
Erie: A Declarative Grammar for Data Sonification
Hyeok Kim

hyeok@northwestern.edu
Northwestern University
Evanston, Illinois, USA

Yea-Seul Kim
yeaseul.kim@cs.wisc.edu

University of Wisconsin-Madison
Madison, Wisconsin, USA

Jessica Hullman
jhullman@northwestern.edu
Northwestern University
Evanston, Illinois, USA

ABSTRACT
Data sonification—mapping data variables to auditory variables,
such as pitch or volume—is used for data accessibility, scientific
exploration, and data-driven art (e.g., museum exhibitions) among
others. While a substantial amount of research has been made
on effective and intuitive sonification design, software support is
not commensurate, limiting researchers from fully exploring its
capabilities. We contribute Erie, a declarative grammar for data
sonification, that enables abstractly expressing auditory mappings.
Erie supports specifying extensible tone designs (e.g., periodic wave,
sampling, frequency/amplitude modulation synthesizers), various
encoding channels, auditory legends, and composition options like
sequencing and overlaying. Using standard Web Audio and Web
Speech APIs, we provide an Erie compiler for web environments.
We demonstrate the expressiveness and feasibility of Erie by repli-
cating research prototypes presented by prior work and provide a
sonification design gallery. We discuss future steps to extend Erie to-
ward other audio computing environments and support interactive
data sonification.

CCS CONCEPTS
• Human-centered computing→ Accessibility systems and
tools.

KEYWORDS
Data sonification, declarative grammar, data accessibility

ACM Reference Format:
Hyeok Kim, Yea-Seul Kim, and Jessica Hullman. 2024. Erie: A Declarative
Grammar for Data Sonification. In Proceedings of the CHI Conference on Hu-
man Factors in Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI,
USA. ACM, New York, NY, USA, 19 pages. https://doi.org/10.1145/3613904.
3642442

1 INTRODUCTION
Data sonification maps data variables (e.g., height, weight) to audi-
tory variables (e.g., pitch, loudness) [24, 28, 41]. Sonification plays
an important role in domains such as data accessibility, scientific
observation, data-driven art, and museum exhibitions [46]. For peo-
ple with Blindness or Vision Impairment (BVI), sonification makes
it possible to access data presented on screen. In science museums

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642442

or digital news articles, data sonifications can support authoring
more immersive data narratives by diversifying cues.

While sonification designs vary with their intended purposes,
creating data sonification is often laborious because of limited
software-wise support for auditory channels, compared to a robust
set of expressive visualization toolkits (e.g., D3 [10], ggplot2 [57]).
An ability to express diverse designs helps creators and developers
to be less constrained in making their artifacts. Due to a lack of
expressive tools for data sonification, however, many prior empir-
ical works in accessible visualization rely on more hand-crafted
methods (e.g., using Garage Band by Wang et al. [56]) or solution-
specific approaches (e.g., Hoque et al. [25]). For example, Sonifica-
tion Sandbox [53]’s authoring interface for data sonifications does
not support expressing a sequence or overlay of multiple sonifica-
tions. Creators of artistic sonifications or data stories need to use
additional audio processing software to combine those sonifications,
which requires a different set of skills. Furthermore, those tools are
not programmatically available, so it is hard to apply them to use
cases with data updates or user interactions. While several R and
JavaScript libraries support creating data sonifications (e.g., DataGo-
Boop [42], PlayItByR [11], Sonifier.JS [43]), they are tightly bound
to the associated visualization’s chart type (e.g., histogram, box-
plot) or support few encoding channels (e.g., pitch only), limiting
authors’ potential to compose diverse data sonification designs.

To facilitate research and tool development for data sonification,
we contribute Erie, a declarative grammar for data sonification.
We developed Erie with the goal of supporting independence from
visual graphs, expressiveness, data-driven expression, compatibil-
ity with standard audio libraries, and extensibility with respect to
sound design and encodings. At high level, Erie’s syntax specifies a
sonification design in terms of tone (the overall quality of a sound)
and encoding (mappings from data variables to auditory features).
Erie supports various tone definitions: oscillator, FM (frequency
modulation), and AM (amplitude modulation) synthesizer, classical
instruments, periodic waveform, and audio sampling. Authors can
specify various auditory encoding channels, such as time, duration,
pitch, loudness, stereo panning, tapping (speed and count), and
modulation index. Authors can also use Erie to express a compo-
sition combining multiple sonifications via repetition, sequence,
and overlay. Our open-sourced Erie player for web environments
supports rendering a specified sonification on web browsers using
the standard Web Audio and Speech APIs. Erie’s queue compiler
generates an audio queue (a scheduled list of sounds to be played),
providing the potential for extending Erie to other audio environ-
ments like C++ and R.

We demonstrate Erie’s expressiveness by replicating accessibil-
ity and general-purpose sonification designs proposed by prior
work (e.g., Audio Narrative [45], Chart Reader [47], and news arti-
cles [12]). We provide an interactive gallery with a variety of exam-
ple sonification designs. We conclude by outlining necessary future

https://orcid.org/0000-0003-4340-4470
https://orcid.org/0000-0003-1854-1537
https://orcid.org/0000-0001-6826-3550
https://doi.org/10.1145/3613904.3642442
https://doi.org/10.1145/3613904.3642442
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613904.3642442

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Kim et al.

work for Erie, including technological hurdles, potential use cases,
and blueprints for supporting interactivity and streaming data.

2 BACKGROUND AND RELATEDWORK
This work is grounded in research on data sonification and declara-
tive grammars for data representation.

2.1 Data Sonification
Data sonification or audio graph encodes data values as auditory
values [24, 28, 41]. For example, Geiger counter maps ionizing radi-
ation to the loudness of a sound. Sonification is considered as one of
the primary methods for data accessibility or accessible data visual-
ization for people with Blindness and Vision Impairment (BVI). For
instance, web-based data visualization can be coupled with sonifica-
tion along with alternative text descriptions. Yet, accessibility is not
the only venue for sonification, but various fields, such as scientific
data representation [20, 22, 35], data-driven art [50], and public
engagement with science (e.g., learning [48], museums [17, 54]),
use data sonification.
Auditory channels. Different auditory channels, such as pitch or
volume, are physicalized into a waveform. We first describe a few
core concepts related to a sound wave: frequency and amplitude.
The frequency of a sound wave refers to the number of wave cycles
(e.g., a local peak to the next local peak) per second, and its unit is
hertz (Hz). A soundwith a higher frequency has shorter wave cycles,
and people tend to perceive it as a higher pitch. The amplitude of
a sound wave means the extent or depth of a waveform. A larger
amplitude makes a louder sound.

Commonly used channels in prior work include pitch, loudness
(or volume), tapping, timing, panning, timbre, speech, and modula-
tion index [19]. Pitch refers to how sound frequency is perceived
with an ordered scale (low to high; e.g., Do-C, Re-D, Mi-E). Loudness
means how loud or intense a sound is, often physically measured
using the unit of decibel. Timing is when a sound starts and stops be-
ing played; the time interval is termed duration (or length). (Stereo)
panning refers to the unidimensional spatial (left to right) position
of a sound by controlling the left and right volume of two-channel
stereo audio. Timbre (or instrument, put more casually) means the
quality of a sound, such as piano sound, synthesizer, bird sound,
etc. Modulation-based synthesizers (or synths), such as frequency
modulation (FM) and amplitude modulation (AM), have two oscilla-
tors, a carrier for the main sound and a modulator that changes the
carrier’s waveform through some signal processing (simply put).
A modulation index (MI) for such synths refers to the degree of
modulation in signal processing. The frequencies of two oscillators
generate the harmonicity between them.

An audio mapping of a non-categorical variable can have a pos-
itive or negative polarity. A positive polarity scale maps a higher
data value to a higher audio value (e.g., high pitch, high volume),
and a negative polarity scale maps a higher data value to a lower
audio value. While a sonification designer should be able to specify
the range of an audio scale, audio scales are capped by the physical
space. For example, the common audible frequency spectrum is
known to range from 20 Hz to 20,000 Hz [37].
Empirical studies in data sonification for accessibility focus
on how people with BVI interpret different auditory mappings.

Walker et al. [51, 52, 55] extensively compared how sighted and
BVI people perceive various auditory channels and the polarity
of mappings for different quantitative data variables (e.g., dollars,
temperature). Recent work extends focus to other qualities of audi-
tory mappings. For instance, Hoque et al. [25] used natural sound
(e.g., bird sound) to support enhanced distinction between categori-
cal values. Wang et al. [56] show that BVI readers find certain audio
channels to be more intuitive given visual encodings (e.g., pitch
for bar heights) and given data type (e.g., quantitative, ordinal). In
their experiment, participants indicated a need for an overview of
auditory scales [56]. Thus, a sonification grammar should be able
to express such aspects of an audio graph design definition.

2.2 Sonification Tools and Toolkits
Prior work has proposed sonification tools for accessibility sup-
port for data visualizations. For example, iSonic [61], a geospatial
data analytic tool, offers various audio feedback for browsing maps,
such as using stereo panning to provide a spatial sense of the geospa-
tial data point that a user is browsing. iGraph-Lite [21] provides
keyboard interaction for reading line charts, and Chart Reader [47]
extends this approach to other position-based charts and supports
author-specified “data insights” that highlight certain parts of a
given visualization and read out text-based insight descriptions.
Siu et al. [45] propose an automated method for splitting a line chart
into several sequences and adding a template-based alternative text
to each sequence. Agarwal et al. [4] provide a touch-based inter-
action method for browsing data sonifications on mobile phones.
While prior sonification research has focused on use of non-speech
sound, accessibility studies underscore combining speech and non-
speech sound to design audio charts.

Beyond supporting accessibility, others proposed sonification
toolkits created for developers or creators to directly make data
sonifications. This prior tooling motivates a design space for soni-
fication toolkits, such as the distinction between instrument and
audio channels, needs for programming interfaces, and the utility of
audio filters. However, existing tools often provide compartmental-
ized support for creating expressive and data-driven sonifications
as summarized in Table 1. For example, sonification designs sup-
ported by DataGoBoop [42] and PlayItByR [11] are strongly tied
to underlying chart type (e.g., histogram, box plot), limiting the
freedom in choosing auditory encoding channels. Sonifier.js [43, 44]
offers limited audio channels, time and pitch. Sonification Sand-
box [53] and its successors [14, 27] support more encoding channels,
but developers need to use external sound editors to sequence or
overlay multiple sonifications that they created using the interface,
requiring a different stack of skills. Furthermore, many existing
tools lack application programming interface (API) support, mak-
ing it difficult for users to personalize or customize sonification
designs with their preferred encoding channels or instruments. To
achieve greater expressiveness with APIs, developers could use
audio programming libraries, such as Tone.js [3], but they have
to manually scale data values to auditory values, which can be a
substantial hurdle for those with limited audio skills. These tools
also lack support for scale references (e.g., tick, scale description),
making it harder to decode audio graphs they generate.

