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Figure 1: Our system aims to support data-driven article readings for people with visual impairments. We use an active learning
approach to learn individual users’ preferences to generate personalized data facts presented alongside a data-driven article.

ABSTRACT
Data-driven news articles are widely used to communicate societal
phenomena with concrete evidence. These articles are often accom-
panied by a visualization, helping readers to contextualize content.
However, blind and low vision (BLV) individuals have limited ac-
cess to visualizations, hindering a deep understanding of data. We
explore the possibility of dynamically generating data facts (texts
describing data patterns in a chart) for BLV individuals based on
their preferences to aid the reading of such articles. We conduct a
formative study to understand how they perceive system-generated
data facts and the factors influencing their preferences. The results
indicate the preferences are highly varied among individuals, and
a simple preference elicitation alone induces noise. Based on the
findings, we developed a method to personalize the data facts gen-
eration using an active learning approach. The evaluation studies
demonstrate that our model converges effectively and provides
more preferable sets of data facts than the baseline.
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1 INTRODUCTION
As the world becomes data-driven, data journalism has emerged
as a new standard for communicating societal phenomena. In fact,
majormedia outlets publicly share the practice of using data in news
articles (e.g., [1]); technical reports and books introduce principles
around authoring data-driven articles (e.g., [10, 11]). One prominent
strategy is the use of visualizations, as highlighted by Gray et al. in
their popular handbook [10], where visualizations are described as
“the workhorse of data journalism.”

Sighted readers can benefit from visualizations in data-driven
articles in many ways. They may be able to draw their own conclu-
sions or examine other aspects of the data that the article does not
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cover. Also, the reader might be able to navigate the news article in
a “Martini Glass fashion” where first a reader follows the provided
narrative via the article text and other devices and explores the
aspects of the visualization they consider most interesting later [66].

However, these tasks are not accessible to blind and low vision
(BLV) individuals who rely on screen readers to parse information
online. They can only access the data by reading the article text, the
visualization’s alternative text if provided, or text labels if the visual-
ization is in an SVG format. Even with carefully crafted alternative
text, it is often challenging to comprehend the various patterns of
the underlying data since most alternative text describes the most
salient patterns or provides a simple overview of the visualization.
When inquired, BLV individuals expressed the desire to conduct
similar tasks as what sighted people would do when they encounter
visualizations, such as probing aspects of the data not described in
the article or inspecting the claims of the author and drawing their
own conclusions [38].

To support these needs further, we explore the possibility of
dynamically generating data facts to aid the reading of data-driven
articles for BLV individuals based on their preferences. Data facts
refer to a textual description of the result of one or more statisti-
cal functions applied to the data used to create a visualization [73].
Since BLV individuals have limited access to various aspects of data,
we wish to present extra data facts beyond what the article offers
to enhance data accessibility. However, as illustrated in Figure 2 (a),
the space of possible data facts can be vast, as it results from the
combination of all data cells with the various types of data facts.
Given the size of the data fact space, we need a method to rank the
generated facts so that a handful of facts users might get the most
benefit out of should be presented. Prior works propose to rank
the facts based on several factors such as the statistical significance
(e.g., prioritize facts that describe a sharp increase over facts, not
a monotonic trend) and the impact of the data fact [72, 77]. Fac-
tors allow parameterizing the fact space by surfacing high-level
characteristics of data facts. However, the factors used in the prior
work may not be sufficient to support BLV individuals’ needs and
preferences. Therefore, we conducted a formative study with 11
BLV participants to understand how they perceive the value of
system-generated data facts and their preferences on data facts and
factors. Our result shows that participants were excited about the
idea, stating that such a system could help them further engage
with data-driven articles. We found that participants’ preferences
toward which data facts varied dramatically from user to user, thus
motivating a personalized approach when ranking data facts for a
user. Also, in addition to the four factors that we devised informed
by prior work and hypothesis, several participants proposed an
additional factor related to personal contexts. As we observed an
elicitation noise in this study, we also decided to improve the ro-
bustness of our system by learning their preferences through active
learning.

We build a system that ranks data facts based on a user’s prefer-
ences given a data-driven news article. Our system uses high-level
factors and features to model the data fact space effectively derived
from prior work and our formative study. Our system uses a batch
active learning model to learn individual preferences. It updates a
user’s preferences based on several example-based pair-wise queries

answered by the user. The queries are formulated using maximum
volume removal in combination with successive elimination [8] to
maximize the learning from each query and minimize the number
of the user’s inputs. Our system further allows users to inform
the model while reading a news article after the initial training to
curate their preferences continuously. Our performance evaluation
demonstrates that our model could learn users’ preferences with
less than ten batches of queries. User study results indicate that our
model provides a preferable set of data facts compared to a set gen-
erated by user-indicated weights alone and a set that is randomly
generated.

Our contribution includes a system that generates data facts
based on BLV individuals’ preferences. Our system offers dynamic
support tailored to individual users while reading data-driven ar-
ticles. Our system improves the accessibility of data by providing
personalized data facts. Through our formative study, we contribute
an empirical understanding of individual variances in data fact pref-
erences and a set of requirements for preference-based data fact
generation. Through our evaluative studies, we demonstrate the
feasibility and the performance of the personalized model.

2 BACKGROUND & RELATEDWORK
2.1 Supporting data-driven document reading
Narrative visualizations [66] can support the reading of data-driven
documents by conveying stories around data with visuals. The visu-
alizations surface patterns that the story describes, often accompa-
nying annotations on the top of the visualizations, aiding readers to
contextualize data with the story and vice versa. A great number of
prior works explore how to design an effective narrative visualiza-
tion (e.g., [12, 36, 49, 54, 63, 81]) and how to automatically generate
the annotation overlay on top of the visualizations (e.g., [28, 36, 45]).
In the context of a data-driven document, identifying links between
the data and the corresponding text facilitates the development of
useful features [42, 45, 46]. Several papers try different interfaces
to display the identified link to support both the author [74] and
the reader [4, 47, 55]. They find that providing the link between the
text and the chart can help participants understand the document
better. Some other works also explore the use of familiar analogies
to help readers contextualize measurements and complex statistical
information while reading data-driven documents [37, 43, 44].

These prior work assumes that the user can see the visualiza-
tion and leverage their visual perceptions to support readings and
understanding the article. Our work supports BLV individuals’ data-
driven article readings by providing additional contexts around
visualizations and the underlying data.

