, Duration),
and reminder lists (List).

	Introduction
	Trigger-Action Platform Background
	Data Privacy in Overprivileged Trigger-Action Platforms
	Threat Model and Design Goals
	Threat Model
	Design Goals
	Potential Solutions and Challenges

	Data Minimization Model
	minTAP Framework
	Service Authorization Phase
	Rule Setup Phase
	Rule Execution Phase

	Evaluation
	Dataset
	Privacy Benefits
	Performance Evaluation
	Latency of the Client
	Overhead of the Modified Compatibility Layer

	Discussion
	Related work
	Conclusion
	Security of minTAP
	Service Authorization Phase
	Rule Setup Phase
	Rule Execution Phase

	Example IFTTT Rule
	Attribute Category Criteria

