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ABSTRACT
When creating a visualization, designers face various conflicting
design choices. They typically rely on their hunches to deal with
intricate trade-offs or resort to feedback from their colleagues. On
the other hand, researchers have long used empirical methods to
derive useful quantitative insights into visualization designs. Tak-
ing inspiration from this research tradition, we developed VisLab,
an open-source online system to complement the existing quali-
tative feedback practice and help visualization practitioners run
experiments to gather empirically informed design feedback. We
surveyed practitioners’ perceptions of quantitative feedback and
analyzed the research literature to inform VisLab’s motivation and
design. VisLab operationalizes the experiment process using tem-
plates and dashboards to make empirical methods amenable for
practitioners while supporting sharing and remixing experiments
to aid knowledge exchange and validation. We demonstrated the
validity of experiments in VisLab and evaluated the usability and
potential usefulness of VisLab in visualization design practice.
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1 INTRODUCTION
Data visualizations are now widely used across disciplines to un-
derstand and communicate complex data [73, 76, 94]. Visualization
designers in the wild need to consider various factors, including
perceptual effectiveness, aesthetics, memorability, and engagement.
Although past empirical research provides fruitful visualization
design knowledge, it is insufficient to cover the combinatorial space
of visualization design in the wild [23]. Researchers often lack time
and resources to investigate the vast variable space, leading to in-
complete guidelines for the designers [35, 36]. On the other hand,
designers commonly use their hunches to make nuanced design de-
cisions involving heterogeneous data distributions, unconventional
visuals, and narrational elements that are absent in typical research
experiments. For instance, designers often employ unsubstantiated
yet practical representations such as Bullet Graph [2], while scien-
tists come up with new visuals to cope with domain-specific data
such as Muller plots [11].

Practitioners often engage in active design discussions and exper-
iments. For instance, they discuss common design myths (Figure 1
left) and alternative visual encodings [8, 10, 17, 46] and layouts [32].
Others debate unfamiliar designs on social media, such as Tor-
nado plot [19] (Figure 1 middle), Circular Tube [3], and Sequence
Logo [16], and Marimekko charts [25]. Moreover, several practi-
tioners often run their own experiments, such as comparing charts
for Likert scale data [1], visualizations for scientific results [21],
bars vs. lollipops [63] (Figure 1 right) and bars vs. pies [15]. More
often than not, practitioners seek qualitative design feedback from
other experienced colleagues. While it is a quick and easy way
to obtain rich design insights, this form of feedback can exhibit
less specificity due to non-anonymity and the fear of criticism [64].
Since not everyone can afford such expert colleagues [80], exist-
ing research systems have investigated ways to gather qualitative
design critiques from crowdworkers [79, 80, 108].

On the other hand, data visualization researchers have long been
conducting empirical studies to produce visualization design knowl-
edge [75]. Such empirical studies have typically remained within
the strict realm of scientific investigation, requiring certain exper-
tise in statistics and programming. Nevertheless, their underlying
methodologies generally have structures and patterns [51] that can
be streamlined to alleviate the complexity and have the potential to
provide valuable insights into visualization designs in practice. Past
crowdsourced studies have demonstrated the possibility of scalable
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Figure 1: Practitioners actively engage in online design discussions and experiments: (left) common myths in data visu-
alizations [13], (middle) a controversial chart for pandemic data [19], a practitioner-run experiment comparing bars and
lollipops [63]

experiment design and the viability of reaching a broader range of
participants in online environments beyond restricted laboratory
settings [26]. Notwithstanding, crowdsourced studies require the
same research expertise that is not typically available to practition-
ers. Currently, no systems exist that can leverage the benefit of
such quantitative experiments to meet practitioners’ design needs.

This work seeks to enrich the existing feedback practice by sup-
porting visualization practitioners to gather empirically informed,
quantitative design feedback. First, we conducted a preliminary
survey with 18 practitioners from the Slack workspace of Data
Visualization Society [4] to understand the current feedback prac-
tices. The survey result showed that they gather feedback from
others, look for examples to address the situation (83.33%), and rely
on their gut instinct (50.00%) to address design choices. Moreover,
many also found a quantitative experiment would be useful for
evaluating their visualizations (4.38 on a 5-point Likert scale from
1: not very useful to 5: very useful). Next, we analyzed 140 experi-
ments published in major data visualization venues to learn how to
streamline the experiment process for quantitative feedback. Most
experiments followed a standard procedure, including a pre-survey
(e.g., qualification task), screening (e.g., testing color blindness),
practice trials, main trials, and post-surveys (e.g., demographic sur-
vey). The analysis also revealed diverse evaluation topics and tasks
& measures for practical visualization evaluation.

We developed VisLab, an open-source online system enabling vi-
sualization designers to run experiments to gather quantitative feed-
back. We derived an initial set of three experiment templates from
the literature analysis, including graphical perception [41] GP ,
attention tracking AT [67], and memorability MB [29]. The tem-
plates were selected based on their scalability and generalizability
in a practical context and designed to minimize the user’s efforts
(e.g., automatically suggesting perceptual task questions for GP ).
If needed, users can configure different experiment stages, such as
the tutorial and post-survey. Moreover, VisLab provides a visual
dashboard to aid the interpretation of experiment results using

simple error bars and tables. The user can easily distribute the ex-
periment to colleagues and potential readers through a shareable
link. Individual experiment participants can see their performance
results in light of the collective performance of all participants as a
learning incentive. Lastly, to promote knowledge sharing, VisLab
supports browsing and remixing finished experiments based on the
chart, data, and task types.

We conducted two evaluation studies. First, we tested the feasi-
bility of the templates by running replication experiments in VisLab
based on the original studies [29, 41, 67]. We observed outcomes
consistent with the originals in the perceptual comparison of bar
vs. pie charts and the memorability rankings and click patterns of
in-the-wild visualizations. Next, we conducted a two-phased user
study with the practitioners from the preliminary survey. The first
phase involved replication & reproduction tasks to evaluate the
overall usability of VisLab, while the second phase involved creative
tasks with three selected participants. The participants commented
that the templates lowered barriers to creating an experiment and
gathering quantitative feedback, while the dashboard facilitated
interpreting the outcome and deriving design feedback. They also
mentioned that VisLab would make it easier for other people to give
objective feedback due to its quantitative form. The participants in
the second phase also praised the value of sharing and remixing,
such as reusing existing questions created by others and building a
community-based visualization knowledge repository.

Our main contribution lies in the design, development, and eval-
uation of VisLab, consisting of the following sections:

• A practitioner survey illustrating how they collect design
feedback to address conflicting design choices and perceive
the value of empirically informed feedback.

• An analysis of existing empirical studies providing an overview
of evaluation topics and common procedures and methods
to run and report the studies.

• VisLab, a novel system that allows practitioners to run ex-
periments and obtain empirically informed design feedback,
share results with others, and extend existing experiments.
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• User studies demonstrating the feasibility of the templates
and the potential value of quantitative feedback in design
practice.

We make the online system available in https://vislab.bc.edu/
and the source code in https://github.com/datawithinreach/vislab.

2 RELATEDWORK
We review existing systems for gathering qualitative design feed-
back, empirical studies to gain quantitative design insights, past
attempts to streamline the empirical processes, and inspirational
knowledge-sharing platforms.

2.1 Gathering Design Feedback
Feedback is essential to assess a design and generate revision ideas
in the design process [56, 97]. Gathering design critiques from col-
leagues is a commonway to gather such feedback. However, the fear
of criticism and non-anonymity can make people uncomfortable re-
ceiving feedback from colleagues [48, 64]. Moreover, self-employed
people might struggle to find colleagues who can provide valuable
feedback [107].