2.2 Generating data facts & description
A data fact refers to a statement that illustrates “patterns, relation-
ships, or anomalies extracted from data under analysis” [17]. Many
automated systems are proposed to generate various types of data
facts based on their context via Natural Language Generation (NLG)
using template-based approaches [17, 21, 72, 73, 77] or deep neural
networks [16, 35, 59]. Several taxonomies have been proposed to
classify the type of data facts. Chen et al. [17] propose a taxonomy
consisting of 12 data fact types based on a literature survey on
visualization task taxonomies, user studies, and domain experts’
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(b) Factors
Value facts: 
There are 21 countries, which is U.S., Britain, […]
The average percentage of the responses is 47.26%.
[…]
Difference facts:
"The difference between U.S. and France in Hard 
work no guarantee is 34%”
[…]
Proportion facts: […]

Value significance
Chart type
Similarity
Data coverage
Personal

(a) Data fact space
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Figure 2: (a) The data fact space is created by conjugating all possible data cells combined with different fact types. (b) The
factors to model the fact space, informed by prior work and formative study.

feedback. Recent work done by Wang et al. [77] refines this tax-
onomy by contextualizing the existing taxonomy with real-world
examples, resulting in 11 categories. In addition to presenting the
taxonomy, they propose a pipeline, DataShot, to generate a fact
sheet (i.e., a set of data facts) automatically from tabular data [77].
Most recently, Calliope, a system, further streamlines the type of
data facts based on the redundancy of fact definitions to generate
data stories automatically [72] and ChartStory [80] focuses specif-
ically on how to design the interface to present a set of charts
based on clustering them with chart specifications. In our work,
we followed Calliope’s approach to generating data facts. We con-
sidered their proposed approaches, in addition to factors that we
identified from other prior work and the formative study, to rank
the data facts based on individual users’ preferences. Also, none of
the prior work offers a solution tailored to BLV individuals where
some unique considerations should be applied, such as taking into
account whether the data is covered by the article or not.

2.3 Making visualization accessible via text
description

Recently, Marriott et al. [53] analyzed the current state of visualiza-
tion for people with disabilities and raised the need to investigate
multiple modalities for data presentation and develop automatic
tools to improve the accessibility of data visualizations so that peo-
ple with disabilities could consume them. Among others, describing
visualizations with text is one of the economical and effective ways
to convey visual information to BLV individuals. Prior work has
investigated how to support BLV individuals when interacting with
visualizations using text modality [14, 26, 27, 30, 58, 69]. Sharif et
al. [68] conduct an empirical study exploring the experiences of
screen-reader users when encountering online data visualization.
The study reveals the lack of support for screen-reader users on
online data visualization and raises several design recommenda-
tions implied from their study. They suggest that screen-reader
users should be provided with both a holistic view of the data and
drilled-down exploration given an online data visualization. In ad-
dition, because of the missing or unstable quality of the alternative
text of visualization, they strongly suggest that alternative text
could be auto-generated with the underlying data and be personal-
ized to individual preferences. General guidelines [38], conceptual
model [51], and interactive tool (e.g., VoxLens [70], SeeChart [2],
ChartVi [57] are proposed to provide better alternative text to sup-
port the accessibility of visualization for BLV individuals. While the
usefulness of some aspects of semantics and elements in the text de-
scription has been explored, none of the work aims to support BLV

individuals when reading data-driven articles that include accompa-
nying text descriptions. These descriptions might provide guidance
on how to interpret visualizations, highlight crucial information,
and determine what details may be unnecessary to elaborate upon.
Also, none of them take the personalized approach to tailor to the
individual’s needs.

2.4 Elicitating preference & learning preference
Preference elicitation and learning weights (importance) of factors
based on the users’ responses have been investigated in various
academic communities, including information retrieval, machine
learning, and behavioral economics (e.g., [24, 25]). As opposed to
directly eliciting the weights from users, query-based learning ap-
proaches leverage active learning, a machine learning approach,
where the model iteratively queries users to label and learn from
the labels. Prior works deployed the technique in the preference
learning context with various models, including random, best N,
max diversity, and max novelty [29] and balancing exploitation
and exploration [13]. Biyik and Sadigh [9] investigated users’ pref-
erences using batch active learning of a reward function. They
employ pair-wise queries to ask users to provide their preferences.
Within the visualization community, some applications proposed
to learn users’ preferences on data attributes to support data ex-
ploration [15, 31, 60, 71, 75, 76]. For example, Podium ranks the
data attributes based on the user’s interaction and infers the true
weights using the Ranking SVM.

In our work, we built upon the query selection method suggested
by Biyik and Sadigh [9]. We further devised adjusted pair-wise
queries (beyond pair-wise ones often used) by hypothesizing the
noise reduction, and we explored how it performs compared with
the pair-wisemethod. Contrary tomost prior works related to active
learning, which were evaluated with simulation, we evaluated our
approach with users in a practical scenario.

3 FORMATIVE STUDY
We conducted a formative study to learn about BLV individuals’
needs and preferences on a system that can generate data facts
for them while reading online articles. Specifically, the goal of the
study was to understand 1) how BLV individuals perceive the value
of a system that generates extra data facts beyond the article text,
2) which data facts they prefer to see alongside articles, 3) which
factors they value more when the system needs to rank data facts
for them, and 4) any other factors that BLV individuals foresee their
usefulness. Our study includes open-ended responses and ranking
elicitation regarding participants’ preferences.
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Figure 3: The visualization, the corresponding alternative text, and the article text used in the study. All participants examined
all three stimuli.

3.1 Participants
We solicited the study using the emailing list of organizations serv-
ing BLV individuals. Our recruitment criteria were 1) at least 18
years old, 2) legally blind, and 3) screen-reader users. Eleven par-
ticipants reached out to us. Once participants agreed to partici-
pate, we sent the Qualtrics1 link that contains the study material.
Participants completed the study by themselves. Five of them self-
identified as female and six as male. The ages ranged from 25 to 53
(M=36.9, SD=9.86). The study took 38.8 minutes on average, with
a standard deviation of approximately 21.5 minutes. Participants
were compensated with a $20 gift card for their participation.

3.2 Data facts and factors
In our study, we used the fact types by Shi et al. [72], which includes
nine types after excluding the distribution fact type since they are
visually described (e.g., the distribution of the data is [an image of
histogram]).

• Value facts: Facts related to individual data values or the aggregated
value. “The average percentage of people who believe hard work
doesn’t guarantee success is 47.26%.”

• Difference facts: Facts related to the difference between categories.
“The difference of percentage of people who believe hard work
doesn’t guarantee success between U.S. and Britain is 21.0%.”

• Proportion facts: Facts related to the proportion within and across
categories. “The number of respondents who believe hard work
doesn’t guarantee success in Spain is 43.0% of the total respondents.”