Erie: A Declarative Grammar for Data Sonification CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 1: Comparison of Erie to prior sonification toolkits. Abbreviations: VL (VoxLens and Sonifier.JS) [43, 44], HC (Highcharts
Sonification) [14], WSS (Web Sonification Sandbox) [27], SC (Soncification Cell) [36], AAG (Apple Audio Graph) [6], DGB
(DataGoBoop) [42], PR (PlayItByR) [11], XS (xSonify) [13], SS (Sonification Sandbox) [53], SY (SonifYer) [18], IST (Interactive
Sonification Toolkit) [33], SW (Sonification Workstation) [34], SA (SonArt) [9], L (Listen) [60], M (MUSE) [29], PS (Personify) [7],
Str (Strauss) [49], Sta (StarSound) [23], SD (SODA) [16], Eq (Equalizer), Pow (Power function), Sqrt (Square-root function),
SymLog (Symmetric log function).

Category Property Erie VL HC WSS AAG DGB PR XS SS SY IST SW SA L M PS Str Sta SD
Environment Web Web Web Web Swift R R Java Java Pure Data C++ C++ C++ C Python

Year 2023 2022 2021 2017 2021 2020 2011 2006 2004 2008 2004 2019 2002 1996 1997 1995 2021 2020 2014

Data Trans-
form

Aggregate ◦ ◦
Bin ◦
Filter ◦
Calculate ◦
Density ◦
Fold ◦

Sound
tone

Speech ◦ ◦ ◦ ◦

Instrument
type

Oscillator ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FM Synth ◦ ◦ ◦ ◦ ◦ ◦
AM Synth ◦ ◦ ◦ ◦ ◦
Musical ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Wave ◦ ◦
Noise ◦ ◦ ◦ ◦ ◦ ◦ ◦
Natural Via sampling

Human vowel Via sampling ◦
Instrument sampling ◦ ◦
Continuous/discrete sounds ◦ ◦

Encoding

Freedom ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Ramping ◦ ◦

Channels

Time-start ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Time-end ◦
Duration ◦ ◦ ◦ ◦
Speed/Tempo ◦ ◦ ◦ ◦
Count ◦
Pitch/detune ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Loudness ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Stereo pan ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Circular pan ◦
Timbre ◦ ◦ ◦
MI ◦
Harmonicity ◦ ◦ ◦
Reverb ◦
Speech ◦
Highpass filter Via preset filter ◦
Lowpass filter Via preset filter ◦
Envelope Via preset filter ◦ ◦ ◦
Distortion Via preset filter ◦ ◦ ◦
Repeat ◦

Custom channels ◦

Scale

Data type ◦ ◦ ◦
Domain/range ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Polarity ◦ ◦ ◦ ◦ ◦
Transform Log/Pow/Sqrt/SymLog Log

Audio filters

Biquad High/lowpass Eq Eq Eq

Compressor

Envelope

Distorter

Reference Tick ◦ ◦ ◦ ◦ ◦ ◦
Audio legend ◦

Composition
Sequence ◦
Overlay ◦ ◦ ◦
Repetition ◦

API ◦ ◦ ◦ ◦ ◦ ◦

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Kim et al.

Our work provides a declarative grammar for data sonification,
Erie, as a programmatic toolkit and abstraction that developers can
use to express a wide range of sonification designs. Erie supports
various common encoding channels (time, duration, pitch, loud-
ness, tapping, panning, reverb, and speech), verbal descriptions,
tone sampling, and composition methods (repeat, sequence, and
overlay), making it a good basis for use in the development of future
sonification software.

2.3 Declarative Grammar
Declarative programming is a programming paradigm where a
programmer provides an abstract specification (or spec) describ-
ing the intended outcome and a compiler executes to generate the
outcome. In this paradigm, declarative grammar defines rules for
how to write a program. Many data-related fields, such as data
visualization and statistics, have widely adopted declarative gram-
mars. In data visualization,Wilkinson [59] proposed the grammar of
graphics as a systematic way to describe a visualization design spec-
ification. Based on the grammar of graphics, ggplot2 [57] for R and
D3.js [10] and Vega stacks (Vega [40], Vega-Lite [39]) for JavaScript
are widely used declarative grammars for creating general-purpose
data visualizations.

Declarative grammars add value by providing internal repre-
sentations and compilers for user applications, particularly when
directly manipulating the targeted physical space is challenging like
audio environments for sonification [26]. For example, some soni-
fication toolkits (e.g., [33]) adopt visual programming languages
to allow for visually and interactively authoring data sonification,
and those visual programming languages are backed by some kind
of declarative expressions. For example, Quick and Hudak [38] pro-
vide graph-based expressions that allow for specifying constraints
to automatically generate music. Implementing a sonification from
scratch requires a sophisticated skill set for controlling electronic
audio spaces (e.g., connecting audio filters, timing sounds, etc.). To
facilitate sonification software development, our work contributes
a declarative grammar for data sonification, Erie, and compilers for
web environments built on standard audio APIs.

3 GAPS IN SONIFICATION DEVELOPMENT
PRACTICES

To motivate our design of Erie with awareness of existing prac-
tices used in developing data sonification, we surveyed recently
published data sonification tutorials and designs. To understand
practices being shared among sonification developers, we collected
nine online tutorials for coding sonifications by searching with key-
words like “sonification tutorial,” “audio graph tutorial,” or “soni-
fication code.” To see techniques beyond tutorials, we inspected
24 data sonifications with code or detailed methodology descrip-
tions from Data Sonification Archive1 that were published from
2021 through 2023. This collection included tutorials and designs
created by active sonification contributors like Systems Sound2 and
Loud Numbers3. We include the list of the sonification tutorials and

1https://sonification.design/
2https://www.system-sounds.com/
3https://www.loudnumbers.net/

designs we collected in Supplementary Material. We tagged sonifi-
cation tutorials and designs in terms of software or libraries used,
functionality of code written by the creators (e.g., scale functions,
audio environment settings), and output formats (e.g., replicability
of designs, file formats). Overall, this preliminary survey identified
that developers currently rely on ad-hoc approaches due to
the lack of expressive sonification approaches.
Converting to auditory values then connecting to music soft-
ware. Most tutorials (7 out of 9) introduced music programming
libraries like music21, PyGame, Tone.js, sequenceR, Max, Sonic Pi,
and MIDIFile, and most (15 out of 24) sonification designs used
them. These libraries take as input auditory values like pitch notes
or frequencies, volumes, and time durations. That is, developers
still need to define scale functions that convert data values to au-
ditory values, requiring an understanding of physical properties
of different auditory variables. For example, the “Sonification 101”
tutorial4 describes how to map data points to notes with a four-step
procedure. First, a developer normalizes the data point into a range
from 0 to 1, then multiples by a scalar to keep them in a certain
range. Third, the developer specifies a list of notes to map data
points to. Last, they write a for loop to convert each data point to
the corresponding note from the list. On the other hand, a tutorial
by Propolis5 introduces a linear scale function.

Then, developers need to connect those computed values to
other music libraries by configuring custom instruments. To be
able to create custom instruments using low-level libraries like
MIDITime or Tone.js, the developer needs to have professional
skills like how to import and control audio samples and what audio
nodes to control to adjust different audio properties. For instance,
common sonification encodings like gain, pitch, and distortion
level are governed by different audio nodes. More experienced
professional creators chose to use more advanced music software
like Ableton Live, Supercollider, and Touch Designer that enable
live performances or art installations.
Difficulty in reusing sonification designs.Whether created pro-
grammatically or not, many existing sonification cases are shared
as multimedia files (audios or videos). This practice makes it harder
to inspect how they were created in terms of data-to-music scales,
instrument details, etc.. Even if a sonification’s codes are avail-
able, it is often hard to reuse the custom code because develop-
ers have to manually inspect the code in terms of different vari-
able names to locate where to make changes for their designs. For
example, to change the domain, range, and transformation type
(e.g., sqrt, log) of a certain scale, then they have to find the relevant
lines and manually change them by writing something like a lin-
ear scale function (e.g., aScaleFunction(x) {return min(1600,
max((log(x)-log(30))/(log(500)-log(30))*1600, 200);}),
which is not always straightforward, particularly for less experi-
enced sonification developers. This difficulty in reusing custom
code is also widely known among visualization practitioners [8].

4https://medium.com/@astromattrusso/sonification-101-how-to-convert-data-into-
music-with-python-71a6dd67751c
5https://propolis.io/articles/making-animated-dataviz-sonification.html

https://sonification.design/
https://www.system-sounds.com/
https://www.loudnumbers.net/
https://medium.com/@astromattrusso/sonification-101-how-to-convert-data-into-music-with-python-71a6dd67751c
https://medium.com/@astromattrusso/sonification-101-how-to-convert-data-into-music-with-python-71a6dd67751c

Erie: A Declarative Grammar for Data Sonification CHI ’24, May 11–16, 2024, Honolulu, HI, USA