To address the problem of gathering quality feedback, past stud-
ies tapped into online crowdsourcing that can allow for easy access
to large and diverse participants and faster feedback turnaround
time with relatively low costs [31]. To overcome crowd workers’
lack of appropriate expertise, existing approaches investigated vari-
ous strategies to improve the quality of feedback from the workers,
such as micro-tasking [79, 108], predefined rubrics [110], demon-
strative examples [66], and feedback guidelines [74]. While these
approaches make crowdsourced feedback more feasible and usable,
the feedback still mostly takes the form of descriptive sentences
that often contain differing or conflicting opinions and make the
interpretation difficult as a result [109]. On the other hand, majority
voting, ranking, and Likert scales can provide more interpretable
numeric ratings and aggregate opinions and preferences [57].

Receiving design feedback is also an essential part of the visual-
ization design process. For instance, Kosara [72] discusses the idea
of visualization criticism, a critical thinking approach to discussing
and assessing visualization designs. Viégas and Wattenberg sim-
ilarly discuss redesigns as criticism [105]. Likewise, design study
research [99, 102] and education curricula [47, 58, 95] have incor-
porated design critique and feedback; e.g., incorporating feedback
from domain scientists and providing feedback to student projects,
respectively. Researchers also adopted heuristic evaluation from
the human-computer interaction literature [86] to help structure
visualization design feedback [59, 112].

Beyond qualitative evaluation, past empirical research in visual-
ization takes a quantitative approach to evaluate visualizations. For
instance, perception studies have been prevalent in quantifying the
effectiveness of different visualization encoding designs [42, 60, 68].
Other recent studies investigate additional cognitive aspects of
visualization design, including engagement [24, 28, 29] and memo-
rability [54, 65, 81]. Similar studies (e.g., usability testing [84] and
A/B testing [85]) are also often used in the industry to evaluate
user interface designs. While visualization empirical studies have
been primarily conducted in research contexts, their purpose is in

a similar spirit to design feedback, as they both provide knowledge
or insight into how a visualization would work.

While existing systems focus on providing qualitative feedback,
we leverage empirical methods to help visualization practitioners
gather quantitative feedback. The complementary use of qualitative
and quantitative feedback can offer a broad range of design insights
and perspectives.

2.2 Scaffolding Empirical Study Procedures
Empirical studies are typically conducted in controlled lab settings
and often require diverse expertise such as experiment design, sta-
tistical analysis, and programming knowledge. They have been
mainly used by specialists in particular contexts such as scientific
investigation and user research. While these studies typically re-
cruit people from the location of the studies and conduct study
sessions in-person, recent studies leverage crowdsourcing to tap
into more diverse and larger online labor markets [91]. These on-
line markets also enable faster completion time with relatively low
costs while also improving the ecological validity of the studies [31].
The online crowdsourcing approach has been employed in a va-
riety of contexts, including software evaluation [70], behavioral
studies [82, 89], and visualization experiments [27].

To adopt in-lab studies for the online environment, past research
investigated ways to streamline the process of experiment tasks
and procedures. For instance, microtasking is commonly used to
break down a complex task into smaller tasks that can be done in-
dependently for a short amount of time without requiring specific
skills [70]. Several other research also investigated quality control
mechanisms, such as qualification tests and outlier removal [44],
to address potential quality issues arising from anonymous partici-
pants with diverse skills and interests.

While many of the crowdsourced studies use paid platforms
such as Amazon Mechanical Turk, CrowdFlower, and Prolific [91],
recent research looks into volunteer-based approaches, including
LabintheWild [93] and VolunteerScience [92]. Such volunteer-based
platforms use personalized feedback as a learning incentive for
participation rather than monetary rewards.

Crowdsourcing has become a popular alternative to visualization
studies as well. Borgo et al. recently provided a comprehensive sur-
vey of visualization evaluation using crowdsourcing [27] and char-
acterized existing crowdsourced experiments. For example, Heer &
Bostock [60] crowdsourced graphical perception experiments that
were originally run by Cleveland & McGill [41]. Many graphical
perception studies have similarly been conducted online, comparing
different error bars [43], correlation visualizations [55], deceptive
designs [88], color differences [103], task effectiveness [68], and bar
chart variations [104]. Other recent studies explored cognitive di-
mensions, such as memorability and recall [29, 54, 69], Bayesian rea-
soning [83], attention [67], attraction [49, 111], and persuasion [87].
All these studies leverage the crowdsourcingmechanism to enhance
the scale and ease the deployment of experiments.

Current online empirical studies require the hands of expert
researchers, statisticians, and programmers to craft the experi-
ment procedures. Several existing commercial tools, such as Lab-
Vanced [52], Gorilla [6], and Qualtrics [7], provide complex graphi-
cal interfaces to build online experiments and surveys. However,
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Figure 2: Overview of the preliminary survey with 18 par-
ticipants. Many are designers, and they regularly run into
design conflict situations. They typically rely on feedback
from others, existing examples, or even their gut instinct to
resolve the design conflict. Most said they found the empiri-
cal method useful for gathering design feedback.

they are still designed for researchers rather than practitioners.
For instance, the templates provided in the existing tools are pri-
marily for psychology and behavioral experiments. Moreover, they
mainly serve as data collection tools, leaving the outcome analysis
to researchers (e.g., downloading and analyzing in a separate tool),
which is a critical step for deriving feedback.

In this work, we simplify the experiment process for practitioners
to derive practical design feedback by leveraging templates derived
from the empirical study literature. In contrast to the online research
tools that focus on data collection, our system provides a visual
dashboard to facilitate outcome interpretation.

2.3 Community-driven Knowledge Sharing
Fostering knowledge sharing can improve the collective knowl-
edge of communities by alleviating trials and errors by individu-
als [61]. Many existing knowledge systems attempt to translate
tacit knowledge from individuals into more explicit knowledge that
can be easily accessed by other people [34, 100]. Examples include
Scratch [96], Glitch [5], and Observable [12] in which people can
build and share their programming projects (e.g., games, arts, vi-
sualizations) and also enable the cloning and extension of other
projects. People on such knowledge-sharing platforms can have a
variety of individual and social motivations, including altruism, rep-
utation, and reciprocity [38]. Often, such collaborative efforts are
vital to maintaining the integrity of large-scale online information,
such as in Wikipedia [77].

We intend VisLab to facilitate sharing experiment results with
the broader visualization community. VisLab provides a tag-based
interface to annotate experiments and supports browsing & extend-
ing experiments. This sharing and remixing capability can provide
additional channels to collaborate and provide feedback.

3 UNDERSTANDING DESIGN PRACTICE
We conducted a brief survey to gain insights into what design
challenges visualization practitioners face, how they collect design

feedback to address them, and how they perceive the value of
empirical methods to derive design feedback.

3.1 Participants
We recruited 18 participants from theData Visualization Society [4]’s
#help-general channel. In the demographic part of the survey, six
participants identified themselves as designers, three as developers,
three as managers, three as analysts, three as (data) scientists, and
one as a data journalist (Figure 2). In terms of experience in the
visualization field, six participants reported they have two to four
years of experience (33.33%), five have eight to ten years of experi-
ence (27.78%), four have five to seven years of experience (22.22%),
two have less than two years of experience (11.11%), and one has
more than 11 years of experience (5.56%). Almost all participants
said their primary purpose in creating data visualizations is to com-
municate and present data to others (94.44%). In contrast, about half
of them said they use visualizations to explore and analyze data
(55.56%). When asked about the primary audience of their visualiza-
tions, stakeholders from a specific domain (e.g., policymakers and
medical professionals) were the most common (66.67%), followed
by internal members such as executives and managers (61.11%).
Others also indicated that the general public (55.56%), as well as
friends & family (33.33%), are their audiences, while six participants
indicated “self” as one of the audiences (33.36%).