• Ranking facts: Facts related to ranking. “The top three countries
where the most people believe they will succeed if they work hard
are Tunisia, U.S., and Pakistan.”

1The formative study data for this paper was generated using Qualtrics software.
Copyright © 2022 Qualtrics. Qualtrics and all other Qualtrics product or service
names are registered trademarks or trademarks of Qualtrics, Provo, UT, USA.
https://www.qualtrics.com

• Categorization facts: Facts related to categories presented in the
data. “There are two response categories which are Hard work no
guarantee and Most succeed if work hard.”

• Trend facts: Facts related to trends over time. “The percentage
of people who believe they will succeed if they work hard has a
decreasing trend over the years between 2018 and 2021.”

• Extreme facts: Facts related to minimum and maximum. “The mini-
mum percentage of people who believe hard work doesn’t guarantee
success is 15.0% over all countries.”

• Association facts: Facts related to the correlation between two
variables. “The Pearson correlation between the year and the per-
centage of people who believe they will succeed if they work hard
is -0.68.”

• Outlier facts: Facts related to the outliers in the data. “The percent-
age of people who believe hard work doesn’t guarantee success in
Pakistan is detected as an outlier.”

The following are factors that characterize the data fact space.
We included a factor (value significance factor) from prior work
directly related to data fact generation [72, 77], two factors (chart
type factor, similarity factor) identified visualization perception
experiments and one factor (data coverage factor) based on our
assumption of their usefulness in supporting BLV individuals.

• Value significance factor is related to the statistical significance
and the impact of the data cells that a data fact covers [72, 77]. For
example, “The Pearson correlation between the budget and the year
is 0.99.” has a higher value significance than “On average 42% of
the respondents think that hard work will guarantee success. ” as
the former example contains a higher significant number (0.99) and
covers more cells (budget and year).

• Chart type factor measures the intuitiveness of data facts given
the visualization type (e.g., bar chart, line chart). Prior work indi-
cates people prefer different chart types based on the tasks [62]. For
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example, people might be more interested in learning proportional
facts than other types given a pie chart.

• Similarity factor is related to how the data fact is similar to the data
fact type manifested in the article texts, approximated by a similarity
measure. Similar to the exploration and exploitation problem that
an algorithm can encounter [20], users can also face the problem of
balancing the breadth and depth of new information. A user might
prefer to see more data facts constructed similar to what is already
presented to explore the breadth of the dataset, or they might prefer
to examine data from a different angle (i.e., different data fact type).

• Data coverage factor is related to whether the data point(s) that
the data fact describes is mentioned in the article or not. Prior work
indicates that BLV individuals wish to examine the data that are not
mentioned in the article [38]. We envision providing information
not mentioned in the article will add value to the BLV individuals’
understanding of data.

3.3 Study design
Part 1: Demographic information We first asked for demo-
graphic information, including gender, education, and occupation.
We also asked whether they have the functional vision or light sen-
sitivity, their diagnosis, on-set age, and stability of the condition.

Part 2: Open-ended examination of visualization and text
pairs In this part, we sought to understand which aspect of the data
participants wanted to learn when reading data-driven articles. To
situate participants in a real-world visualization reading scenario,
we prepared three visualization and article pairs from Kong et al.
dataset [46]. We prepared an alternative text for each visualization
based on prior research [38]. However, to reduce the confounding
effect of their perception of data facts, we removed the description
of data trends from the alternative text. The visualizations, the al-
ternative text, and the article text used in the study are shown in
Figure 3. Participants were prompted to examine each visualization
on a separate page. Each page contains a visualization and the cor-
responding article paragraph. To make the procedure smooth for
participants with their screen readers, we added text before and
after introducing the visualization and the article paragraph to help
participants understand the structure of the page and locate them-
selves (Details can be found in the supplementary material). Then,
we asked a question related to what other data-related information
beyond the given article text they would like to know more about.
We later analyzed these open-ended questions to see whether the
existing data fact types were enough to fulfill what participants
wanted. We did not introduce any notions of data fact or the factors
in this stage to avoid priming the participants.

Part 3: Understanding preference & the perceived value
Part 3 is designed to learn BLV individuals’ preferences on data
facts and factors as well as to understand BLV individuals’ overall
perceived usefulness of a system that offers additional data facts
beyond those given in the article. We first explained to BLV individ-
uals the different types of data facts with examples (Details can be
found in the supplementary material). To reduce the cognitive load
of understanding the concepts, we provided examples for each fact
type using the datasets they examined in Part 2. Then, participants
were asked to elaborate on what types of facts they preferred to see

when they read any data-driven articles. We allowed participants
to select multiple data fact types and elaborate on the reasons.

Next, we presented information related to the four factors, de-
scribing them using the examples in Part 2 when possible. Then,
we prompted them to think about each factor. We asked questions
related to the directional preference of two factors: similarity factor
and data coverage factor. While it is apparent that valuable data
facts should be statistically significant and intuitive given the vi-
sualization type, other factors like similarity and data coverage
may depend on a user’s preference. For example, some users might
want to knowmore about the data presented in the article (negative
weight for data coverage factor), while others may want to see some
facts related to unmentioned data (positive weight for data coverage
factor). Also, some users might prefer data facts structured similarly
to the presented article (positive similarity factor), whereas other
users might prefer otherwise (negative similarity factor).

After prompting the directional preferences, we asked partici-
pants to rank the four factors in order of importance for data fact
generation. We utilized two popular methods [24, 41] to compen-
sate for the noise of the elicitation. First, we asked the participants
to rank the factors using integers between 1 to 4 (1 being the most
important and four being the least important). We also asked them
to allocate 100 balls to these four factors based on their importance.
We explained that they could enter 25 each if they equally valued
each factor. We also mentioned the response doesn’t need to sum
up to exactly 100. While it might be difficult for participants who
do not have expertise in data analytics and visualization, we asked
them to describe other factors that may influence their preferences
for data facts in case they have any.

After these questions, we asked participants to indicate the per-
ceived usefulness of the system that generates extra data facts based
on their preferences and willingness to use the system using the 7
Likert Scale (Extremely useful-extremely useless, extremely likely-
extremely unlikely) and describe the rationales for their rating.
More details are described in the supplementary material.