4 DESIGN CONSIDERATIONS
Leveraging prior empirical studies, sonification toolkits (Table 1),
and development practices (Section 3), we developed the Erie gram-
mar and compiler as a toolkit for sonification developers with the
following considerations in mind.
(C1) Be independent.Many existing sonification libraries that pro-
vide APIs are strongly tied to visual forms, such that they support
sonifying a particular visualization instead of authoring a sonifi-
cation. While this approach can make it easy to generate sounds,
it prevents sonification creators from exploring the many alter-
native designs one might generate by directly expressing audio
graphs. Furthermore, it ignores different tasks implied by similar
visualization designs. For example, point marks can be a scatterplot
for assessing correlation or a residual plot for judging model fit,
potentially calling for different sonification designs. We designed
the Erie grammar to be independent of visual forms to maximize
design possibilities.
(C2) Be expressive. To support independently creating various
sonification designs, it must be possible to express different sound
qualities, auditory channels, and combinations of multiple sonifi-
cations. Expressive toolkits enable researchers and developers to
navigate a variety of design ideas. Thus, Erie supports specifying
different sound designs (e.g., instrument types, discrete vs. continu-
ous sounds) and different auditory channels for data encoding, and
also allows for specifying sonification sequences and overlays.
(C3) Be data-driven. Sonification can be a useful tool for enhanc-
ing presentations of data in other modalities (e.g., visualization), in
addition to standing on its own. Creating sonification often starts
with implementing ad-hoc functions to convert data to audio prop-
erties as shown earlier. Under the assumption that Erie’s users may
have limited understanding and skill with respect to acoustic engi-
neering and audio programming, it makes more sense to be able to
declare data-to-audio conversions with a few configuration terms.
Consequently, we designed Erie’s syntax to express data instead of
sound by leveraging the grammar of graphics [59] and its popular
implementations [39, 40, 57], such as their scale expressions for
encoding channels.
(C4) Be extensible. A toolkit may not be able to support all po-
tential cases in advance, particularly when the design space is
unlimited. Erie allows for sampling audio files, configuring FM and
AM synths, and defining periodic waves (combining multiple sine
and cosine waves). Furthermore, Erie provides a method to define
and connect custom audio filters (e.g., distortion, biquad filters) that
can have extra auditory encoding channels.
(C5) Be compatible with standards. The expressiveness and ex-
tensibility criteria are constrained by specific audio environments.
As different display media affect the resolution of images, sound
representations are highly sensitive to audio environments, such
as processing capacities and equipment. Thus, compatibility with
the standards of a targeted environment is critical, similar to how
we use SVG or Canvas for web visualizations. We consider two
standards for sonification: (1) physical units and (2) rendering stan-
dards. First, Erie’s queue compiler generates a scheduled list of
sound items using standard auditory units (e.g., Hz and musical
notes for pitch, the panning range from −1 to 1) so as to be used in

other audio environments (e.g., external music software). Our Erie
player for web employs the Web Audio and Speech APIs to enable
cross-browser experience.

5 ERIE GRAMMAR
We formally describe the syntax of the Erie grammar to show how
Erie is designed to be expressive (C2) and data-driven (C3). At a
high level, Erie expresses a sonification design using a sound instru-
ment (tone) and mappings from data to auditory values (encoding
channels). After walking through an example case, we describe how
Erie expresses a data sonification design, including top-level speci-
fication, stream, data input and transform, tone, encoding, stream
composition, and configuration. The formal definition of Erie is
provided in Figure 1. In describing Erie, we distinguish developers
who create sonifications from listeners who listen to sonifications.
For details, refer to the Appendix and the documentation6.

5.1 A Walkthrough Example
To help imagine how Erie works in specifying a sonification de-
sign, we introduce a simple auditory histogram for a quantitative
data variable, miles per gallon with a range from five to 50, from
a ‘cars.json’ dataset [1]. In this sonification, miles per gallon is dis-
cretized into nine bins by five miles, and the bins are communicated
by mapping them to time. The count (aggregation) of each bin is
mapped to pitch.

To construct this example using Erie, we first specify the data to
sonify by providing its URL:

data = {url = cars.json}

Then, we need data transforms for binning and count aggregation.
The below expression creates bins for themiles per gallon field using
default binning options (auto). This operation defines two additional
fields for the start and end point of each bin. The expression further
assigns miles-per-gallon-bin to the name of bucket start points (as)
and miles-per-gallon-bin-end to the name of end points (end).

bin = {field = miles-per-gallon, auto = true,

as = miles-per-gallon-bin,

end = miles-per-gallon-bin-end}

For the count aggregation, the below expression specifies doing
a count operation, and names the resulting field count. To count
the values for each bucket, this expression sets a group-by field
to the bin start point field (miles-per-gallon-bin) generated by the
previous bin transform.

aggregate = {op = count, as = count,

group-by = miles-per-gallon-bin}

To have the results of the bin transform feed-forward to the count
aggregation, these two transforms are ordered as:

transform = [bin, aggregate]

Applying these transforms to the ‘cars.json’ data results in Table 2.

6https://see-mike-out.github.io/erie-documentation/

https://see-mike-out.github.io/erie-documentation/

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Kim et al.

Table 2: The results of data transforms in Section 5.1.

miles-per-gallon-bin miles-per-gallon-bin-end count
5 10 1
10 15 52
15 20 98
20 25 78
25 30 77
30 35 56
35 40 27
40 45 8
45 50 1

Second, we need to define how to sonify the specified data in
terms of overall qualities (tone) and auditory mappings (encoding).
We indicate that the sound should be segmented or discrete:

tone = {continued = false}

Then, we need three encoding channels: when to start each sound
(time), when to end it (time2), and its pitch. The time channel en-
codes the bin start points (miles-per-gallon-bin):

time = {field = miles-per-gallon-bin, type = quantitative,

scale = {length = 4.5}}

The above expression also specifies that the time channel encodes
a quantitative variable and that the total length of the auditory
histogram is 4.5 seconds. We want to finish each bin’s sound with
respect to the bucket’s endpoint. Because bins’ start and end points
are in the same unit and scale, we use an auxiliary time2 channel:

time2 = {field = miles-per-gallon-bin-end, type = quantitative}

Note that this time2 channel has no scale expression because it uses
the same scale as the time channel. Next, we encode the count of
each bin to a pitch channel in a way that a higher count is mapped
to a higher pitch (positive polarity), using the below expression:

pitch = {field = count, type = quantitative,

scale = {domain = [0, 100], range = [220, 660],

polarity = positive}}

This expression further specifies that this pitch channel maps a
domain (from 0 to 100) to a pitch frequency range (from 220Hz–
A4 note to 660Hz–A6 note). These three encoding channels are
combined as:

encoding = {time, time2, pitch}

Lastly, the above expressions are combined into a spec as:

spec = {data, transform, tone, encoding}

This spec results in the sonification output shown in Table 3 (see
Supplementary Material for the actual audio). The equally-sized
bins are mapped to the start and end times, and the aggregated
counts by each bin is mapped to the pitch frequencies.

Table 3: The sonification output for an auditory histogram
in Section 5.1. “#” indicates the playing order of each part.
Units: seconds (start, end, duration) and Hz (pitch). “Sine”
means a sinusoidal oscillator.

Type Sound
1 Speech Start playing.

2 Tone

Start
0

End
0.5

Duration
0.5

Timbre
Sine

Pitch
224.4

Start
0.5

End
1

Duration
0.5

Timbre
Sine

Pitch
448.8

Start
1

End
1.5

Duration
0.5

Timbre
Sine

Pitch
652.2

Start
1.5

End
2

Duration
0.5

Timbre
Sine

Pitch
563.2

Start
2

End
2.5

Duration
0.5

Timbre
Sine

Pitch
558.8

Start
2.5

End
3

Duration
0.5

Timbre
Sine

Pitch
466.4

Start
3

End
3.5

Duration
0.5

Timbre
Sine

Pitch
338.8

Start
3.5

End
4

Duration
0.5

Timbre
Sine

Pitch
255.2

Start
4

End
4.5

Duration
0.5

Timbre
Sine

Pitch
224.4

3 Speech Finished.

5.2 Top-Level Specification and Stream
We first define a simple, single data sonification specification in
Erie (a spec, hereafter) as a tuple of stream, dataset, tick, synth,wave,
sampling, title, description, and config:

spec := {stream, dataset, tick, synth,wave, sampling,

title, description, config}

The curly brackets { } indicate a tuple of elements.
A stream represents a unit sonification design, consisting of data

(what to sonify), transform (operations to the data), tone (overall
sound quality), and encoding (mappings from data to sound values):

stream := {data, transform, tone, encoding}

To pre-define and reuse elements in multiple stream, a developer
can use different lists of named objects for dataset, tick, synth (syn-
thesizers),wave (periodic wave), and sampling (using external audio
files as a tone). A developer can specify a speech-based title and
description that are played before the audio graph. The config of a
spec configures a sonification design, such as the speed of speech
(speech rate) and whether to skip playing the title text (skip title).

5.3 Data, dataset, and Transform
A sonification stream must have data to sonify and Erie supports
three methods to do so: providing the URL of a data file, providing
an array of values, or providing the name of a predefined dataset
in the dataset object.

data := URL | values | name,

where the vertical bar sign | denotes ‘or’. A dataset object consists
of the named definitions of data items using URL or values.

dataset := [{name,URL} | {name, values}]

The square brackets [] denote a list of elements.

Erie: A Declarative Grammar for Data Sonification CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Transform := [Aggregate | Bin | Density | Fold |
 Calculate | Filter | ...]

���

���������
A := B A���������������B�
{A, B} ����������A�����B�
A | B A����B�

(A)[B=C] A�����
����	��������B����C�
A ����������������A�
*<A> �����������������A�

A<[B, C]> ����	��������A��������������	�������B�����C�
[A] ���������������A�
[A: B] ������������������������������A�����
������������B�

Spec := {Title, Description,
 (Stream | Overlay | Sequence),
 Dataset, Tick, Synth, Wave, Sampling, Config}

���������
����������������
��������������������

�����������������

�������������������������������������

�������������������������������������
Stream := {Data, Transform, Tone, Encoding, Config}

Overlay := [Stream]

Sequence := [Stream | Overlay]

	�������	���	�����������������

	�������������������������
������������������������������������

��

Data := Name<String> | Url<UrlString> | Values<Array>

Dataset := [{Name<String>, (Url<UrlString> | Values<Array>)}]
���������

�		��	����������������������

��������������

�������	��
���������������
��
Tone := {ToneType,
 Continued<Boolean>,
 Filter}

ToneType := ‘default’ | ‘sawtooth’ | ‘triangle’ | ‘square’
 | ‘piano’ | ‘pianoElec’ | ‘violin’| ‘guitar’ | ‘metal’
 | ‘hithat’ | ‘snare’ | ‘highKick’ | ‘lowKick’ | ‘clap’
 | ‘whiteNoise’ | ‘pinkNoise’ | ‘brownNoise’
 | *<String>
Filter := [FilterName<String>]

���������������������������
������������������	����������������
�����������������������������

����		����

�����	
�����
�����

 �����������������

��� �����������������������������������
Encoding := [Channel: ChannelDef]
Channel := ‘time’ | ‘time2’ | ‘duration’ | ‘tapSpeed’
 | ‘tapCount’ | ‘pitch’ | ‘detune’ | ‘pan’
 | ‘loudness’ | ‘timbre’ | ‘postReverb’
 | ‘modulationIndex’ | ‘harmonicity’ | ‘speechBefore’
 | ‘speechAfter’ | ‘repeat’ | *<String>

ChannelDef := { ({Field<string|[string][Channel=‘repeat’]>,
 EncType, Scale}
 | {Condition, Value<Any>}),
 (Ramp)[Tone.Continued=True],
 Aggregate, Bin,
 (TimeUnit, TimeLevel)[EncType=‘temporal’],
 (Speech<Boolean>, By)[Channel=‘repeat’],
 (Tick<TickItem|String>)[Channel=‘time’]}

EncType := ‘quantitative’ | ‘ordinal’ | ‘nominal’ | ‘temporal’
Condition := [{Test<String>, Value<Any>}]
Ramp := ‘linearl’ | ‘exponential’ | ‘abrupt’
Aggregate := ‘mean’ | ‘median’ | ...
Bin := <Boolean> | {maxbins, nice, step, exact}
By := ‘sequence’ | ‘overlay’ | [‘sequence’ | ‘overlay’]

TimeUnit := ‘year’ | ‘month’ | ‘day’ | ...
TimeLevel := ‘year’ | ‘month’ | ‘day’ | ...