3.2 Results
3.2.1 Design decision making. All participants indicated that they
have been in a situation where they need to make decisions among
conflicting design alternatives (100%). When asked about the fre-
quency, four participants said they always run into such a situation
(22.22%), ten for most of the time (55.56%), two for about half of the
time (11.11%), and the rest two for sometimes (11.11%). We received
varied yet consistent responses to the question asking the types of
design conflicts/choices they run into. Making competing decisions
between aesthetics and functions (77.78%) and selecting the right
chart (72.22%) were the most common issues (72.22%), followed by
interaction design to coordinate multiple visualizations (61.11%), de-
signing chart elements such as picking appropriate color scales and
selecting axes ranges (55.56%), choosing the right layout (55.56%),
and addressing conflicts with user and business stakeholder needs
(50.00%). When asked about what aspects they consider when mak-
ing design decisions, clarity (77.78%), readability (77.78%), accuracy
(72.22%), and understandability (72.22%) were generally higher than
aesthetics (55.56%), storytelling (55.56%) and accessibility (50.00%).

3.2.2 Design feedback practice. We asked what approaches they
take to facilitate design decision-making. Seeking feedback from
others (83.33%) and looking for existing examples were the most
common responses (83.33%). Other responses included following
their gut instinct (50.00%) and referring to resources such as guide-
lines and online courses (44.44%). Three participants said they ran
a user study or experiment (16.67%). When asked about who they
typically reach out to for feedback, colleagues were their top choice
(88.89%), followed by actual potential users such as public audiences
or people in the target domain (61.11%), experts (33.33%), friends
or family (27.78%), and social networks such as Twitter or Slack
community channels (22.22%). Responses were similar but slightly
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different in terms of “ideal” groups to seek feedback from. Actual
potential users were the top choice (77.78%), followed by experts
(66.67%), colleagues (55.56%), social networks (22.22%), and friends
or family (11.11%). The appropriate number of people for seeking
feedback was relatively on the low end: 2-3 people (50.00%), 4-10
people (33.33%), and 11 or more people (5.56%), which makes sense
for qualitative feedback [22].

3.2.3 Attitude toward empirically-driven feedback. We were also
interested in their perception of the utility of quantitative design
feedback. As a representative empirical experiment, we requested
them to participate in the pie vs. bar comparison study available in
the Financial Times article titled The science behind good charts [15].
To ensure they participated in the experiment, we asked them to
input their scores in the survey.

Subsequently, we asked about their awareness of such an empir-
ical experiment. On a 5-point Likert scale from not well at all (1) to
extremely well (5), the average awareness was 3.44 with 𝑆𝐷 = 1.17.
When asked about where they have come across empirical studies,
responses were diverse, ranging from books (55.56%), social media
(50.00%), conferences and research paper archives (50.00%) to on-
line websites such as blogs (38.89%), colleagues (33.33%), and online
courses (11.11%). One participant has not seen any, while another
has had experience running an experiment.

Regarding how approachable empirical research is, they were
neutral (𝑀 = 3.17, 𝑆𝐷 = 0.96) on a 5-point Likert scale from not
very accessible (1) to very accessible (5). Finally, we asked whether
such an empirical experiment would be helpful for design feedback
practice if it is easy to run such experiments to evaluate their visu-
alizations. The overall response was positive;𝑀 = 4.38, 𝑆𝐷 = 0.49
on a 5-point Likert scale from not very useful (1) to very useful (5).
In addition, we asked if they would use a tool that can facilitate the
experiment process for gathering quantitative design feedback. The
response was similarly positive (𝑀 = 3.94, 𝑆𝐷 = 0.91 on a 5-point
Likert scale from 1: very unlikely to 5: very likely), although slightly
less.

3.3 Takeaways
The results indicated that they commonly rely on qualitative feed-
back, such as opinions from colleagues and insights from examples,
which aligns with what the existing feedback systems support
(Section 2). On the other hand, their interest and willingness to
incorporate empirical methods to evaluate visualizations demon-
strate the potential of quantitative feedback in the design practice.
In fact, their awareness of empirical research was not as low as we
expected.

3.4 Limitations
The bar vs. pie perception experiment embedded in the survey
was to introduce the idea of an empirical method for those unfa-
miliar with it. While it is the most representative and accessible
one, a future investigation could employ a richer instrument to
gauge practitioners’ interests in diverse empirical metrics such as
engagement, aesthetic and affective responses.
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Figure 3: Our data collection consists of papers published in
ACM CHI and IEEE VIS for the duration between 2009 and
2019. The number of papers is growing, especially for online
studies, which typically have more between-subject studies
due to easy recruitment.

4 UNDERSTANDING EMPIRICAL RESEARCH
To investigate practical ways to scaffold the process of deriving
quantitative feedback, we collected and analyzed existing empirical
studies that provide best practices for quantitative evaluation.

4.1 Data Collection
Our main inclusion criteria were empirical experiments evaluating
user performance and experience in processing a data visualiza-
tion, as they provide quantitative guidelines for visualization de-
signs [33, 75]. To collect past empirical research in visualization,
we used VisPerception, a public repository [20] of more than 200
visualization empirical studies published since 1926. We limited
our analysis scope to articles published from 2009 to 2019 in ACM
CHI and IEEE VIS, major data visualization venues, that provide
enough representative samples to find patterns and trends in visu-
alization experiments. The data collection was performed in early
2020 as part of our preliminary investigation of this work. The final
data collection contains 74 papers, including 24 papers from ACM
CHI and 50 papers from IEEE VIS. Finally, we divided each paper
into multiple experiments, if applicable, resulting in a total of 140
experiments.

4.2 Analysis Method
Four researchers (one faculty, one graduate assistant, and two under-
graduate assistants) went through the paper collection through an
iterative, open coding process [101] with several high-level themes:
evaluation aspects, procedures, and tasks & measures. We derived
initial codes from the literature, such as task names, chart vocabular-
ies, metrics, and environments [27, 30]. The researchers had weekly
meetings to review the codes conducted by research assistants with
guidance from the faculty researcher. They resolved conflicts and
disagreements through consensus and discussion. In the end, the
faculty researcher thoroughly reviewed the final codebook and
resulting codes.

4.3 Results
4.3.1 Data collection overview. Figure 3 shows the overview of the
data collection. Of the 140 experiments, 88 (62.9%) were online, and
52 (37.1%) were onsite experiments. The number of papers increased
over time, showing the growth of empirical research in visualization,
e.g., only two papers in 2009 vs. 11 papers in 2019. Online studies
have been growing and are generally more common in recent years.

http://visperception.com/
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Regarding experiment design, single-level design, either within or
between subjects, was the most common (85.0%), while we also
observed 15.0% mixed designs. Between-subject designs were more
common for online studies (27.3% vs. 5.8%), potentially due to their
easy recruitment of larger participants.

4.3.2 Evaluation aspects, tasks, and measures. Perception exper-
iments (77.1%) were more common than cognition experiments,
such as memorability, comprehension, and engagement (20.7%). In
terms of the types of visualizations considered, existing studies
mostly focus on standard charts, including scatter plots (12.9%), bar
charts (10.0%), and line charts (5.0%). At the same time, we also
noticed custom charts (5.7%) and pictograms (3.6%). The frequency
ranking was more or less similar across experiment environments,
except all of the custom charts were tested onsite. Only 5% of the
experiments tested animation, while 22.9% of them involved user
interaction.