3.4 Results
3.4.1 Is the data fact taxonomy enough? We analyzed the result
of the open-ended question from Part 2. Participants were not
exposed to any data fact and factor taxonomy when they answered
this question. Two coders reviewed the responses and classified
them with the taxonomy suggested by Shi et al. [72]. If none of the
types can be applied, the coder did not classify the response. Later,
the two coders discussed their results until 100% agreement. The
final result shows that 90% (30 out of 33 responses) of the responses
fell into one of the data fact types suggested by Shi et al. [72] (Fig. 5),
indicating that the existing taxonomy covers most of the data facts
participants desired to know. The responses unable to be classified
were about the data or visualization themselves, instead of data
fact related. P10 stated they wished to know more about “specific
measurements for the x and y-axis” and P11 was curious about
“types of data.”

3.4.2 Preference on data fact types. After the open-ended questions,
participants were asked to read data fact taxonomy and choose the
type of data facts they might be interested in knowing. Figure 5
shows the result. 7 out of 11 participants prefer to see extreme facts,
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Figure 4: The result of direct ranking and the assigning balls
approach of the four factors by each participant. Each line
represents a participant. It shows a large variance among
individuals.

followed by ranking facts (6/11). Value, Differences, and Trend
facts were equally preferred by participants (5/11). No participants
indicated they wished to see outlier facts. Their preferences varied
in terms of the types of facts and the number of different types of
facts they were interested in.
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Figure 5: The result of data fact preferences. Each color rep-
resents a participant.

3.4.3 Preference of the factors. First, we analyzed the directional
preference for the two factors (similarity and data coverage factor).

Directional preferences for similarity factor: 8 out of 11
participants indicated that they prefer to see more data facts of
a similar type to those mentioned in the article. 3 participants
indicated otherwise; they prefer to see more data facts that are
different fact types than the article contained.

The directional preferences for data coverage factor: 6 out
of 11 participants indicated that they prefer to see more data facts
illustrated in the data that are not mentioned in the article, whereas
5 participants indicated otherwise.

Elicited ranking of the four factors: We elicited the prefer-
ences in two ways: direct ranking using numerical values ranging
from 1 to 4 and assigning 100 balls to each factor. Whenwe analyzed
direct ranking answers, each factor’s average ranking was similar.
For example, the mean ranking value for the value significance
factor and chart type factor was 2.4, the similarity factor was 2.3,
and the data coverage factor was 2.5. These results indicate that all
factors are similarly important on average. However, we observed a
large individual variance. Figure 4(a) shows how individuals’ rank-
ing on each factor varies in their preferences. This large variance
suggested that applying fixed weights for the factors (e.g., the av-
erage value) to generate data facts may not satisfy many users. A
similar analysis conducted on the responses to the ball assignment
elicitation technique corroborated these findings (Figure 4(b)). As
expected, the results of the two elicitation methods were not always
aligned. For example, P4 indicated that they preferred the similarity
factor over the data coverage factor when we elicited directly but
assigned more balls for the data coverage factor with the latter
method. The existence of this misalignment underscores the pres-
ence of potential noise when participants attempt to express their
preferences, thereby impeding their ability to articulate their true
intentions and posing challenges for us to accurately capture them.

Other suggested factorsWhile most participants indicated that
the four factors presented were sufficient to cover their preference,
two participants stated another factor, which P1 called the “personal
interest” factor. P1 shared that data facts would be more valuable if
they had “geographic relevance to me”. P3 also stated, “people will
always care about something more if it personally relates to them.”

3.4.4 Perceived usefulness and willingness to use. Participants were
very positive about the potential of a system that would generate
personalized data facts catering to their preferences. On average,
the rating was 6.2 (out of 7, SD=0.8) when asked to rate the useful-
ness of a system that provides additional data facts based on their
preference. P6 mentioned that the system would be useful because
it would allow “to have equal access to information with sighted peo-
ple and to be able to engage with the information in the article better.”
P11 echoed this sentiment: “Some articles do not contain all the facts
I would like to know about the topic I’m reading about.” When we
asked to rate how likely they would use the system if it’s available,
the majority of participants indicated that they were likely to use
it (M=6.3, SD=1.0).

4 SYSTEM: MAKE DATA-DRIVEN ARTICLES
MORE ACCESSIBLE

We designed a system that makes data-driven articles more accessi-
ble by generating personalized data facts based on user preference.
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4.1 System requirements
We derive system requirements based on study findings.

• Personalize weights of each factor for a user
In the study, we observed participants’ preferences toward factors
vary individually, including their rankings (e.g., which factor they
prefer the most) and directional preferences of two factors. This
finding indicates that the system should accommodate individuals’
different preferences when generating data facts.
-> Our system should provide data facts generated by personalized
weights on each factor to serve an individual’s unique preferences.

• Personalization factor
Two participants indicated they would like to see data facts gener-
ated by considering their own circumstances. For example, partici-
pants wanted to prioritize data facts related to their own location/re-
gion. Prior work [38] also indicates that BLV individuals would like
to locate data values for their own city and state when they examine
a map.
-> Our system should include a factor that can reflect people’s per-
sonal condition.

• Better elicitation method
In the study, we asked about participants’ preferences in two differ-
ent ways that can reflect their perceived importance of the factors.
Two participants’ responses were irrational (e.g., fewer balls being
allocated to the factor identified as the most important). These in-
consistencies clearly show the responses obtained from elicitation
methods can be noisy.
-> Our system should use a better way of understanding the user’s
true weights of each factor, such as by implementing a learning
approach.

4.2 System workflow
The system is assumed to get two pieces of information investigated
by prior work. First, the system requires to get the data extracted
from the visualization. ReVision [64], ChartSense [39] and Scatter-
act [19] offer to extract the data from a visualization formatted as
bit map images and other proposed systems (e.g., [33]) can provide
the data from the visualization. Second, the system requires to have
a link between data and the article paragraph pairs [46]. Kim et
al. extensively investigated the methods to achieve this goal [42].
Given the data and the corresponding article paragraph parsed from
a data-driven article, the system follows the following five steps to
provide a personalized set of data facts.

4.2.1 Formulating data facts. Based on the approach suggested
by Shi et al. [72], the system generates all possible facts from the
given data table (Fig 2(a)). First, the system classifies the values of
each column into three categories, numerical (‘N’), categorical (‘C’),
and temporal (‘T’). Then the system extracts unique values of each
column and makes all possible combinations of those values among
non-numerical columns (i.e., categorical and temporal columns).
Then, the system uses them as filters to create subspaces. The dif-
ferent subspaces of the data are associated with unique values in
non-numerical columns or combinations of unique values across
all possible pairs of columns. To improve computational efficiency,
subspaces containing only one value are eliminated (their record is
reflected in value facts). From each subspace, the system computes

values for all data facts (e.g., values, differences, proportions, trends,
etc.) and generates data facts based on all five aggregation methods
(i.e., count, sum, average, maximum, and minimum). We used the
natural language generation template from prior work [72]. We
further tweaked some of the templates to make the sentences more
natural.