 �����������	������������	����

������������	

�	����������������

��������		��
�������������
����������

 �������������������
���������������������������

������������������������

�����������
��������������
��������	�

 ��������������������
���������������������

�������������������������������������
���������������������������������
�
Scale := {Description, Polarity, Domain,

 (Range | MaxDistinct<Boolean> | Times<Number>

 | (Length<Number>)[Channel=‘time’])

 (ScaleType, Zero<Boolean>)[EncType=‘quantitative’],

 (Timing)[Channel=‘time’],

 (Band<Number>)[Channel=‘time’|‘tapSpeed’|‘tapCount’]}

Description := Boolean | DescriptionMarkUpString

Domain := [Any]

Range := [Any]

Polarity := ‘positive’ | ‘negative’

ScaleType := ‘linear’ | ‘log’ | ‘pow’ | ‘sqrt’ | ‘symlog’

Timing := ‘abolute’ | ‘relative’ | ‘simultaneous’

�����������������������������
����������������������������	���������

����������������������	�������

����������������
������������������
���������	������
��������������

���	����	� �����������	������

���������������	�������������������	������������������

�����	���	�����������������

�����������	��������������������������	���

��������������	���������������������

���	�����������	���

������������������	��������������������������������	

�������������������
���������������
����	������

�����������
������������
����������

�������������� 		����������
��������

Tick := [TickItem]

TickItem := {Name<String>, Interval<Second>, OscType,

 Pitch<Hz>, Loudness<Gain>,

 PlayAtTime0<Boolean>}

OscType := ‘sine’ | ‘sawtooth’ | ‘triangle’ | ‘square’

Gain := Number<[0,Infinity]>

���
�������
�����	���������		��

������������	�������������������
�����	���������

��������������� ����	�����

Synth := [SynthItem]
SynthItem := {Name<String>, SynthType,
 AttackTime<Second>, ReleaseTime<Second>,
 CarrierType<OscType>, CarrierPitch<Hz>, CarrierDetune<Detune>,
 ModulatorType<OscType>, ModulatorPitch<Hz>,
 ModulatorVolume<Gain>,
 (ModulationIndex<Number>)[SynthType=‘fm’],
 (Harmonicity<Number>)[SynthType=‘am’]}
SynthType := ‘fm’ | ‘am’ Detune := Number<[-1200, 1200]>

���
����������������������������

����	���

 �����

����	���

����	����

Wave := [WaveItem]
WaveItem := {Name<String>, Real, Imag}
Real := [Number] Imag := [Number]

�����������������
����������������������������������

�����
���

����������������������������

 ����������� ����������

Sampling := [SamplingItem]

SamplingItem := {Name<String>,
 Sample}

Sample := Mono<UrlString> | Octave

Octave := {C0<UrlString>, ..., C7<UrlString>}

�������������������������������
���������
������������������

����������������������������

����������	�����������������	������ ���������	���������������	��

Config := [Key<String>: Value<Any>]
��

����������������������������������	�����������������������

Figure 1: The formal definition of Erie. For applicable elements, roughly analogous visualization elements are denoted by
≈ signs.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Kim et al.

After pre-processing the data to sonify, a developer may need to
perform additional, simple data transforms for sonification design
purposes, such as the binning for the auditory histogram in the
walkthrough. The developer can list transform definitions in a
transform object. In thewalkthrough, for example, the bin transform
created new data variables for the start and end points of each bin,
and the count aggregate reshaped the data with a new variable for
the count of each bin.

5.4 Tone
To set the baseline sound of a sonification stream, a developer needs
to specify the sound tone. A tone is roughly analogous to a mark
or glyph in a visualization given that data values are mapped to
its properties like pitch. Erie expresses the tone of a stream using
an instrument type (e.g., piano, FM or AM synth), an indicator of
whether a sound is continued, and a set of audio filters.

tone := {type, continued, filter}
An instrument type can be specified by its name, such as ‘sawtooth’
(oscillator) or ‘violin’, where default is a sinusoidal oscillator in
our implementation. If a sound is continued, two sound points are
connected without a pause. For more diverse audio expressions, the
developer can provide audio filters like distortion or equalizer.

5.5 Encoding
The encoding of a stream defines how data variables are mapped
to different auditory properties (e.g., pitch and loudness) of a tone.
Erie supports three classes of channels: dynamic, conditioned, and
static. A dynamic channel encodes a data variable (or field) to the
respective auditory property. It is defined in terms of a data field
from the stream’s data, the data type of an encoding (enc-type), its
scale details, its ramping method, and inline data transform options
(aggregate and bin):

channel𝑑 := {field, enc-type, scale, ramp, aggregate, bin}
The data type of encoding (enc-type) can be either quantitative,
ordinal, nominal, or temporal, reflecting common data types. For
a continuous tone, a ramping method specifies how to smoothly
transition one auditory value to another. The transition can be
abrupt (no-ramping), linear, and exponential.

A developer may need to emphasize certain data values by mak-
ing them sound different instead of encoding every data value using
a scale. In the walkthrough, suppose that the developer wants to
indicate bins with more than 80 counts using a louder sound. Sup-
porting such cases, a conditioned channel has a condition list for
special values and a value for the others.

channel𝑐 := {condition, value, ramp}
The condition is a list of test conditions and desired values.

condition := [{test, value}],
where if a data value meets a test condition, then the specified value
is assigned. Then, the above example can be expressed as:

loudness = {value = 0.5,
condition = [{test = (datum.count > 80), value = 1}]}

Lastly, a static channel only needs a value (i.e., channel𝑠 := {value}).

5.5.1 Scale. The scale of a dynamic encoding channel essentially
consists of the domain (data values to map) and range (audio values
to bemapped) of themapping. From thewalkthrough, the domain of
[0, 100] and the range of [220, 660] of the pitch channel compose a
linear function 𝑓 (𝑥) = (660−220)× 𝑥

100+220. There are shortcuts for
defining a range. When max-distinct is set to true, then the widest
possible range is used (e.g., the lowest to highest human-audible
pitch). The times multiplies each data value by itself to compute
auditory values. To verbally describe the scale, a developer can
provide description using a markup expression (see Section A.2.3),
analogous to a legend in a visualization. A baseline scale is formally
defined as:

scale := {domain, (range | max-distinct | times), description}

For a quantitative variable, the developer can further specify scale-type
(e.g., square-root, log, and exponential), the inclusion of zero point,
and polarity:

scale𝑞 := {. . . , polarity, scale-type, zero}

An ellipsis (. . .) denotes the baseline properties.

5.6 Composition
Combining multiple streams is necessary to create rich auditory
data narratives (e.g., [45, 47]). For example, a stream for vote share
can be repeated to provide statistics for different regions. Alterna-
tively, two streams, one for vote shares and one for the number
of elected officers in a certain region, can be sequenced to deliver
more information about election results in the region. Streams for
different polls can be overlaid to support synchronized comparison.
Erie supports expressing data-driven repetition and concatenation-
based composition.

5.6.1 Data-driven repetition: Repeat channel. Data analysts com-
monly examine a measure conditional on one or more categorical
variables. For instance, the developer may want to extend the walk-
through case by replicating the auditory histogram by the origin of
manufacture (i.e., three histograms for U.S.A., Japan, and Europe).
To support such cases, a repeat channel defines how to repeat a
stream design by one or more data fields. From the previous exam-
ple, the developer can repeat the auditory histogram by the origin
and the number of cylinders (values: 3, 4, 5, 6, and 8):

repeat = {field = [origin, cylinders]}

In this case, the repeat order is nested, such that the histograms for
the cylinder values are played for each origin. A repeat channel has
a speech property to indicate whether to speak out the value(s) for
each repeated stream. If speech is set to true for this example, the
repeated streams are played as shown in Table 4.

Suppose the developer nowwants to simultaneously play (i.e., over-
lay) the auditory histograms for different cylinder values to reduce
the playtime. To do so, the developer can use the by property in
the repeat channel:

repeat = {field = [origin, cylinders], by = [sequence, overlay],
speech = true}

This results in a sonification queue shown in Table 5.

Erie: A Declarative Grammar for Data Sonification CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 4: The sonification stream order for the auditory his-
tograms repeated by the origin and cylinders variables.

Type Sound
1 Speech U.S.A., 3
2 Tone [The histogram for origin U.S.A and 3 cylinders]
3 Speech U.S.A., 4
4 Tone [The histogram for origin U.S.A and 4 cylinders]
.

9 Speech U.S.A., 8
10 Tone [The histogram for origin U.S.A and 8 cylinders]
11 Speech Japan, 3
12 Tone [The histogram for origin Japan and 3 cylinders]
.

19 Speech Japan, 8
20 Tone [The histogram for origin Japan and 8 cylinders]
21 Speech Europe, 3
22 Tone [The histogram for origin Europe and 3 cylinders]
.

29 Speech Europe, 8
30 Tone [The histogram for origin Europe and 8 cylinders]

Table 5: The sonification stream order for the auditory his-
tograms sequenced by the origin field and overlaid by the
cylinders field.