We observed a variety of user tasks in the experiments. The
top three tasks include compare (25.7% of 140 experiments), iden-
tify (21.4%), derive (11.4%), select (5%), and recall (3.6%), while the
derive task also often involved other lower-level tasks including
identify and compare tasks. Example user tasks include identifying
the extremum and deriving the ratio of two numbers. In terms of
measures, accuracy (40.0%), time (38.6%), error rate (28.6%), and
confidence (7.9%) were the most common. While not prevalent,
other experiment-specific metrics include hit rate & false alarm
rate, perceived effectiveness, fixation locations, engagement, and
discriminability rate.

4.3.3 Experiment procedures, participants, and reports. Most exper-
iments followed a standard procedure, including pre-survey (28.6%),
screening (41.4%), training/practice (60.0%), and post-survey (32.1%),
although they often do not explicitly mention whether they had
each component or not.

Out of 40 experiments that had pre-surveys, common pre-survey
questions include gender (60.0%), age (50.0%), chart literacy (20.0%),
education (17.5%), and academic major (15%). Among 45 experi-
ments that had post-surveys, common post-survey questions also
frequently involved demographics (20.0%), followed by free-form
comment (15.6%), preference (11.1%), task strategy (6.7%), and famil-
iarity (6.7%). The rate of having pre-surveys was higher for in-lab
studies (46.2%) compared to online studies (18.2%), while the rate
for post-surveys was about even (51.1% onsite vs. 48.9% online).

Out of 58 experiments that had screening tasks, many of them
involved color blindness (48.3%), while others included vision tests
(13.8%) and the acceptance rate on AmazonMechanical Turk (10.3%).
In contrast to pre-surveys, online studies had more screenings
(43.2%) than in-lab studies (38.5%). Among 84 experiments that had
training and practice, the frequency of online studies was higher
than that of onsite studies (57.1% vs. 42.9%). The type of practice
tasks depended on the task types in the experiments.

For online studies, the average number of participants was 216
(𝑚𝑒𝑑𝑖𝑎𝑛 = 96, 𝑆𝐷 = 287), while the average was 24 in in-lab studies
(𝑚𝑒𝑑𝑖𝑎𝑛 = 20, 𝑆𝐷 = 14). Although we did not quantify the gender
balance due to a lack of reports, the experiments that reported
gender distribution had sensible balance except in a few cases (e.g.,
14 female vs. 59 male) if it matters for the result [62].

In terms of reporting experimental results, they employed diverse
charts. The most common forms of reporting methods were error
bars (37.1%) and tables (17.1%), while often simple bar charts (7.9%)
and box plots (8.6%) were used as well. Often, the task time was
constrained (33.6%). The ratio for time constraints was higher for
onsite studies (42.3%) than online studies (28.4%).

4.4 Lessons Learned
The shared components across the experiment procedures hinted
at ways to devise a standardized experiment process that would be
amenable for practitioners. Although the experiments had varied
purposes and settings, several had relatively simple goals and se-
tups that could be templatized to different visualizations, datasets,
and tasks. Likewise, common graphical and table reporting meth-
ods suggested ways to support easy-to-understand interpretations
without resorting to complex statistical analysis. The current em-
phasis on a few standard charts may point to a potential knowledge
gap for a wide variety of custom visualizations used in the wild.

5 DESIGN GOALS
Based on the practitioner perception survey and empirical research
analysis, we derived the following high-level design goals to guide
the development of VisLab.

D1. Support gathering quantitative design feedback. Qualitative
feedback provides a holistic diagnosis, while quantitative feedback
can help funnel successes or failures in a particular context. While
the preliminary survey indicated empirical methods would be help-
ful for visualization evaluation, existing feedback systems currently
do not support gathering such quantitative feedback. We aim to
adopt empirical processes currently reserved for scientific investi-
gation to supplement the current design practice, enabling visual-
ization practitioners to gather empirically-informed, quantitative
design feedback. On the other hand, the empirical study analysis
suggests a potential lack of design knowledge for extensive and
custom visualization types available in the wild. Being able to in-
vestigate a personal design space on their own might help alleviate
the knowledge gap.

D2. Streamline the process of running an evaluation experiment.
The survey participants indicated varied experiences from design
to management and analytics in data visualization. To run an exper-
iment without expertise in experiment design, statistical analysis,
and computer programming, they would need a scaffold on which
they can easily create their own experiments, receive responses
from participants, and interpret the feedback outcome. We do not
intend practitioners to invent new experimental methods or initiate
a novel scientific investigation. Instead, we can leverage already
established procedures that can be used to evaluate particular as-
pects of visualization designs. Providing off-the-shelf templates
can reduce the complexity of the empirical process in which they
only supply their own visualizations and datasets. The experiment
should be easy to deploy and provide a meaningful motivation for
external participants to ease recruitment.

D3. Foster visualization design knowledge sharing and extension.
Existing experiments could provide valuable insights for others
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Figure 4: VisLab’s workflow from design to deployment: (1) A designer creates an experiment using their visualizations based
on the graphical perception template GP and (2) deploys the experiment using an online link. (3) Participants can see their
result relative to the collective outcome.

even if used to derive feedback for specific visualizations in par-
ticular contexts. In addition, since quantitative feedback is more
explicit than tacit [34], it would be more amenable to sharing and
extension. Drawing inspiration from existing community-oriented
knowledge-sharing platforms [5, 12, 96], we seek to facilitate shar-
ing and browsing experiment outcomes based on familiar design
criteria such as charts, data types, and task types. Furthermore, we
aim to support the remixing of existing experiments [96], which
will help communities validate and extend the experiments [37].

6 VISLAB
We developed VisLab guided by the aforementioned design goals.
Below, we describe the main components of VisLab based on a
potential user workflow.

6.1 Deciding Which Experiment Template to
Use (D1)

First, the user needs to decide which design aspect they are in-
terested in, determining what template to use. VisLab currently
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Figure 5: An example experiment using interactive charts,
comparing two different interaction modalities for a search
task: (left) brush and (right) wheel conditions.

supports three templates drawn from the existing literature: 1)
graphical perception GP [41], 2) attention tracking AT [67], and
3) memorability MB [29]. Each template is designed to evaluate a
specific design aspect. GP is based on the seminal experiment by
Cleveland & McGill, where study participants perform elementary
tasks such as perceiving different bar lengths or pie angles to ex-
tract and compare values. GP can be used to evaluate which design
variation is perceptually effective on user-formulated reading ques-
tions (e.g., How much debt does the US have than Canada?). AT is
based on the simulated eye-tracking experiment where participants
were presented with a series of blurred images and asked to click
to reveal small, circular areas of the image at original resolution,
similar to having a confined area of focus like the eye fovea. AT
can provide feedback on where the reader attends to based on the
click patterns. Lastly, MB is based on the at-a-glance image recog-
nition game where participants were presented with a sequence of
images and had to press a key if an image appeared the second time
in the sequence. MB can inform how well the reader can recognize
a visualization among many filler images.

Rationale for the currently supported templates. We had several
inclusion criteria for template candidates. First, the underlying em-
pirical methods need to be useful for practical evaluation. Thus, we
chose the initial three templates to cover a holistic visualization
reading experience; a reader first perceives a chart GP , browses to
extract its meaning AT , and stores the message in a brain MB . We
also considered whether they are amenable to templatization; do
they follow a standard procedure? And are they generally applica-
ble to a wide variety of visualizations? Lastly, we favored empirical
methods proven possible in online studies. These online studies
also tend to have simpler setups for easy recruitment and participa-
tion (e.g., microtasking for crowdsourcing). Although we currently
support three experiment scenarios, VisLab is extensible to support
other types of evaluation experiments as long as they can fit the
common standard procedure. We discuss possible extensions in the
discussion section (Section 8).