We took the following considerations:
Category expression:When referring to the columns, the orig-

inal template use syntax like “There are (count) (column name)(s)
which are (column values)." However, if the categorical column
name is not a typical categorical column name (e.g., trade provi-
sion), readers may not realize they are reading the column name.
We added an indication to solve this. For the former example, the
syntax will be ‘There are (count) (column name) categories which
are (column values)." In addition, we modified the expression to “(a
category in column 1) in (a category in temporal column 2)" (e.g.,
the stock market in September 2012) to show the category rela-
tionship when a temporal category is used together with another
category.

Subspace expression:We removed expressions about subspace
if the subspace is the entire dataset to make the fact more concise.

Numerical value expression:We used rounded percentages
instead of decimals (e.g., 1% instead of 0.01) in the proportion fact.

Aggregation method expression:We used “total" instead of
“sum" to make it sound less mathematical. Also, instead of using an
expression like “max (column name)," we used "(column name) ...
regarding their maximum value" to avoid misunderstanding.

4.2.2 Assigning weights to each data fact. Given a generated data
fact, we quantified the value of the data fact regarding the five
factors and calculated the score of each data fact by multiplying
the data fact value with the weights of the factors. To parameterize
data facts with the five factors (including the personalization factor
derived from the formative study), we curated features for each
factor.

• Value significance factor: To represent the factor, we used three
quantifications suggested by Wang et al. [77]: statistical significance
(i.e., the degree to which the fact entails a large value) , context im-
pact (i.e., whether the subspace from which the data fact is derived
from belongs to more or less frequently mentioned categories) and
focus impact (i.e., the number of cells covered by the subspace cor-
responding to a data fact). All three quantities take values between
0 and 1. Following [77], the value significance factor is summarized
as a weighted average of the three quantities, with weights of 0.6
for statistical significance, 0.2 for context impact, and 0.2 for focus
impact.

• Chart type factor: To quantify the factor, we consulted with prior
work that measures the effectiveness and preferences of analytical
tasks based on chart type [62]. This prior work uses a task taxonomy
suggested by Amar et al. [3] to investigate how different chart types
can effectively support the tasks. We bridged the taxonomy and
the data fact taxonomy that our system used [72] by comparing
its similarity in functioning (e.g., retrieve value↔ value fact, find
anomalies ↔ outlier fact, find extreme ↔ extreme fact). The two
taxonomies are aligned with one exception of determining range.
We used finding extreme and determining range tasks to match
with extreme facts. Then, we used the preference rankings derived
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from [62] to calculate how a data fact type can be preferred in
different chart types. We normalized the values of the rank of a
chart type of each fact type with the min-max normalization to scale
the range of the importance distribution to [0, 1]. Figure 6 shows
the weight of different fact types in different types of charts.

• Similarity factor: To calculate the factor, the system constructs a
Word2Vec representation of each sentence in the article and each
data fact by averaging the Word2Vec vector of each word contained
in the sentence and the data fact, respectively. Then calculate the
cosine similarity between the aggregated Word2Vec representation
of each sentence in the article and the data fact to quantify the
factor. We used pre-trained Word2Vec embeddings that contain 300-
dimensional vectors for 3 million words and phrases trained on the
part of the Google News dataset, with approaches provided in [56].

• Data coverage factor: To quantify the factor, the system takes
the percentage of data cells covered in the data fact covered by the
original article. To establish links between cells and sentences in the
original article covers, we used a method from Kim et al. [42]. The
system subtracts this value from 1 to make the higher value means
less coverage.

• Personalization factor: To calculate the factor, the system com-
putes the cosine similarity between Word2Vec vectors of the data
fact and the user’s location string. We get the user’s location by
analyzing their IP addresses. As Word2vec vectors are represented
with their semantics, we assumed that this similarity reflects how
the data fact is related to the location.
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Figure 6: Quantification derived from Saket et al. [62]. The
normalized values are calculated by data fact type and chart
type.

Calculating the final score for each data fact Each data fact
(𝑥) is represented by a vector consisting of five values from the
five factors, and the system predicts individual user’s data fact pref-
erences through a personalized linear model (i.e., by learning a
5-dimensional vector 𝑤 for each user) to weight the importance
of the five factors. Once trained, the system predicts how likely a
user, represented by the learned weights𝑤 , prefers a data fact, rep-
resented by a feature vector 𝑥 , through the dot product

∑5
𝑘=1𝑤𝑖𝑥𝑖 .

This score represents the user’s preferences for each data fact. A
data fact with a higher score is more likely to be preferred by the
user.

4.2.3 Learning true weights from users. To learn about users’ in-
dividual preferences, we applied an active learning approach to
reduce users’ effort as much as possible while still learning a stable
distribution of their preferences.

Step 1: eliciting initial weightsWe directly elicited each user’s
preferred weights for the five factors. The answers from direct elici-
tation contain some signals, but they can be noisy. Thus, the system
uses these answers as the initial weights for the personalized model.

For the two factors that users show a variance in the directionality,
we also asked users to provide an initial direction (i.e., whether to
prioritize or downplay a data fact based on the factor).

Step 2: solicit labels from users To train a personalized model,
we need labeled data indicating a user’s preferences. The goal is
to minimize the number of user interactions to minimize the user
burden while maximizing learning.

Our system uses a maximum volume removal approach [8] to
achieve these goals. This approach uses a pairwise query to prompt
users’ preferences. More specifically, two data facts (we will refer to
this as a query hereafter) can be given to the user, which is prompted
to choose the preferred option. The model is then trained based
on this response. Formulating the right set of queries is crucial to
maximize learning and minimize the number of queries required
to prompt the user. In other words, depending on which query
the system asks, the learning outcome will be drastically differ-
ent. Our system constructs query sets that maximize the expected
information obtained from the queries.

Specifically, the system considers all possible pairs of data facts
in the data fact space. For each specific pair, e.g., composed of data
facts A and B - represented by 𝑥𝑎 and 𝑥𝑏 , we compute the difference
between the five factors, denoted as 𝑑 .

𝑑𝐴𝐵 = 𝑥𝐴 − 𝑥𝐵 (1)

Then, based on the current user weight 𝑤 , the probability that
option A will be chosen is modeled with the following equation.

𝑝 (𝐼𝐴𝐵 | 𝑤) = min
(
1, exp

(
𝐼𝐴𝐵𝑤

𝑇𝑑𝐴𝐵

))
(2)

Conversely, the probability that option B will be chosen is modeled
with the following equation.