Type Sound
1 Speech U.S.A.
2 Tone-Overlay [The histograms for U.S.A. and cylinder values:]

3 4 5 6 8
3 Speech Japan
4 Tone-Overlay [The histograms for Japan and cylinder values:]

3 4 5 6 8
5 Speech Europe
6 Tone-Overlay [The histograms for Europe and cylinder values:]

3 4 5 6 8

5.6.2 Concatenation: Sequence and overlay. Two or more separate
streams can be combined as a sequence (playing one after another)
or an overlay (playing all together at the same time). To enable these
multi-stream compositions, we extend the definition of a stream:

stream := {data, tone, encoding, title, description, config}

Consequently, a top-level spec is also redefined as:

spec := {(stream | overlay | sequence), transform,

dataset, tick, synth,wave, sampling,

title, description, config}

These extensions allow for specifying the title, description, and
configuration of each sub-stream as well as global data transforms.
The config object in a sub-stream overrides the top-level config. The
transform object defined in a stream of a sequence is applied after
the top-level (global) transform object.

Then, an overlay is formalized as a list of streams, and a sequence
is defined as an ordered list of streams and overlays:

overlay := [stream]
sequence := [stream | overlay]

Note that a nested sequence, [sequence, sequence], is also a sequence.

5.7 Configuration
A config object specifies overall controls for the sonification. For ex-
ample, when a sonification consists of multiple streams that use the
same auditory encodings and scales, the developer can skip playing
the scale descriptions for the non-first streams. When a sonification
needs more musical representation, a developer can change the
time-unit from seconds (default) to beats. For background, when
BPM is 100, one beat corresponds to 0.6 seconds (= 60/100). In
this case, the developer can specify the tempo (beat per minute, or
BPM) and whether to round raw beats to integer beats (e.g., 3.224
to 3). When the time unit of sonification is set to beats, then other
time-related units are also accordingly converted. For instance, the
unit for a tap-speed channel becomes taps per beat.

6 ERIE COMPILER AND PLAYER FORWEB
A family of compilers and renderers for declarative grammar pro-
duces the output as expressed in a design spec. For Erie, a queue
compiler compiles a spec to an audio queue representing a schedule
of sounds to be played in terms of their physical values. Then, a
player renders this audio queue into actual sounds. We separate the
queue compiler from the player to allow listeners to control when
to play or pause a sonification and to support developing players for
different audio environments, such as CSound [2]. We implemented
and open-sourced a spec API, a queue compiler, and a player for
a web environment7 using web standard APIs in JavaScript (C5:
Compatibility with standards).

6.1 Supported Presets
Compilers and renderers of declarative grammar often provide
default presets. Erie compiler and player offer the following presets.
Data and data transform. Erie’s compiler supports multidimen-
sional data in a relational table form (e.g., CSV, JSON). Since we
assume that a developer has done fundamental data processing
and transforms (e.g., fitting a regression model), our compiler sup-
ports a minimum set of data transform types that include aggrega-
tion, binning, kernel density estimation, folding (columns to rows;
e.g., [{𝐴 : 1, 𝐵 : 2}] → [{𝑘𝑒𝑦 : 𝐴, 𝑣𝑎𝑙𝑢𝑒 : 1}, {𝑘𝑒𝑦 : 𝐵, 𝑣𝑎𝑙𝑢𝑒 : 𝑒}]),
filtering, and calculation.
Instrument types. Our web player supports musical instruments
(classical piano, electronic piano, violin, guitar, metal guitar, clap,
hi-hat, high-kick, low-kick), noises (white, pink, and brown), simple
oscillators (sine, sawtooth, triangle, and square forms), configurable
FM and AM synths, and periodic waves.
Audio filters.Our web player offers preset filters such as a dynamic
compressor, a distortion filter, an envelope node, and various types
of biquad filters. These filters can be chained in the tone of a stream.
Encoding channels. Our queue compiler handles time, time2,
duration, tap-speed, tap-count, pitch, detune, pan, loudness, timbre,
post-reverb,modulation index, harmonicity, speech-before, speech-after,
and repeat channels. Different audio filters can have extra encod-
ing channels. For example, a lowpass biquad filter attenuates fre-
quencies above a certain cutoff, and it can have a biquad-frequency
channel to set the cutoff.

7https://github.com/see-mike-out/erie-web

https://github.com/see-mike-out/erie-web

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Kim et al.

Scale descriptions. Erie’s queue compiler generates a description
of each scale to give an overview of the sonification. A scale descrip-
tion functions as an auditory legend in a sonification. For example,
the scales of the time and pitch channels from the walkthrough is
auditorily described as shown in Table 6.

Table 6: The default scale description provided by Erie for
the walkthrough case. These items are played before the
sonification in Table 3 by default.

Type Sound
4 Speech The miles-per-gallon is mapped to time. The duration of the

stream is 4.5 seconds.
5 Speech The count is mapped to pitch. The minimum domain value

0 is mapped to

6 Tone Start
0

Duration
0.3

Timbre
Sine

Pitch
220

Loudness
1

7 Speech and the maximum domain value 100 is mapped to

8 Tone Start
0

Duration
0.3

Timbre
Sine

Pitch
660

Loudness
1

6.2 Spec API
We implemented Erie syntax in JavaScript. For example, the spec
of the walkthrough can be written as below.

1 // Create a spec object as a single stream.

2 let spec = new Stream ();

3 // Assign the data URL to the spec.

4 spec.data("url", "cars.json");

5 // Add the bin transform

6 let bin = new Bin("miles -per -gallon");

7 bin

8 .as("miles -per -gallon -bin", "miles -per -gallon -bin -end")

9 .nice(true); // as/end names -> "auto" binnig

10 spec.transform.add(bin);

11 // Add the count aggregation

12 let aggregate = new Aggregate ();

13 // setting operation and the new field name -> setting

group -by

14 aggregate.add("count", "count")

15 .groupby (["miles -per -gallon"]);

16 spec.transform.add(aggregate);

17 // Set the tone of the stream.

18 spec.tone.continued(false);
19 // encodings

20 // Set the time channel for the "quantitative" field "

miles -per -gallon -bin".

21 // Set the timing to absolute.

22 spec.encoding.time

23 .field("miles -per -gallon -bin", "quantitative")

24 .scale("timing", "absolute").scale("length", 4.5);

25 // Set the time2 channel for the field "miles -per -gallon -

bin -end".

26 spec.encoding.time2.field("miles -per -gallon -bin -end");

27 // Set the pitch channel for the "quantitative" field "

count".

28 spec.encoding.pitch.field("count", "quantitative")

29 .scale("domain", [0, 100])

30 .scale("range", [220, 660])

31 .scale("polarity", "positive");

This spec is equivalent to the following JSON object, which can
be obtained via the get method of the spec API. This JSON syntax
reuses some Vega-Lite [39] expressions, supporting cases where
visualization and sonification need to be provided concurrently.

32 // results of spec.get()

33 { "data": { "url": "cars.json" },

34 "transform": [{

35 "bin": "miles -per -gallon",

36 "as": "miles -per -gallon -bin",

37 "end": "miles -per -gallon -bin -end",

38 "nice": true ,
39 }, {

40 "aggregate": [{ "op": "count", "as": "count" }],

41 "groupby": ["miles -per -gallon -bin"] }],

42 "tone": { "continued": false },

43 "encoding": {

44 "time": {

45 "field": "miles -per -gallon -bin",

46 "type": "quantitative",

47 "scale": { "timing": "absolute", "length": 4.5 } },

48 "time2": { "field": "miles -per -gallon -bin -end" }

49 "pitch": {

50 "field": "count",

51 "type": "quantitative",

52 "scale": { "domain": [0, 100], "range": [220, 660]

} } } }

6.3 Queue Compiler
Given a spec, our queue compiler converts data values to auditory
values. The outcome audio queue is an ordered list of sub-queues,
and each sub-queue item can have one of these four types: speech,
tone-series, tone-speech-series, and tone-overlay. A speech queue con-
sists of natural language sentences that are played one after another.
A tone-series queue is a timed list of non-speech sounds, and a tone-
speech-series queue is a timed list of sounds and speeches. Each
sound in a sub-queue of these two types is expressed in terms of
their actual auditory values (e.g., Hz for pitch). Lastly, a tone-overlay
queue consists of multiple tone-series queues that are played simul-
taneously. An audio queue is not nested except tone-overlay queues,
and a sequence spec is compiled to multiple flattened sub-queues.

To compile a spec into an audio queue, a developer can run
compileAudioGraph function, which asynchronously compiles the
spec to an audio queue:

53 let audioQueue = await compileAuidoGraph(spec.get());

6.4 Player for Web
We developed an Erie player for web environments using the stan-
dard Web Audio API [31] and Web Speech API [32]. The player
offers several playing options: play from the beginning, pause, re-
sume, stop, play from a sub-queue, and play from one sub-queue to
another.

54 audioQueue.queue.play(); // Play from the beginning

55 audioQueue.queue.pause(); // Pause

56 audioQueue.queue.resume (); // Resume from where it was

paused

57 audioQueue.queue.stop(); // Stop playing

58 audioQueue.queue.play(i); // Play from the i-th sub -queue

59 audioQueue.queue.play(i, j); // Play the i-th to (j-1)-th

sub -queues.

6.5 Filter and Channel Extension
To achieve certain sound effects, a developer could use audio filters
in addition to custom instruments (e.g., configured synth, sampling).
Furthermore, those audio filters can encode data variables (e.g., the

Erie: A Declarative Grammar for Data Sonification CHI ’24, May 11–16, 2024, Honolulu, HI, USA

amount of distortion to express air quality). To widen such design
possibilities, Erie offers APIs for defining custom audio filters that
can have additional encoding channels (C4: Extensibility).

To describe the process of defining a custom filter, imagine that
a developer wants to add an envelope filter with encodable attack
and release times. Attack means the time duration from the zero
volume at the beginning of a sound to the highest volume, and
release refers to the time taken from the highest volume to the
zero volume at the end of the sound [5]. The developer first needs
to define the filter as a JavaScript class that can be chained from
a sonification sound to an output audio device. This class should
have connect and disconnect methods to enable the chaining,
following the Web Audio API syntax [30]. Then, the developer
needs to define an encoder function that assigns the attack value
for each data value to the filter and a finisher function that assigns
the release values to the filter. Refer to the documentation in our
Supplementary Material for technical details.

7 DEMONSTRATION
To demonstrate Erie grammar’s independence from visualiza-
tion (C1) and expressiveness (C2), we walk through novel exam-
ples. We also replicated and extended prior sonifications to show
the feasibility of our compiler and player for sonification develop-
ment. In addition to the below examples, more use cases, such as a
confidence interval, histogram, and sonification of COVID-19 death
tolls, are available in our example gallery8.