6.2 Creating an Experiment using the Selected
Template (D1)

Once the user chooses a specific template, it creates a new experi-
ment with default settings. The overall procedure is shared across
all templates and is divided into clear steps so the user can eas-
ily understand and follow the experiment design process. There
are currently five steps: introduction, tutorial, task, demographic
survey, and post-survey (Figure 4). At the minimum, the user only
needs to supply their visualizations in the task step, except for GP
that requires additional task questions (e.g., “which discipline has
the least number of doctoral degrees?”).

Since each template generally determines what actions the partic-
ipant will perform, we can pre-fill many default settings. Examples
include the introductory text, tutorial description, practice trials,
demographic survey questions (e.g., age, ethnicity, and gender), and
post-survey questions (e.g., user preference). For instance, we use
the default title “How well can you read a chart?” for GP , “Where
do you pay attention when reading a chart?” for AT , and “How well
can you recognize a chart?” for MB . For GP , we suggest generic
analytical questions derived from the visualization literature, such
as classification, recognition, localization, visual search, discrim-
ination, identification, and estimation [50]. If desirable, the user
can customize the default settings or skip certain steps, such as the
practice trial and surveys; e.g., the post-survey can be customized
to gather qualitative opinions.

In GP , the user can drag and drop visualizations into the thumb-
nail containers in the task design interface (Figure 4). VisLab sup-
ports an image file, as well as Vega-lite specification [98] that can
support interactive visualizations. Figure 5 shows an example ex-
periment using an interactive Vega-lite chart in which we ask par-
ticipants to find the period of most rainy days using two different
interaction modalities, including brushing and wheel-scrolling. For
simplicity, we use a single-level between-subject design so that each
participant sees a different visualization while the questions are the
same across all participants. We do not expose these experimental
design details to users. While we originally implemented ways to
enable a full factorial experimental design, we decided to remove it
at the moment for its complexity and potential impracticality. The
GP template currently supports three types of questions—multiple-
choice, multiple answers, and short-answer (number)—in order to
support common tasks we found in the empirical study analysis,
such as identify, compare, and derive.

Similarly, in MB , the user can upload target visualizations through
drag-and-drop and configure image display & pause time (Figure 6);
i.e., how long will each image be visible for a participant and how
long will there be a gap time between consecutive images? The user
can also customize filler (non-target) images, while we provide de-
fault filler images from the original study consisting of visualization
images sampled from various sectors (e.g., charts from infographics,
news media, government websites, and science journals). In AT ,
the user also adds stimuli in the same way, while configuring the
bubble and blur sizes (Figure 6). They can preview how the visual-
ization will be interactive upon changing the parameters. We also
provide detailed descriptions of what the parameters mean in the
information tooltips in all templates.
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Figure 6: Design, participant, and dashboard interfaces showing example AT and MB experiments using images from the
original studies [29, 67].

6.3 Deploying the Experiment to the Public (D2)
Once the user is satisfied with the experiment configuration, they
can preview it by submitting a pilot response as necessary; they can
omit it from the final result (Figure 7). Once they launch it to the
public, VisLab generates an online link (Figure 4.2). The user can
share the link with their colleagues or online communities, seeking
voluntary participation. Alternatively, they can deploy the link on
paid platforms such as Prolific and Amazon Mechanical Turk; the
designer can embed the completion code in VisLab. VisLab does not
require sign-up to lower the barrier for participation while using
IP addresses to prevent duplicate participation.

To further protect against malicious participation, the user can
add an attention question using the questionnaire editor in GP
(e.g., obvious questions identifying the x-axis title). For MB , similar
to the original study [29], we randomly choose vigilant images
among fillers and check if participants failed to recognize a signifi-
cant portion of them. In AT , the user can require participants to
describe at least 150 characters and generate a minimum number
of clicks as in the original study [67]. To encourage participation,
VisLab provides a personalized result at the end of each experiment
as a learning incentive (Figure 4.3), similar to the LabintheWild plat-
form [93]. The participant can compare their performance against
the aggregate performance of others.

6.4 Obtaining Design Feedback in the Result
Dashboard (D2)

The user can monitor the current participation status of the experi-
ment to see if anything goes wrong and inspect the final result in
the analytic dashboard (Figure 7). The dashboard summarizes the

results and shows individual responses for the designer to inspect
and filter malicious participants. The user can explore the result
based on the survey responses if there is a demographic survey or
post-survey. VisLab provides basic descriptive statistics using plots
and tables that can help derive design feedback. The dashboard
presents the experiment result in a plain language, such as “half
of the participants took less than 7.8 seconds” and “around 19 out of
20 scored between 5% and 40%”. These explanations appear when
the user places a mouse cursor over the resulting charts. Also, we
provide informational tooltips explaining how to read the charts
(e.g., “the circle is the average while the horizontal bar indicates a
confidence interval” ). Likewise, the tooltips also convey how we
derived specific metrics, such as the answer rate and rank in the
participant result view.

The GP template measures the duration and accuracy of an-
swering each question. For instance, when a designer uses two
different visualizations with the same questionnaire, they can gain
insights into which visual encoding might convey their intended
information more accurately and potentially faster (Figure 7). AT
aggregates all user clicks to generate a heatmap, providing feedback
on where people would look. They can gauge the importance of
design elements in their visualization (Figure 6), and compare at-
tention patterns in multiple design alternatives. The MB template
computes the same memorability score as the original paper [29],
which is roughly defined by successful hit rate minus false alarm
rate (Figure 6). We also present plain successful and false recogni-
tion rates for easy interpretation. The memorability score can hint
at how well people would recall information after perceiving and
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Figure 7: An overview of the dashboard interface for the GP template. The user can examine the overall comparison results
and dive into the details broken down by individual questions and demographic factors. In addition, they can review the
participants’ demographic information and their qualitative comments in the post-survey. The experimenter may inspect
individual responses to remove potential outliers andmalicious participation. The dashboard interface and layout are consistent
with other templates.

comprehending it [28]. Thus, the designer might use the three tem-
plates in the above order to have a holistic view of the experience
of potential readers of their visualizations.

6.5 Exploring and Remixing Existing
Experiments (D3)

Once the user finishes the experiment, they may share the outcome
with other users. The user can decide whether to share only the
result, the content, or both (Figure 8). Other users can inspect the
experiment’s visualizations and other configuration parameters and
settings if the content is shared (similar to sharing underlying code

in addition to the website, such as in Glitch [5]). Otherwise, they
can only examine the final result in the dashboard. The user can also
assign useful tags to categorize the experiment (Figure 8). VisLab
provides predefined tags in three high-level themes, including chart
type, data type, and task type. We leverage the vocabularies found
in the empirical study analysis to suggest potential relevant tags
such as “scatter plot”, “time-series”, and “compare”. The users can
then browse all shared experiments based on the tags, e.g., finding
all experiments relevant to “bar chart”.
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In addition, users can remix existing experiments to create new
experiments for reproduction or extension if the experiment con-
tent is shared. For instance, another user might be interested in
using the same visualizations but with different data distributions
and embellishments or asking additional questions to see how the
outcome might change (Figure 8). The remix activity can promote
user collaborations, producing valuable design insights as a com-
munity. VisLab keeps track of the remixes of each experiment so
that the users can see the genealogy of an experiment if it was
remixed, providing another lens to examine relevant knowledge in
addition to the tag-based navigation.