𝑝 (−𝐼𝐴𝐵 | 𝑤) = min
(
1, exp

(
−𝐼𝐴𝐵𝑤𝑇𝑑𝐴𝐵

))
(3)

𝐼𝐴𝐵 is the 𝑠𝑖𝑔𝑛(𝑤𝑇𝑑𝐴𝐵). 𝐼𝐴𝐵 indicates which option (A or B) should
be selected (𝐼𝐴𝐵 = 1 for option A and 𝐼𝐴𝐵 = −1 for option B)
according to the current model.

To identify which queries maximize learning, we compute how
much the model’s uncertainty could be improved based on the
query’s response. The amount of potential uncertainty reduction is
captured by the information entropy of each data fact pair:

𝑈𝑖 = min {𝐸 [1 − 𝑝 (𝐼𝑖 | 𝑤)] , 𝐸 [1 − 𝑝 (−𝐼𝑖 | 𝑤)]} (4)

In other words, 𝑈𝑖 quantifies how much information the system
could gain by asking a specific pair. One criterion to choose the
batch of queries that maximizes learning is to select queries the
model is most uncertain, i.e., queries for which𝑈𝐴𝐵 is the largest.

However, greedy selection based on only model uncertainty
alone could be suboptimal because a batch may contain redundant
queries. To further improve the efficiency, the system uses the
successive elimination approach suggested in prior work [8]. The
goal of the method is to maximize conditional entropy.

max𝐻 (𝑑1, 𝑑2, 𝑑3, . . . , 𝑑𝑛 | 𝑤) (5)

Successive elimination starts from a large batch of queries (i.e., a
batch of data fact pairs) to maximize conditional entropy. Then, it
selects the two queries that are closest to each other at each itera-
tion, removes the one that has the lowest information entropy, and
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iterates this procedure until only the expected number of queries
(a small batch that will be provided to the user) remains.

To summarize, the system first shuffles the list of all potential
queries and randomly samples 5000 of them. Then, it selects the top
200 queries based on the information entropy𝑈𝐴𝐵 . Finally, it filters
this set down to 10 queries by applying successive elimination. The
number of final queries presented to the user (ten) was determined
based on our simulation (refer to Sec. 5.1).

Then the user is presented with 10 batches of queries with a data-
related article. The system asks the user to choose their preferred
data fact between two options for each query. The model uses this
response to label the difference between the two options’ vector 𝑑 .

Step 3: updating weights based on users’ responses Once
the system receives the responses, the model performs a Bayesian
update of the weights based on the following equation.

𝑝 (𝑤 | 𝐼𝐴𝐵) ∝ 𝑝 (𝐼𝐴𝐵 | 𝑤) 𝑝 (𝑤) (6)

Since the distribution of 𝑝 (𝑤) is unknown, the Metropolis algo-
rithm [32] is used to estimate the distribution of 𝑝 (𝑤).

4.2.4 Presenting data facts based on personalized weights. Using
the learned weights and a given new data-driven article, the system
can rank the data facts based on the user’s preferences. The system
presents the top 10 results, but the user can retrieve more data facts
by clicking the “read more” button.

4.2.5 Soliciting labels during daily use. Our envisioned system
accommodates the user’s new labels. For example, in reading the
presented data facts, the user can simply press the u key to inform
the model the given data fact is useful or press the n key to indicate
it is not. After receiving these additional inputs, the model will
update their weights (Eq. 6) by creating similar comparisons that
the system makes for the initial update. Specifically, once the user
marks a data fact as useful, the system pairs this marked data fact
with all other data facts in the list to calculate 𝑑 . Similarly, once the
user indicates a data fact is not useful, the model considers all the
pairs in the article with the marked data fact to update the model.
This capability allows the personalized model to keep the model
up-to-date with the users’ preferences.

5 EVALUATION
We evaluate our system using two approaches. First, we evaluate
how fast the model can converge by simulation and how accurate
the learned weights are. We simulate the model using the (hypothet-
ical) user responses with varying noise levels. Second, we conduct
a user study to evaluate whether our learning approach offers a
preferable set of data facts compared to a set generated based on
the direct initial weights and a set generated with random weights.

5.1 Simulating model’s convergence
We conducted a simulation with two goals: (1) to evaluate how fast
our personalized model can converge and learn the true weights
with a reasonable amount of human noise and (2) to inform the
system deployed in our user study regarding the number of labels
we need to solicit from users to train a personalized model and the
elicitation method that reduces the noisy signal.

Adjust Pair-wise # of
batches to converge
(alignment value)

Pair-wise # of
batches to converge
(alignment value)

True weights
+/- 0 5.68 (0.79) 5.72 (0.97)

True weights
+/- 0.05 5.98 (0.84) 6.50 (0.97)

True weights
+/- 0.1 7.02 (0.87) 7.22 (0.97)

Table 1: The simulation result. Adjust pairwise method
reached the convergence a bit faster but performed a much
lower alignment.

5.1.1 Parameterizations. We first designed the noises to replicate
a realistic setting and the two strategies for the elicitation.

Human noiseWe assume that users have internal ground-truth
preferences (i.e., true weight distribution). The training process
aims to learn these true weights from the user through learning and
elicitation. However, users may not always follow their true weights
when making choices. In other words, when the user expresses
their preferences by choosing the data fact that they prefer, their
responses can be noisy. To account for elicitation noise (i.e., the
extent to which their choice of data facts differs from their true
preferences), we parameterized the noise in our simulation (Table 1).

(a) Pair-wise strategy:

(b) Adjusted pair-wise strategy:

Data fact 1
Data fact 2

Data fact 3
Data fact 4

Data fact 19
Data fact 20

…

Data fact 1
Data fact 2
D1 = D2

Data fact 3
Data fact 4

Data fact 19
Data fact 20…

D3 = D4 D19 = D20

Figure 7: Two different elicitation strategies we simulated.

Elicitation method Active learning methods often solicit user
input using a shortlist of options to get labels from agents. In our
case, the system asks users to choose one data fact from two pre-
sented options to inform the model of their preferences (Fig. 7(a)).
In addition to this strategy, we designed an alternative approach,
named adjusted pairwise elicitation, where the user is allowed to
indicate the two options are equally preferable (Fig. 7(b)). The ad-
justed pairwise elicitation was designed after we observed that
some generated data facts share similar scores. We conjectured that
the space of possible data facts is relatively small compared to other
domains, leading to many data facts sharing similar scores. We
hypothesize that providing the option to indicate the two presented
data facts are equally preferable will reduce the noise for learning.
In this simulation, we set out to compare the performance of these
two strategies and choose the one that induces less noise and helps
the model converge faster to use in our user study.