7.1 Example Sonification Designs
We show three representative example cases to show how Erie can
be used.

7.1.1 Data sparsity. Given five data tables named A to E, suppose
we want to identify and compare their sparsity (the portion of cells
that are empty) using a tap-speed channel. We have a nominal
variable, dataset name, and a quantitative variable, sparsity, and
the data looks like:

1 let data = [

2 { "name": "A", "sparsity": 0.4 },

3 { "name": "B", "sparsity": 0.6 },

4 { "name": "C", "sparsity": 0.2 },

5 { "name": "D", "sparsity": 0 },

6 { "name": "E", "sparsity": 0.9 }];

Now, we want to map the name field to the time channel of a
sonification and the sparsity to the tapSpeed channel, so that
a sparse dataset with a higher sparsity value has slower tapping.
First, we create a single-stream sonification spec object and set a
description text.

7 let spec = new Stream ();

8 spec.description("The sparsity of different datasets.");

Then, we assign the data to this spec.
9 spec.data("values", data);

With a default sine-wave oscillator, we need a discrete tone to
represent separate data tables, which can be specified as:

10 spec.tone.type("default").continued(false);

Next, we set the time encoding channel as described earlier.
8https://see-mike-out.github.io/erie-editor/

Table 7: The audio queue resulting from a sparsity sonifica-
tion spec in Section 7.1.1. “Q” indicates the index of each sub-
queue. “After prev.” means “play after the previous sound”
within the same sub-queue. A tapping pattern, [𝑎, 𝑏]×𝑐, means
a tap sound for 𝑎 seconds and a pause for 𝑏 seconds are re-
peated 𝑐 times (the last pause is omitted). A tapping pattern,
[𝑎, 𝑏, 𝑐], means a pause for 𝑎 seconds, a tap sound for 𝑏 sec-
onds, and a pause for 𝑐 seconds.

Q. Type Sound
1 Speech To stop playing the sonification, press the X key.
2 Speech The sparsity of different datasets.
3 Speech This stream has the following sound mappings.
4 Speech The category is mapped to time.
5 Speech The sparsity is mapped to tap speed. The minimum value 0 is

mapped to

6 Tone
Start
0

Dur.
2

Timbre
Sine

Pitch
523.25 (C5)

Loud.
1

Tapping
[.19, .01] × 10
0 2

7 Speech and the maximum value 1 is mapped to.

8 Tone Start
0

Dur.
2

Timbre
Sine

Pitch
523.25 (C5)

Loud.
1

Tapping
No tapping

9 Speech Start playing.

10 Tone-
Speech

Start
0

Dur.
-

Speech
“A”

Start
After prev.

Dur.
2

Timbre
Sine

Pitch
523.25 (C5)

Loud.
1

Tapping
[.19, .17] × 6
0 2

Start
After prev.

Dur.
-

Speech
“B”

Start
After prev.

Dur.
2

Timbre
Sine

Pitch
523.25 (C5)

Loud.
1

Tapping
[.19, .41] × 4
0 2

Start
After prev.

Dur.
-

Speech
“C”

Start
After prev.

Dur.
2

Timbre
Sine

Pitch
523.25 (C5)

Loud.
1

Tapping
[.19, .07] × 8
0 2

Start
After prev.

Dur.
-

Speech
“D”

Start
After prev.

Dur.
2

Timbre
Sine

Pitch
523.25 (C5)

Loud.
1

Tapping
[.19, .01] × 10
0 2

Start
After prev.

Dur.
-

Speech
“E”

Start
After prev.

Dur.
2

Timbre
Sine

Pitch
523.25 (C5)

Loud.
1

Tapping
[.91, .19, .91]
0 2

11 Speech Finished.

11 spec.encoding.time.field("name", "nominal");

This time channel should use relative timing to allow for play-
ing each data table name before the sound for the corresponding
sparsity value.

12 spec.encoding.time.scale("timing", "relative");

We then specify the tapSpeed channel for the quantitative sparsity
channel.

13 spec.encoding.tapSpeed.field("sparsity", "quantitative");

This tapSpeed channel has the domain of [0, 1]. We want to map
this domain to the range of [0, 5] (i.e., zero to five taps per second)
for 2 seconds:

https://see-mike-out.github.io/erie-editor/

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Kim et al.

14 spec.encoding.tapSpeed.scale("domain", [0, 1])

15 .scale("range", [0, 5]).scale("band", 2);

Since a higher sparsity value should have a lower speed, we need
negative polarity:

16 spec.encoding.tapSpeed.scale("polarity", "negative");

This results in a single tap sound for the sparsity value of 0.1. To
play this sound in the middle of the time band (two seconds), we
set the singleTappingPosition property as middle:

17 spec.encoding.tapSpeed

18 .scale("singleTappingPosition", "middle");

To support identifying these tapping sounds at different speeds, we
need a speechBefore channel for the name channel.

19 spec.encoding.speechBefore.field("name", "nominal");

We do not need a scale description for this speechBefore channel
in this case.

20 spec.encoding.speechBefore.scale("description", "skip");

Table 7 shows the audio queue compiled from this spec.

7.1.2 Kernel density estimation. In exploratory data analysis pipe-
lines, examining the distributions of variables of interest is a com-
mon first step. It is important to observe the entirety of a distribution
because some distributional information, such as multi-modality,
are not captured by summary statistics like mean and variance. In
addition to histograms, data analysts often estimate the probability
density of a quantitative variable using a kernel smoothing function
(i.e., kernel density estimation or KDE). In this example, we want
to sonify a KDE of the bodyMass variable of the penguins.json
data [1]. This sonification will encode the density by pitch and
the variable’s value by time and panning. Then, we repeat this
sonification design for different species and islands of penguins.

The penguins.json dataset consists of species, island, and
bodyMass fields. The nominal species and island fields form five
combinations as shown in the first two columns of Table 8. The
bodyMass field roughly ranges from 2,500 to 6,500.

First, we create a single-stream spec object, set the description,
and assign the data.

1 let spec = new Stream ();

2 spec.description("The kernel density estimation of body

mass by species and island.");

3 spec.data("url", "penguins.json");

Next, we need to add a density transform for the KDE of the
bodyMass field grouped by species and island.

4 let density = new Density ();

5 density.field("bodyMass").extent ([2500 , 6500])

6 .groupby (["species", "island"]);

7 spec.transform.add(density);

Table 8: A preview of the penguins.json dataset.

species island bodyMass

Adelie Torgersen 3,750
Adelie Biscoe 4,300
Adelie Dream 2,900
Chinstrap Dream 3,450
Gentoo Biscoe 6,300

This transform results in a new data table that has four columns:
value (evenly distributed bodyMass values, e.g., 2500, 2550, . . . ,
6450, 6500), density (the density estimate of each value element),
species, and island.

Third, we use a continued tone because we want to sonify
continuous KDEs.

8 spec.tone.type("default").continued(true);

Given this tone design, we set the time, pan, and pitch channels.
We map the value field to time and pan to give both temporal and
spatial senses of sound progression.

9 spec.encoding.time.field("value", "quantitative");

10 spec.encoding.pan.field("value", "quantitative");

Then, we detail the scale of the time channel by setting the length
of each repeated sound to three seconds and indicating the title
of this scale in the scale description.

11 spec.encoding.time.scale("length", 3)

12 .scale("title", "Body Mass values");

Similarly, we set the polarity of the pan channel to positive and
note the same scale title.

13 spec.encoding.pan.scale("polarity", "positive")

14 .scale("title", "Body Mass values");

We encode the density field to the pitch channel with positive
polarity and a pitch range of [0, 700] (Hz).

15 spec.encoding.pitch.field("density", "quantitative")

16 .scale("polarity", "positive")

17 .scale("range", [0, 700])

18 .scale("title", "kernel density");

KD estimates usually have infinite decimals (e.g., 0.0124 . . .), which
makes it hard to understand when read out (e.g., in the scale de-
scription). To prevent reading all the decimals, we specify the read
format of the density estimates so that they are only read up to
the fourth decimal.

19 spec.encoding.pitch.format(".4");

Erie uses format expressions supported by D3.js [10].
Now, we repeat this spec design by the species and island

fields using a repeat channel.
20 spec.encoding.repeat

21 .field(["species", "island"], "nominal")

22 .speech(true).scale("description", "skip");

Table 9 illustrates the audio queue compiled from this spec. Sub-
queue 4 to Sub-queue 8 are the scale descriptions for the time,
pan, and pitch channels with audio legends. Sub-queues 10 to 24
represent the specified KDE sonification for each combination of
the species and island values.

7.1.3 Model fit sequence. After fitting a linear regression model,
a necessary task is to check the model fit by examining the resid-
uals. Common methods for residual analysis include a residual
plot (residual vs. independent variable) and a QQ plot (residual
vs. normal quantile). For this task, we assume that we have al-
ready fitted a linear regression model of Sepal Length on Petal
Length (Petal Length ∼ Sepal Length), and computed the residuals.
For the residual plot, we use a residuals dataset with two fields:
sepalLength (independent variable) and residuals. For the QQ
plot, we use a qq dataset with two fields: normalQuantile and

Erie: A Declarative Grammar for Data Sonification CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 9: The audio queue resulting from a kernel density
estimate sonification spec in Section 7.1.2. “Q” indicates the
index of each sub-queue. The pitch values (range from 0 to
700) are low because they are representing the both-side tails
of each estimated density distribution.

Q. Type Sound
1 Speech To stop playing the sonification, press the X key.
2 Speech Kernel density of Body Mass by Species and Island.
3 Speech This stream has the following sound mappings.
4 Speech The Body Mass value is mapped to time. The duration of the

stream is 3 seconds.
5 Speech The Body Mass value is mapped to pan. The domains values

from 2500 to 6500 are mapped to

6 Tone

Start
0

Timbre
Sine

Pitch
523.25

Pan
-1 (leftmost)

Loudness
1

Start
0.6

Timbre
Sine

Pitch
523.25

Pan
1 (rightmost)

Loudness
1

7 Speech The Kernel density is mapped to pitch. The domains values from
1.654e-30 to 0.0011 are mapped to

8 Tone

Start
0

Timbre
Sine

Pitch
0

Pan
0 (center)

Loudness
1

Start
0.6

Timbre
Sine

Pitch
700

Pan
0

Loudness
1

9 Speech This sonification sequence consists of 5 parts.
10 Speech Stream 1. Adelie and Torgersen.
11 Speech Start playing.