7 EVALUATION
We conducted evaluation studies to assess the viability of experi-
ment templates and also the usability and usefulness of VisLab in
designers’ visualization design practice.

7.1 Feasibility Study
First, we wanted to verify the feasibility of the templates in VisLab.
In other words, although our templates are directly derived from
the original studies, we wanted to double-check if we could get
similar results in the context of VisLab’s use case. Our experiments
are simplified from the perspective of practical evaluation rather
than trying to fully replicate the original studies, e.g., comparing a
few competing designs rather than tens of thousands of repeated
visualizations with randomly generated datasets. We provide the
stimuli image in the supplement.

7.1.1 Stimuli, Tasks & Procedures. For GP , we used a bar chart
drawn from the Guardian [18, 71] since Cleveland & McGill’s orig-
inal study used synthetic data. Given the bar chart, we created a
pie chart alternative for comparison. For MB and AT , we down-
sampled images from the original studies [29, 67], available in the
MassVis dataset [9]. For MB , we used two most memorable and
two least memorable visualizations. For AT , we used two visual-
izations from the news media (horizontal, diverging stacked bar
chart) and the infographic category respectively.

The tasks are also similar to the original studies. For GP , we
asked two questions: one finding a specific target (Which country
has the sixth most donation amount?) and another deriving the ratio
of larger to smaller (What is the percentage of donations from the Eu-
ropean Commission compared to that of the U.S.?). The first question
was multiple-choice, while the second question was in a numeric
text format. For AT , participants were asked to browse a blurred
visualization image and describe it, as in the original study [67].
We used the bubble radius of 32 pixels and 40 blur sigma, which
was found to be appropriate in the original study [67]. For MB ,
they were presented with a sequence of images and asked to press
a space bar when they saw an image a second time. We generated
the image sequence, following the same mechanism in the orig-
inal study [29]; i.e., maintaining reasonable space among fillers
and repeated targets. The size of the image sequence is variable
based on the target size; in our case, it had 120 images, including
15 random vigilant images and four targets. We did not use im-
ages when their aspect ratio was greater than 3:1. The attention
tracking and memorability experiments were within-subject design,

while the graphical perception experiment was between-subjects.
All experiments were deployed in Prolific [14].

7.1.2 Analysis Methods. For GP , we measured the accuracy and
time taken for the questions. For the multiple-choice question, we
used Fisher’s exact test for bar chart and pie chart groups. For the
numeric answer question, we computed absolute log error (dis-
tance from the participant’s answer to the correct answer). We then
performed Levene’s test for equality of variances, followed by the
independent t-test. For AT , we aggregated click-maps across all
participants for each image.We thenmeasured the cross-correlation
(CC) between the aggregate click-map of the image and the ground
truth fixation map of the same image. We qualitatively compared
the CC score to the CC score in the original paper. For MB , we
compute an image’s hit rate, false alarm rate, and memorability
score. The hit rate is defined as hits/(hits+misses), while the false
alarm rate is defined as false alarms / (false alarms + correct rejec-
tions). The memorability score is d’ = Z(hit rate) - Z(false alarm rate)
where Z is the inverse cumulative Gaussian distribution. A higher
memorability score requires a high hit rate and a low false alarm
rate.

7.1.3 Results. We collected 25 responses for GP , 12 for the bar
chart and 13 for the pie chart. We used the interquartile (IQR) range-
based outer removal, filtering items out of the bound [first quartile
- 1.5 x IQR, third quartile + 1.5 x IQR]. We filtered four outliers in
the second question, three for the bar chart and one for the pie
chart. We did not detect any outliers in the first question. Our
result was largely consistent with the position-angle experiment in
Cleveland & McGill. For the target finding task (first question), the
bar chart had a lower accuracy (𝑀 = 0.67, 𝑆𝐷 = 0.50) and shorter
task time (𝑀 = 18.14𝑠𝑒𝑐, 𝑆𝐷 = 7.67) compared to the accuracy
(𝑀 = 0.91, 𝑆𝐷 = 0.30) and time (𝑀 = 42.85𝑠𝑒𝑐, 𝑆𝐷 = 25.33) for the
pie chart. The accuracy was not significantly different according
to Fisher’s exact test (𝑝 = 0.285), while the time difference was
significant (𝑡 (20) = −2.811, 𝑝 = 0.012). For the ratio derivation
task (second question), the bar chart was better in accuracy (𝑀 =

0.60, 𝑆𝐷 = 2.80) and lower in time (𝑀 = 36.61𝑠𝑒𝑐, 𝑆𝐷 = 14.13) in
contrast to the accuracy (𝑀 = 3.89, 𝑆𝐷 = 1.19) and time (𝑀 =

61.19𝑠𝑒𝑐, 𝑆𝐷 = 34.04) of the pie chart. Unlike the first question,
the accuracy (or error rate) had a significant difference (𝑡 (20) =

−3.547, 𝑝 = 0.002), although the time did not (𝑡 (20) = −2.021, 𝑝 =

0.058).
The AT experiment had eleven participants. We removed one re-

sponse whose number of clicks was less than 10. All other responses’
clicks were within the interquartile outlier bound. Overall, our CC
scores were substantially close to the original CC scores. The news
media chart had an average number of clicks of 62.5 (𝑆𝐷 = 34.19)
and an average completion time of 171.6 sec (𝑆𝐷 = 38.61). The
CC score of our click map to the ground truth fixation map was
0.94, while the CC score of the original click map was 0.96. On the
other hand, the infographic chart had an average click count of 33.4
(𝑆𝐷 = 13.02) and an average task time of 183.9 (𝑆𝐷 = 78.37). The
CC score of our click map was 0.62, close to the CC score of the
original click map, 0.60.

For MB , we collected 12 responses. We filtered one response
whose false alarm rate was more than 50%. Overall, hit and false
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Figure 8: Other users can inspect visualizations and configuration parameters within existing experiments and remix them for
reproduction or extension as needed.

Figure 9: The experiments results of the visualizations created by the participants.

alarm rates were comparable to the original study to a great extent,
as did the memorability scores. The most memorable visualization
had a hit rate of 0.727 and a false alarm rate of 0.091, while the
original study had 0.783 and 0, respectively. The second memorable
visualization’s hit rate and false alarm rate were 0.727 and 0.182,
comparable to 0.810 and 0.010 from the original study. Likewise,
the second least memorable visualization had a hit rate of 0.636
and a false alarm rate of 0.182 compared to 6.333 and 0.452 in the
original study. The least memorable visualization had a 0.364 hit
rate and 0.091 false alarm rate compared to 0.238 and 0.144. The
ranking of the memorability scores was also consistent (ours: 1.94
→ 1.51 → 1.26→ 0.99 vs. original: 3.87→ 3.20 → 0.46→ 0.35).

7.2 Usability Study
Our usability study had two phases. The first phase involved active
exploration of the core features of VisLab using provided visual-
izations. In the second phase, selected participants created their
own visualization experiments and experienced the browsing and
remixing interfaces.

7.2.1 Participants. We recruited 10 participants (three female and
seven male, self-identified) for the user study. Five (one female)
were from the design practice survey (Figure 3) who agreed to
participate in the user study, and the other five (two female) were
from the authors’ university alumni network. Six participants were
visualization designers, among which three of them have 8-10 years
of experience, and the other three have 4-6 years of experience. Two
participants were data analysts, among which one had 4-6 years
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of experience, and the other had less than two years of experience.
We also had one journalist with 8-10 years of experience and one
technical writer with 2-4 years of experience. We paid participants
a $50 gift card as compensation for the first phase and an extra $100
gift card to each of the three participants engaged in the second
phase.