5.1.2 Set-up & measures. We randomly chose ten visualization/ar-
ticle pairs from Kong et al. [46] and simulated the experiment 50
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times. We used the equal weights for each experiment for the five
factors as their initial weights (i.e., 0.2) and set the true weights as
randomly generated weights. Then we generated a batch of queries
(a batch consisting of 10 queries) based on our query strategy (Step2:
Solicit Labels from Users under Sec. 4.2.3) and simulated the user
responses according to the study setup (true weight +/- noise).
To measure convergence, we used the metric presented in a prior
work [61]. This method proposes the alignment metric of the two
weight distributions (e.g., the alignment between the weight dis-
tributions at time t-1 and weight distributions at time t, Eq. 7). We
determined the model convergence when the similarity between
the weights distributions at time t-1 and t (𝑚) is more than 0.99.
Once the model is converged, we calculated two evaluative metrics:
(1) the number of the responses that the model needs to converge
(i.e., t) and (2) the alignment between the learned weight distribu-
tions (i.e., weight distribution at t) and the true weight distributions.
Metric (1) demonstrates how fast the model can be stabilized (i.e.,
how few queries does the model need to converge?), and metric (2)
demonstrates how the model can accurately learn about the true
weights.

𝑚 =
𝒘true 𝐸 (�̂�)

∥𝒘true ∥2 ∥�̂� ∥2
(7)

5.1.3 Results. The results (Tab. 1) demonstrated that, on average,
both elicitation methods could converge with a reasonable number
of inputs (6-8 batches of queries), even though the adjusted pairwise
method required slightly fewer queries. While there is no consid-
erable difference in the number of queries to converge between
the two elicitation methods, the alignment metric of the pairwise
method was higher than the adjusted pairwise method, indicating
the pairwise method learned the true weights more accurately.
5.2 User study: can learning approach

outperform?
We conducted a user study to evaluate how our system performs
with actual users’ input. Since the overall motivation for a per-
sonalized system has been validated through our formative study,
we focused on the quantitative performance of the system in the
evaluative study.

5.2.1 Stimuli & procedure. We used the same ten visualization/arti-
cle pairs from Kong et al. [46] used in the simulation.We formulated
an alternative text based on prior work [38]. Again, we removed
any data trends in the alternative text to avoid a potential con-
founding effect with the presented data facts. We used ARIA radio
buttons and ARIA-Labeled buttons to ensure accessibility. Informed
by our simulation, we used the ten batches (to be conservative)
with the pairwise elicitation method in soliciting labels from users.
The overall procedure is illustrated in Figure 8. They were first
asked to provide their initial weights of the five factors and the
directionality preferences for the similarity factor and the data cov-
erage factor (Fig 8 (a)). After that, we solicited labels to learn their
preferences (Fig 8(b). In this stage, participants were asked to read a
randomly selected visualization (represented by its alternative text)
and the paired article. The interface prompted them to complete
10 batches of queries using the pairwise elicitation methods. These
questions were generated based on their initial weights, followed by
our query formulation strategies (Step2: Solicit Labels from Users

(a) Eliciting initial weight 

(b) Eliciting labels 
to train the personalized model

(alt-text)
+ Article

paragraph

Data fact 1
Data fact 2

Data fact 3
Data fact 4

Data fact 19
Data fact 20

…

(c) Evaluating

(alt-text)
+ Article

paragraph

Data fact A1
Data fact A2
Data fact A3

…

Data fact B1
Data fact B2
Data fact B3

…

Data fact C1
Data fact C2
Data fact C3

…

* A, B and C sets are generated 
either by 1) the personalized 

model, 2) only using their initial 
weights, or 3) using random 

weights

Data coverage:

Similarity:

Value significance: 35

Personalization: 25

Chart type: 10
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Prioritize Downplay
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Figure 8: The procedure of the study. (a) asking for the initial
weights of the five factors and the directional preferences
for the two factors. (b) prompting 10 questions to learn their
weights each time. (c) evaluating with three sets of data facts
generated by either our personalized model, users’ initial
weights, or generated randomly.

under Sec. 4.2.3). The responses were used to train a personalized
model for the participant. Figure 9 shows the structure of the main
study page given to a participant (The actual page can be found
in the supplementary material). Next, we tested the performance
of the personalized model (Fig 8(c)). Participants were prompted
to read two other randomly selected visualization/article pairs at
a time. In each article, participants were asked to choose the one
set of data facts they found most useful among the three, which
are generated based on the personalized model, initial weights and
random weights, respectively. The presentation order was random-
ized. This set-up of evaluating performance would not allow us
to conduct statistical tests due to the aggregated nature of the re-
sponses, compared to asking participants to evaluate each data fact
using a Likert scale, for example. However, we designed it with
two rationales: it is more trustful to our system’s mechanism as the
system updates the weights after each batch (not after every data
fact generation), and the responses would be more accurate since
participants need to form an impression about a set of data facts
as a whole instead of investigating a single data fact at a time and
assign a numerical score to it.

5.2.2 Participants. We recruited 17 participants through the same
mailing list with the same recruitment criteria used in our formative
study. The average task time was 32 minutes (SD=18). Participants
were compensated with a $25 gift card for their participation. Eleven
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Figure 9: The structure of the main page of the study. Participants can access all the contents through screen readers.

of them self-identified as female, and six of them self-identified as
male. The age ranged from 23 to 42 (M=31, SD=6).

5.2.3 Results. We first analyzed the results from the perspective
of usability and performance. We further analyzed participants’
weight change after the learning process to gain more insight.

Informal Observation on Usability Our research team was
standing-by via email at the assigned time slot for participants, and
participants were informed about our availability. We did not get
any emails during the participants’ sessions, which may indicate
the participants did not need help completing the study. Also, par-
ticipants completed the study in a reasonable time frame, as we
piloted (around 1 hour). When we solicited, participants mentioned
the interface was usable to complete the given tasks.

PerformanceWe collected two evaluative responses from the
participants (i.e., testing on two sets of visualization/article pairs),
resulting in 34 data points. Among those, 41% times (14 out of 34),
participants chose the set generated by the personalized model
(generated using the learned weights). 32% (11 out of 34) of the
times, participants chose the set generated by the model using their
initial weights. 26% (9 out of 34) of the times, participants chose
the sets generated by random weights. Notably, more than 33% of
the times (which is equivalent to a random chance), participants
chose the set generated by their personalized model.