12 Tone

Start
0

Timbre
Sine

Pitch
7.3928

Pan
-1

Loudness
1

Start
0.015

Timbre
Sine

Pitch
9.0813

Pan
-0.99

Loudness
1

· · ·
Start
2.88

Timbre
Sine

Pitch
6.0194

Pan
0.92

Loudness
1

Start
3

Timbre
Sine

Pitch
1.4486

Pan
1

Loudness
1

· · ·
22 Speech Stream 5. Gentoo and Biscoe.
23 Speech Start playing.

24 Tone

Start
0

Timbre
Sine

Pitch
0.0000

Pan
-1

Loudness
1

· · ·
Start
3

Timbre
Sine

Pitch
9.2425

Pan
1

Loudness
1

25 Speech Finished.

residuals9. With these datasets, we want to create two sequenced
sonifications for residuals and comparison to normal quantiles
(i.e., recognizing their trends).

We first register the datasets.
1 let qqData = [...];

2 let qqDataset = new Dataset("qq");

3 qqDataset.set("values", qqData);

4 let residualData = [...];

5 let residualDataset = new Dataset("residuals");

6 residualDataset.set("values", residualData);

Second, we define a sonification for a residual plot. When errors
of a model fit are unbiased, the residuals are evenly distributed
along values of the independent variable and on both sides of the
central line indicating 0 error. With this residual plot sonification,
wewant to capture the evenness of residual distribution bymapping
the residuals to modulation index and pan channel. In this way, a

9Alternatively, these two datasets can be a single dataset. Here, we use two datasets
for demonstration purposes.

larger residual is mapped to a more warped sound, and a negative
residual is played on the left side and a positive residual is played on
the right side. A good model fit will generate a sonification where
the sound quickly (e.g., 150 sound points within 5 seconds) moves
between different modulation index and pan values, making it
harder to differentiate their degrees of warping and spatial positions.
In contrast, a bad model fit will generate an audio graph where
listeners can easily sense some groups of sounds sharing the same
degree of warping on a certain spatial position. We use a time
channel for the sepalLength field.

To do so, we create a single stream with the residuals dataset.

7 let residualSpec = new Stream ();

8 residualSpec.name("Residuals");

9 residualSpec.data.set(residualData);

For the tone, we use an FM synth, named fm1.

10 let synth = new SynthTone("fm1");

11 synth.type("FM");

12 residualSpec.tone.set(synth);

The residual sonification uses a time channel for the sepalLength
values and modulation index and pan channels for the residuals
that roughly range from −2.5 to 2.5. This design is specified as
below:

13 residualSpec.encoding.time

14 .field("sepalLength", "quantitative")

15 .scale("timing", "absolute").scale("legnth", 5)

16 .scale("band", 0.15).format(".4");

17 residualSpec.encoding.modulation

18 .field("residual", "quantitative")

19 .scale("domain", [-2.5, 0, 2.5])

20 .scale("range", [4, 0.001, 4]).format(".4");

21 residualSpec.encoding.pan

22 .field("residual", "quantitative")

23 .scale("domain", [-2.5, 0, 2.5])

24 .scale("range", [-1, 0, 1]).format(".4");

Next, we specify a QQ plot sonification. A good model fit should
also exhibit normally distributed residuals. By plotting the quan-
tiles of the residuals against the expected quantiles of a normal
distribution (range from 0 to 1), we want to observe how much
the residuals deviate from the expectation that they are normally
distributed. A visual QQ plot shows the gap between the theo-
retical and observed distribution by plotting them in a Cartesian
space, which is the same format used for a residual plot at high
level. However, a sonification author may need to directly encode
the gap because overlaying the normal and residual distributions
with different pitches or volumes may make it harder to decode
the gap, indicating the need for specifying a sonification design
independently from visualization (C1). Thus, we compute the
normalized residuals’ deviation (within 0 to 1) from normal quan-
tiles to directly encode the gap. This transform is done using the
below calculate transforms, resulting in two additional fields:
normalized and deviation.

25 let qqSpec = new Stream ();

26 qqSpec.name("QQ plot");

27 qqSpec.data.set(residualData);

28 // normalize residuals using its minimum (-2.477468) and

maximum (2.495122).

29 let noramlized = new Calculate("(datum.residual +

2.477468) /(2.495122 + 2.477468)", "normalized");

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Kim et al.

30 let deviation = new Calculate("datum.normalized - datum.

normalQuantile", "deviation");

31 qqSpec.transform.add(normalized).add(deviation);

Then, we map the normalQuantile to time, the magnitude of
the residual to pitch, and the deviation to pan. These mappings
will produce sounds that are spatially centered when the deviation
is smaller but are played from left or right when the signed deviation
is bigger.

32 qqSpec.tone.continued(false);
33 qqSpec.encoding.time

34 .field("normalQuantile", "quantitative")

35 .scale("length", 4).scale("band", 0.2)

36 .scale("title", "Normal Quantile").format(".4");

37 qqSpec.encoding.pitch

38 .field("residual", "quantitative")

39 .scale("polarity", "positive")

40 .scale("title", "Residual").format(".4");

41 qqSpec.encoding.pan

42 .field("deviation", "quantitative")

43 .scale("domain", [-0.2, 0, 0.2])

44 .scale("range", [-1, 0, 1])

45 .scale("title", "Deviation from normal distribution")

46 .format(".4");

Lastly, we merge the residual and QQ streams (residualSpec,
qqSpec) into a sequenced stream.

47 let modelFit = new Sequence(residualSpec , qqSpec);

48 modelFit.description("The residuals of a linear

regression model of Sepal Length on Petal Length.");

This spec results in the sonification described in Table 10.

7.2 Replication of Prior Use Cases
We replicate several sonification use cases (e.g., applications and
data stories) and extend their features to demonstrate how feasibly
creators can use Erie in development settings. We include the Erie
specs used for the below replications in our example gallery10.

7.2.1 Audio Narrative. Audio Narrative [45] divides a temporal
line chart into segments that represent different data patterns, such
as increase, decrease, and no change, and offers a sonification and
speech description for each segment. To show how Erie can be
used in such applications to generate sonifications, we created an
example case that Audio Narrative could create by using Erie for
sonification and speech generation, as shown in Figure 2. We used
a ‘stocks.json’ dataset [1] for this replication. We use two variables,
stock price and date, from this dataset.

Suppose an Audio Narrative-like application already has a line
chart segmented and relevant speech texts generated. The next
task is to create sounds for those segments and speech texts. Using
Erie, the application can simply write a sonification spec for each
segment as below:

1 { "description": "...",

2 "data": [/* Segment i data */],

3 "tone": { "continued": true },

4 "encoding": {

5 "time": { "field": "date", ... },

6 "pitch": { "field": "stock price", ... } } }

10https://see-mike-out.github.io/erie-editor/

Table 10: The audio queue resulting from a model fit sonifi-
cation spec in Section 7.1.3. “Q” indicates the index of each
sub-queue.

Q. Type Sound
1 Speech To stop playing the sonification, press the X key.
2 Speech The residuals of a linear regression model of Sepal Length on

Petal Length.
3 Speech This sonification sequence consists of 2 parts.
4 Speech Stream 1. Residual plot.
5 Speech The first stream has the following sound mappings.
6 Speech The Sepal Length is mapped to time. The duration of the stream

is 5 seconds.
7 Speech The residual is mapped to pan. Residual values are mapped as

-2.5

8 Tone Start
0

Duration
0.3

Timbre
fm1

Pitch
523.25

Loudness
1

pan
-1

9 Speech 0 (zero)

10 Tone Start
0

Duration
0.3

Timbre
fm1

Pitch
523.25

Loudness
1

pan
0

11 Speech 2.5

12 Tone Start
0

Duration
0.3

Timbre
fm1

Pitch
523.25

Loudness
1

pan
1

13 Speech The residual is mapped to modulation. Residual values are
mapped as -2.5

14 Tone Start
0

Duration
0.3

Timbre
fm1

Pitch
523.25

Loudness
1

Modulation
4

15 Speech 0 (zero)

16 Tone Start
0

Duration
0.3

Timbre
fm1

Pitch
523.25

Loudness
1

Modulation
0.001

17 Speech 2.5

18 Tone Start
0

Duration
0.3

Timbre
fm1

Pitch
523.25

Loudness
1

Modulation
4

19 Speech Start playing.

20 Tone

Start
0

Duration
0.15

Timbre
fm1

Pitch
523.25

Loud.
1

Pan
0.0841

Modulation
0.3372

· · ·
Start
4.85

Duration
0.15

Timbre
fm1

Pitch
523.25

Loud.
1

Pan
-0.4721

Modulation
1.8888

21 Speech Stream 2. QQ plot.
22 Speech The second stream has the following sound mappings.
23 Speech The Normal Quantile is mapped to time. The duration of the

stream is 4 seconds.
24 Speech The Deviation from normal distribution is mapped to pan. Devia-

tion from normal distribution values are mapped as -0.2

25 Tone Start
0

Duration
0.3

Timbre
Sine

Pitch
523.25

Loudness
1

Pan
-1

26 Speech 0 (zero)

27 Tone Start
0

Duration
0.3

Timbre
Sine

Pitch
523.25

Loudness
1

Pan
0

28 Speech 0.2

29 Tone Start
0

Duration
0.3

Timbre
Sine

Pitch
523.25

Loudness
1

Pan
1

30 Speech The Residual is mapped to pitch. The minimum value -2.477 is
mapped to

31 Tone Start
0

Duration
0.3

Timbre
Sine

Pitch
207.65

Loudness
1

32 Speech and the maximum value 2.495 is mapped to

33 Tone Start
0

Duration
0.3

Timbre
Sine

Pitch
1600

Loudness
1

34 Speech Start playing.

35 Tone

Start
0

Duration
0.2

Timbre
Sine

Pitch
207.65

Loudness
1

Pan
-0.0167

· · ·
Start
3.8

Duration
0.2

Timbre
Sine

Pitch
1600

Loudness
1

Pan
0.0167

36 Speech Finished.

https://see-mike-out.github.io/erie-editor/

Erie: A Declarative Grammar for Data Sonification CHI ’24, May 11–16, 2024, Honolulu, HI, USA

����������������������������������
��
��������������������������������
�	��
������������������
�

����������
�����
��
������������
���
��������������������

	��������������������������
��

����������������������������

Figure 2: Our replication and extension of Audio Narra-
tive [45] using Erie. In addition to the originally offered se-
quencing and speech description, we included options for
using different encoding channels (A) and playing the scale
description (B).