7.2.2 Procedure & Tasks. The first phase consisted of five steps: (1)
tutorial, (2) replication, (3) reproduction, (4) survey, and (5) inter-
view. The tutorial explained the three templates and demonstrated
how to use them by creating example experiments. For GP , we
adopted a use case scenario comparing three different bar charts:
a grouped bar chart, a vertical stacked bar chart, and a horizontal
stacked bar chart. For AT and MB , we borrowed sample images
from original studies [29, 67] (Figure 6). The image stimuli can be
found in the supplement. In the replication task, participants were
asked to replicate the three example experiments in the tutorial
to demonstrate their understanding of VisLab. In the reproduc-
tion task, participants created an experiment without any guidance
from a moderator, based on a provided scenario comparing a bar
and pie chart. Once they completed the tasks, they answered us-
ability survey questions on a 5-point Likert scale, followed by a
semi-structured interview discussing their overall experience and
the potential use of VisLab in their work practice. Each participant
engaged in a one-time remote session that took about 60 minutes.

In the second phase, we carried out a follow-up study with three
selected participants (two females and one male) based on avail-
ability. The participants were a visualization designer with 8-10
years of experience, a data journalist with 8-10 years of experience,
and a data analyst with 4-6 years of experience. We wanted to have
a more realistic creation task and evaluate the result-sharing and
exploration capability we added. We provided a simplified COVID-
19 dataset 6, and participants had an asynchronous self-moderated
session to create their two visualization variants and formulate
questions to ask. We deployed their experiments in Prolific on their
behalf. Once the experiments received enough responses, we had a
synchronous remote session in which the participants went through
the feedback result, publicized it, and explored other experiments.
We also asked them to remix one of the existing experiments as
well. We had an interview discussing the experience of the addi-
tional tasks. Each participant spent roughly two hours in the second
phase.

7.2.3 Results. All participants successfully completed all the tasks
in both phases. Each participant in the second phase created two
charts and two questions to gather design feedback (Figure 9). P1
created a bar chart and an area chart with the following questions:
how did the distribution of vaccines in early 2021 in the U.S. affect the
number of cases? and how was the trend in the ratio of deaths against
the total cases?. P6 made a dual-axis chart and a small-multiple chart
to ask the following questions: how has the death count changed
across time by each state? and is this trend different from the cases
count?. P10 also created a bar chart and an area chart, along with
the accompanying questions: which state shows the highest death
rate? and did Connecticut’s death rate show higher than Maryland’s?.

6https://github.com/nytimes/covid-19-data/blob/master/us-states.csv

Below, we discuss our observations, survey results, and interview
insights.

Templates lower barriers for a design feedback experiment. Par-
ticipants highly rated VisLab’s overall usability (𝑀=4.33, 𝑆𝐷=0.71),
usefulness (𝑀=4.50, 𝑆𝐷=0.53), and learnability (𝑀=4.50, 𝑆𝐷=0.71)
on a 5-point Likert scale (1 – strongly disagree, 5 – strongly agree).
Among all templates, the highest-rated template in usability was
AT (𝑀=4.60, 𝑆𝐷=0.52), followed by GP (𝑀=4.30, 𝑆𝐷=0.67), and
MB (𝑀=4.00, 𝑆𝐷=0.94). On the other hand, the participants rated
GP most useful (𝑀=4.50, 𝑆𝐷=0.71) compared to AT (𝑀=4.00,
𝑆𝐷=0.94) and MB (𝑀=3.40, 𝑆𝐷=1.26). For learnability, AT was
also the highest (𝑀=4.60, 𝑆𝐷=0.52), while the mean scores for GP
(𝑀=4.40, 𝑆𝐷=0.70) and MB (𝑀=4.40, 𝑆𝐷=0.97) were still compara-
ble. A few participants liked the step-wise design interface. They
said “I liked that I can build the experiment easily according to the
experiment flow.”—P1 and “I liked the five steps of the design inter-
face.”—P9. Ready-to-use templates with clear goals also seemed to
help participants learn and use them easily. For instance, P7 com-
mented that “It was so intuitive that I could only drag and drop.” and
P8 said “I think it was easier and faster to learn because the functions
with a clear purpose were provided as templates.”.

Dashboard eases the interpretation of design feedback. Partici-
pants said the resulting dashboard is useful for interpreting the
outcome (𝑀=4.90, 𝑆𝐷=0.32). They commented “It was easy to under-
stand because it showed visual stats rather than just text stats.”—P6
and “I think this is so good because otherwise, I have to analyze all
the statistics one by one.”—P10. P6 also said that “It is good that the
order of information coincides with the order of thoughts. The conclu-
sion is presented at the top, and detailed analysis results to support
the conclusion are presented at the bottom.” P10 said “The tooltip
description of the graph is helpful for those with limited statistical
knowledge.” They also commented that the breakdown report (e.g.,
by demographic factors) in the dashboard is valuable; as P6 said,
“I can analyze all the results here. I think I save my time and effort
a lot.”. In the second phase, the participants also derived design
improvement ideas from the dashboard. For instance, P1 said, “[In
the bar vs. area chart experiment with COVID-19 dataset], the bar
chart might be better than the area chart, and I want to compare
it once more with the visualization with a guide bar indicating the
timing of vaccination on March 2021.” P6 said, “[In attention tracking
experiment of the dual axis chart vs. small-multiple chart] I see that
people looked around titles, axes, and legends a lot. I might have to
pay more attention to their legibility, like font size.”

Quantitative format can help gather feedback and enhance current
design practice. Participants indicated that VisLab’s quantitative
format would make it easier for people to give design feedback. For
example, P6 said “people usually don’t know what they want, so it’s
hard to say which part should be better. I think the way that answers
the questions makes it easier to provide feedback.” P10 commented,
“It is useful to obtain quantitative indicators of which charts were good
and which specific parts of the chart were important.” The partici-
pants contrasted quantitative feedback from anonymous users with
qualitative feedback from known colleagues. P1 said “It’s quick and
easy to ask my colleagues, but I think there’s a high risk of biased

https://github.com/nytimes/covid-19-data/blob/master/us-states.csv
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feedback because of the limited pool of background or chart literacy.
On the other hand, this kind of experiment can easily get feedback
from the general public.” P2 mentioned, “It might be more objective
if I ask someone I don’t know than ask directly.”

They also discussed how VisLab would fit in their current design
process. P4 commented “I have never seen such a tool where this
process has been implemented. [...] I will use it right before preparing
some key presentations. It might be very helpful.” Similarly, P6 said,
“I need to evaluate and select charts from an objective perspective to
communicate effectively with my colleagues. I think I can use this tool
[to decide which chart is appropriate] when I present the results of my
data analysis.” On the other hand, P10 commented on using it to
test ideas in the prototyping stage, saying “I initially preferred the
area chart as I believed its representation would more vividly convey
the significance of how many people died [because of COVID-19].
Looking at the design feedback result, the bar chart seems better and
faster to read.”