Comparison between users’ initial weights vs. learned
weights Figure 10 shows the individual participants’ plots visualiz-
ing initial weights and the learned weights, sorted by the amount
of the gap between those two. We did not find any systematic pat-
terns in the difference between the initial weights and the learned
weights by factor. We observed many participants’ initial weights
differed from their final learned weights. The average difference
across all five factors was 0.17 (SD=0.15). The minimum gap that
participants exhibited was 0.06 (across all five factors), and the max-
imum gap was 0.32. The observed difference between the initial and
the learned weight demonstrates the effectiveness of the learning
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Figure 10: Individual participants’ plots that visualize their
initial elicited weights and the learned weight. The text an-
notation in each plot represents their choice of sets in the
evaluation phase. “Learned" indicates that of the three pro-
vided data fact sets, the participant chose the one generated
based on the learned weight as the most useful. Similarly,
“Initial" indicates that they chose the one developed with
the initial weight they provided. “Random" indicates that
they chose the one generated with a random weight. Each
participant will examine two visualizations and answer two
questions in the evaluation phase, so each plot has two text
annotations.
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approach as well as demonstrates the inaccuracy of direct elicita-
tion of the preferences. The annotated texts in each plot represent
the two sets they chose in the evaluation phase (Fig 8(c)).

6 DISCUSSION
Our formative study findings show that BLV individuals wish to
navigate aspects of data when reading data-driven articles and
their preferences are highly individualized. Motivated by the study,
we built a system that generates personalized data facts using a
batch active learning approach. We show the system’s feasibility
by demonstrating its accuracy and efficiency via an evaluative
user study. We believe our work paves the way for personalizing
data fact space using factors that characterize the space at a high
level. We envision that many other visualization applications can
take a similar approach to further support BLV individuals. For
example, the portion of alternative texts that describes the data
trend can be dynamically generated based on a user’s needs as
their preferences can be varied [51]. Also, we can apply a similar
approach to personalize the column order of data tables to improve
its accessibility along with other works (e.g., [78]).

In applying batch active learning in the domain of data facts, we
proposed a new elicitation method (namely an adjusted pairwise
approach) that potentially can reduce the noise when many entities
share the same ranking score. While this method did not exceed the
conventional method in terms of accuracy, it shows some promising
properties regarding minimizing the number of user inputs. We
would like to keep working on improving the method to tailor its
properties specific to data fact-related domains.

6.1 Envisioning a pipeline combined with the
prior work

Our system focuses on designing a system to generate personalized
data facts given a data-driven article. Combined with prior work, we
envision aworkflow that allows detecting visualizations in an article
to provide data facts based on user preferences. Techniques to detect
a visualization [6, 18], its chart type [5, 6, 18, 52, 65] and extract the
data from either SVG formatted visualization [6, 23, 33, 34, 67] or
bitmap images [5, 7, 18, 19, 22, 40, 50, 52] can feed data and chart
type to our system. Techniques to detect the links between the
data and the article paragraphs can also be improved using prior
work [42, 48, 74, 79].

6.2 Extension for sighted individual
We carried out studies and developed a system to support BLV indi-
viduals. However, we envision this system can be easily transferable
to support sighted people. One straightforward future work will be
tailoring the system more for sighted people by conducting user
studies and building the modified system. An interesting next step
would be collecting sighted participants’ weights and comparing
them with the weight distributions from our study to observe any
differences in their preferences. Understanding the difference will
be able to inform designers of data communication systems on how
they should consider the design differently for BLV individuals.

6.3 Limitations & future work
In this paper, we focused on investigating howwe could incorporate
people’s preferences in generating data facts and demonstrating
the algorithm’s effectiveness. Future work can continue to imple-
ment the envisioned system by combining with plenty of existing
methods proposed for extracting expected data from a visualization
((e.g., ReVision [64], ChartSense [39], Scatteract [19]).

In our system, we demonstrated a method to parametrize the
data fact space to personalize the generation process. Future work
can extend the list of factors and their featurization. For example,
adding more detailed factors regarding the content (e.g., prefer-
ence on the subject of the paper) may improve user experience.
Evaluating different factors and features to measure the impact on
users’ satisfaction can be an interesting research direction, which al-
lows researchers to deepen the understanding of what information
people want.

In the current system, one of the factors, the personalization
factor, uses the user’s geographical semantic proximity. However,
the personalization can be extended beyond their location. For
example, if the model can access other demographic information
(e.g., religion, political party), our approach can easily incorporate
the new information.

While our study offers insights into the algorithmic performance
as well as usability, future work can explore how people use the
system by conducting in-depth qualitative studies through video
conferencing tool or in-person with which more user feedback can
be provided through think aloud technique and observation and
thus more insights can be gained to improve the system further.
Also, we studied our system with relatively small numbers of peo-
ple to gain initial insights. The results show the difference in the
performance between our approach and the baseline. We expect
to see the difference will be larger as the number of observations
increases.

Our evaluative user study used the datasets from Kong et al. [46]
where all of the examples are bar charts (e.g., simple bar charts,
grouped bar charts, stacked bar charts) due to the availability of
gold standard datasets, which can limit the generalizability of the
system and conclusions. However, considering during the process
of learning the weight and selecting the data facts, the system does
not take any chart-specific features into account, we believe that
our findings from the evaluative study will be generalizable to other
data types and other chart types. Future workmay consider creating
more gold-standard datasets regarding different chart types and
generalizing the approach to different chart types.

Regarding the time efficiency of the proposed system, the ini-
tial learning process may be somewhat time-consuming, as each
weight learning iteration with ten responses takes approximately
40 seconds. However, it is important to note that this learning
process only needs to be executed once in order to obtain satis-
factory post-training user preference weights. With the intention
of facilitating long-lasting updates during daily use, it is proposed
that new updates can be processed in the background and applied
upon completion rather than instantaneously, thus rendering the
algorithm’s time requirements tolerable. Furthermore, it should be
noted that all computations were performed on a CPU. As potential
avenues for future research, the possibility of migrating the process
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to a cloud-based infrastructure and employing GPU or distributed
computing to minimize user wait times could be explored. Addi-
tionally, future studies may seek to evaluate the system’s utility
by examining the extent to which users value the generated data
insights in relation to the time invested.

7 CONCLUSION
We proposed a system that generates personalized data facts for
data-driven articles. We explored factors that may influence BLV
individuals’ perception of the usefulness of the data facts. The re-
sults from the study showed that people’s preferences are varied,
leading us to build a personalized data fact generation system. We
demonstrated the feasibility and usefulness of our system imple-
mented with batch active learning. We hope our work impacts
many accessibility visualization applications by considering the
preferences of individuals with blindness or low vision (BLV), as
well as accommodating their varied conditions and circumstances.
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