Result sharing and experiment remixing promote knowledge shar-
ing. Participants in the second phase commented on the potential
benefits of sharing and remixing in generating future experiment
ideas and expanding their visualization design knowledge. P1 said,
“It can be difficult to compose multiple-choice questions for visualiza-
tions, but the remixing can provide great starting points.” P10 said
“Even comparing within the same chart may yield different results
depending on the tasks. So I could expand my knowledge by looking
at other similar experiments.” P6 commented that the result-sharing
feature also contributes to building a visualization literacy resource
by saying, “I could say to the junior designer that it will be helpful to
see what I made on VisLab. This archive would help to spread knowl-
edge easily. When new employees come in, they can start learning
from the archive.” Nevertheless, participants also indicated they
might hesitate to share publicly as their experiments might involve
private internal data. But, they might still want to share some re-
sults for intrinsic rewards such as recognition; as P10 commented,
“[I will share] when I want to show off my best outcomes, like up-
loading music to Soundcloud, or I’m curious what people think of my
experiment results.”

8 DISCUSSION
The user study suggests that VisLab is promising to help practition-
ers gather useful, quantitative feedback to improve their visualiza-
tion design. Below, we reflect on the lessons learned from building
and evaluating VisLab and discuss limitations and opportunities
for future work.

8.1 Limitations and Opportunities
Experiment Templates. Our templates are currently limited by

the scope of the three original studies. While they cover various
general evaluation use cases from perception to cognition, there are
many possibilities to bring other useful templates. VisLab’s internal
architecture is designed to adopt an additional template as a plug-in
component. It only requires the task and dashboard interfaces while
reusing other elements such as tutorial and post-survey. Potential
additional templates, which might be helpful in practice, include
evaluating discriminability (e.g., correlation judgement [55], color
difference [53]) and assessing working memory [26].

As P5 noted that “I use aesthetics to make it more playful and
user friendly and to draw people in.”, the post-survey could include
a default questionnaire to gather “qualitative” feedback and to
evaluate subjective design dimensions, including aesthetics and
engagement [65]. Likewise, VisLab could further extend existing
templates to support other visualization forms (e.g., embedding
external charts such as Tableau and D3) and tasks. For instance, P1
commented on a potentially additional task, “I think there will be
situations where attention tracking tasks also require multiple-choice
questions to get more specific feedback than where participants paid
attention to the visualization.”. While our templates ease the overall
process, we noted in the second phase that it could still be difficult
for users to develop meaningful analytical questions. Investigating
the literature in graphical perception can help expand our current
limited set of default questions in GP .

Dashboard. Our current dashboard design was inspired by how
experiment results are reported in the literature. In the second
phase of the user study, our dashboard helped participants derive
design feedback from the results of their experiments. Overall, the
participants were satisfied with the scores and distribution on the
dashboard, though some offered new suggestions. For example, they
mentioned explicitly presenting clear messages written in natural
language to directly instruct design feedback. Presenting a likeli-
hood percentage in addition to descriptive statistics might be more
understandable for users [45]. In addition, a few participants noted
that they wanted to do further analysis beyond what we provide in
the dashboard. P3 stated “I wanted to perform a multivariate analysis
as granular as possible using the multiple demographic factors.” P7
said “I’m always going to have some weird questions, and so that’s
where the raw data is going to be useful. I can go and visualize it
myself.” After the study, we added data exports to VisLab to meet
these needs.

Recruitment. While VisLab provides various strategies to assist
recruitment, including the shareable experiment link and learning
benefits for participants, the recruitment procedure is mainly left
up to the users. While affluent and experienced users might use
private dedicated channels or paid platforms to recruit appropri-
ate participants, other lay users might still find the recruitment
difficult. In particular, P3 also indicated a potential need for reach-
ing multi-cultural audiences, “...how you choose to represent those
colors are going to have cultural meanings that the author’s intent
and the audience interpretation and may not align.”. Similar to exist-
ing volunteer-based platforms such as LabintheWild [93], VisLab
could maintain its own recruitment channels, such as a social media
page and mailing list. Showing other experiments on the partici-
pant result page (Figure 4.3) might nourish additional curiosity [78]
for participants to engage in the additional experiments [40]. Fur-
thermore, fostering social relationships around VisLab can lead to
reproductive benefits by encouraging users to participate in each
other’s experiments [106]. While heterogeneous participation can
be beneficial for external validity, it would be helpful to incorporate
advanced outlier detection and attention-checking mechanisms in
the future and manage multiple target audiences.

Process & Sharing. An experiment in VisLab is currently a one-off,
while the user might go through a series of design variations and
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multiple stages of design feedback. It would be beneficial to provide
ways to connect related experiments in the iterative process. Being
able to categorize associated experiments can be helpful for sharing
the outcomes with coworkers or the public, as P6 suggested the
need for curating all experiment results as an organizational effort
for training (e.g., minimizing repeating mistakes) and collaboration.

Participants also suggested expanding categories for navigat-
ing publicized experiments, such as based on topics and target
audiences. While VisLab supports custom tags, providing such pre-
defined tags can help curate the knowledge base and support more
structured navigation. P10 even indicated the possibility of VisLab
as a forum or community where people share visualization design
ideas.

The current remixing is in its simplest form, and potential modi-
fications include changing questions and parameters. P10 suggested
the ability to modify existing visualizations in order to make the
remixing more meaningful. Since VisLab supports Vega-lite spec-
ifications [98], a future version could allow modifying the specs
directly in the experiment design interface.

Qualitative Feedback & Practical Experimentation. VisLab focuses
on quantitative feedback as it is currently a missed opportunity for
practitioners. That said, combining both types of feedback would
benefit practitioners the most. Currently, the post-survey question-
naire can provide a way to collect qualitative feedback. However,
adopting ideas from past qualitative feedback systems [66, 74, 79,
108, 110] can offer more structured methods and improve the holis-
tic quality of the feedback.

Our development goal for VisLab was to find a minimum viable
product, considering the practicality and complexity of the system
for practitioners. For instance, we dropped the feature supporting
multi-level mixed design for GP . We wanted to make VisLab ac-
cessible for those unfamiliar with empirical methods and certainly
did not intend VisLab to be a research tool but rather a quick turn-
around feedback tool. While out of scope for this work, it would be
interesting to investigate further the level of user control & freedom
best suited for practical experimentation and explore the tension
and trade-off between feedback and science.

8.2 Fostering a Community around
Visualization Design Knowledge

Practitioners, researchers, and educators constitute one holistic
visualization community. While there are constant efforts to meet
and communicate with each other, it is known that there exist
knowledge gaps among them [39, 90]. VisLab could be used by
practitioners to help fill in missing knowledge in practice when
there are no other resources available. For instance, one participant
(P7) indicated evaluating the applicability of existing guidelines
in their own context and visualization by saying “There’s a lot of
guidelines in there that I think is correct, but I do not have a good
way to test them, so this would be an excellent tool for testing those
things.”

In addition, experiments created and curated in VisLab can pro-
vide insights into what practitioners might be interested in, offering
useful initial hypotheses for researchers to test in rigorous lab envi-
ronments and produce generalizable knowledge. Moreover, VisLab
can provide educational opportunities for visualization learners by

gaining hands-on experience in visualization experiments [15] as a
starting point to understand the science behind visualization design.
In this manner, exploring ways to bring practitioners, researchers,
and educators together to promote visualization design knowledge
as collaborative efforts would be valuable in the future.

9 CONCLUSION AND FUTUREWORK
In this work, we presented VisLab, an interactive system that en-
ables designers to run visualization experiments and derive empirically-
driven design feedback. Our perception survey revealed their gen-
uine interest in empirical methods for obtaining quantitative feed-
back despite a lack of awareness and experience. We also derived a
standardized procedure and representative experiment templates
based on the literature review of existing empirical studies in the
visualization field. Our user study demonstrates that VisLab’s tem-
plates and dashboard make it easy to get informative insights for
their visualization designs. For future work, we plan to deploy Vis-
Lab in the wild, along with detailed tutorials and various example
experiments.
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