By setting a description, the application can play the speech for
each segment. Having the above as a template, the application then
merge the specs for all the segments as a sequence:

1 { "sequence": [{ /* Segment 1 stream */ }, ... { /*

Segment N stream */ }],

2 "config": {

3 "forceSequenceScaleConsistency": { "pitch": true },

4 "skipScaleSpeech": true
5 }}

The forceSequenceScaleConsistency in the config forces the
segment streams to use the same pitch scale. As sonifications can
benefit from the user’s ability to personalize design choices [44], we
extend this Audio Narrative case by allowing for using a loudness
or pan channel to encode a variable and adjusting the scale range
of those channels. Furthermore, we add an option that separately
plays the scale descriptions of a sonification. Erie supports this by
using a skipScaleSpeech option in the config.

7.2.2 Chart Reader. Given a visualization, Chart Reader [47] en-
ables hover interaction that reads out values and generates a soni-
fication for the selected data mark(s). Furthermore, Chart Reader
supports creating several “data insights” that allow a sonification
author to draft more customized text messages, similar to the chart
segments supported by Audio Narrative. We replicate this use case

�����������������������������������

������������
����������������������

	����������������
�������������������������������

���

Figure 3: Our replication and extension of Chart Reader [47]
using Erie. We further included user options for toggling the
hover/selection interaction (A) and aggregation (B).

by reusing the above Audio Narrative replication, given their under-
lying structural similarity (segmentation of a chart with descriptive
text), as shown in Figure 3.

In this case, the sonification and description text of a chart seg-
ment is played whenever the corresponding part in the chart is
selected, or the button for the segment is triggered via a mouse
or keyboard. This uses the same segment template spec as Audio
Narrative replication, but they are not sequenced. We set the pitch
scale’s domain as the minimum and maximum values of the soni-
fied variable so that the segments can share the same pitch scale
even though they are not sequenced in the same specification. This
technique is often used in data visualization cases as well. We fur-
ther include several customization options for toggling the hover
interaction and data aggregation. By reusing the above sequence,
we also include an option to play all the ‘data insight’ segments.

7.2.3 Nine Rounds a Second. The Nine Rounds a Second article [12]
covers the mass shooting case in Las Vegas in 2017 where the gun-
man was known to have had a rapid-fire gun. This article compares
the Las Vegas case with the mass shooting case in Orlando in 2016
and the use of automatic weapons. In this article, a dot plot visual-
izes the shooting count over time to show how fast shots were fired.
To make it even more realistic, the authors of this article included
a sonification that mimics actual gun sounds.

We replicate this news article sonification by mapping the shoot-
ing time to a time channel and the three cases (Las Vegas, Orlando,
and automatic weapon) to a repeat channel, as shown in Figure 4.
We use an electronic drum’s clap sound that Erie’s player sup-
ports as a preset because it sounds similar to a gunshot sound.
The original article had an interaction that when the name of a
case is selected, it plays only the relevant part. To support that, we
use the audioQueue.play(i, j) method, so that the player only
plays from the i-th sub-queue to j-th sub-queue. In this case, the
first sub-queue is the name of a case, and the last sub-queue is the
sonification sound (two sub-queues in total).

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Kim et al.

����������������� ���������������
��
����������������������������������

Figure 4: Our replication of the Nine Rounds a Second arti-
cle [12] using Erie.

8 DISCUSSION
We contribute Erie, a declarative grammar for data sonification,
with five design goals: independence as a sonification grammar,
expressiveness, data-driven syntax, compatibility with audio stan-
dards, and extensibility of functionalities. Below, we briefly discuss
remaining technological challenges, and then we motivate future
sonification research that could use Erie.

8.1 Technological Hurdles
While developing Erie, we faced two major technical hurdles in
using the Web Audio and Speech APIs. First, there is no standard
API that can capture (i.e., generating pure audio files from the
source) the sound generated using those APIs. Instead, users need
to use third-party audio capture applications or record sound as it is
being played out of the device (which also records room noise and
causes distortions due to audio feedback). Thus, we implemented
a workaround Chrome extension11 using Chrome-specific APIs.
Second, speech sounds generated using the Web Speech API cannot
overlap which limits Erie’s expressiveness, such as the potential to
overlay different streams with speeches and tones. Thus, related
technological extensions to those APIs could help express a more
diverse set of audio graphs.

8.2 Potential Use Cases of Erie
We expect our implementation of Erie (compiler, player, and ex-
tension APIs) to facilitate various future work on data sonification
research and tooling. In addition to the use cases like sonification
for detecting model fit (which might be extended to properties like
model convergence), sonification authoring applications, and popu-
lar media (Section 7), future sonification research could use Erie to
ask questions related to, for example, perceptual intuitiveness and
effectiveness of different sonification strategies (e.g., [55, 56]). Given
that sonification design specs expressed in Erie can be parameter-
ized as a declarative grammar, sonification researchers could use
Erie to more systematically generate different stimuli according to
their experiment conditions. Such research will expand understand-
ing around which audio graph formats are best suited for different

11https://github.com/see-mike-out/erie-chrome-ext

tasks or auditorily pleasant, providing foundations for building in-
telligent tools like sonification recommenders. Furthermore, future
sonification tools for data analysis or narrative authoring could
use Erie as their internal representation to maintain user-specified
designs. To support sonification researchers and developers to test
out Erie, we provide an online editor for Erie12.

8.3 Future Work
Erie is our first step of an expressive declarative grammar for data
sonification. Future work should extend Erie to support more dy-
namic use cases, such as interactivity, streaming data, and different
audio environments.
Interactive sonification. Interactivity is often necessary for data anal-
ysis because one static data representation cannot provide a full
picture. While it is possible to use Erie in interactive user interfaces
with customizability as we demonstrated (Section 7.2), Erie could
better support interactive data sonification with native expressions.
A prerequisite to developing an interactive grammar for data soni-
fication is some understanding of how a sonification listener would
trigger a user interaction and receive its feedback using different
modalities. For instance, various approaches to using a keyboard,
speech recognition, tabletop screens, or mobile haptic screens for
interactive sonification are fruitful topics like personalized sonifi-
cations for future research to explore (e.g., [4, 15]).
Expressing sonifications for streaming data. Sonification has been
used for various real-time streamed data from traditional Geiger
counters to audio graphs for physics [22]. While it is relatively
simple for visualization to show existing data points and newly
received data points, sonification-based tools may need to build
a notion of “existing” given the transient characteristic of sound.
For example, a visualization dashboard can express newly received
data by adding corresponding visual marks, and the viewers can
easily compare them with the existing visual marks. However, a
sonification monitor may need to play sounds for some past data
points, announce the auditory scales, or use notifications for some
signals, depending on the task that the listeners want to achieve.
Thus, future work should ask how to indicate and contextualize
newly arrived data points, what portion of existing data points
should be played again if needed, and how to auditorily imply that
a system is waiting on new data.
Supporting different audio environments. Data sonification can also
be useful for other environments like statistical programming and
server-side applications. For example, Erie player for R Studio (a
popular integrated development environment for R) could bene-
fit building tools for statistical sonifications like those described
above. As R Studio is backed by Chromium (the same web engine
for Chrome and Edge), Erie’s web player may need to be extended
slightly to support this environment. To support server-side produc-
tion of data sonifications, direct generation of raw pulse-code mod-
ulation data (digital representation of analog signals) [58] would
be useful.
Intelligent authoring tools for data sonification. As a declarative
grammar, Erie can make it easier to create data sonifications by

12https://see-mike-out.github.io/erie-editor/

https://github.com/see-mike-out/erie-chrome-ext
https://see-mike-out.github.io/erie-editor/

Erie: A Declarative Grammar for Data Sonification CHI ’24, May 11–16, 2024, Honolulu, HI, USA

allowing developers to declare sonification designs with a few key-
words rather than leaving them tedious jobs like inspecting online
code and adjusting it to get ad-hoc solutions. To design effective
data sonifications, developers still need to learn relevant knowl-
edge from empirical studies, just as being able to use visualization
grammars like D3.js [8], Vega-Lite [39], and ggplot2 [57] do not
necessarily mean one can easily create effective visualizations. To
support developers in authoring useful sonifications, future work
could explore more intelligent approaches like automated design
recommenders for different purposes like data analytics, data jour-
nalism, and data art.

8.4 Limitations
While our primary contribution is the Erie grammar, a usable player
could make it easier to learn the grammar and apply it to different
applications. We provide an online player for sonifications backed
by Erie with baseline functionalities like playing a single queue
and showing audio queue tables. As Erie is an open-source project,
extensions for more player controls (e.g., playing a single sound)
could benefit sonification developers and users with respect to
debugging and navigation. Next, intending Erie as a low-level toolkit
for sonification developers to use, we prioritized independence
from visualization, expressiveness, and compatibility with audio
programming standards. As Erie is not a walk-up-and-use tool,
future work could benefit from reflecting on use cases from longer
term observations of developer communities.

9 CONCLUSION
Erie is a declarative grammar for data sonification design that sup-
ports expressing audio channels as data encodings. Erie supports
various auditory encoding channels, such as pitch, tapping, and
modulation index, and different instruments for sound tones like
a simple oscillator, musical instruments, and synths. Furthermore,
we implemented and open-sourced Erie’s spec API, compiler, and
player for the web audio environment, and they offer extension
methods using audio filters and custom encoding channels. By pro-
viding a variety of examples and replicating existing sonification
use cases, we demonstrated the expressiveness of Erie grammar
and the technical feasibility of our implementations. We expect Erie
to support various data sonification research and produce further
understanding in auditory perception of data, which will in turn
help extend Erie’s capabilities.

REFERENCES
[1] [n. d.]. vega-datasets. Last accessed Sep. 1, 2023. https://github.com/vega/vega-

datasets.
[2] n.d.. CSound. Last accessed Sep. 5, 2023. https://csound.com/.
[3] n.d.. Tone.JS. Last accessed Sep 12, 2023. https://tonejs.github.io/.
[4] Monali Agarwal, Felicia Alfieri, Safinah Ali, Jacob Jorgensen, and Laya Muralid-

haran. n.d.. Sonify. https://hcii.cmu.edu/mhci/capstone/2016/bloomberg/index.
html.

[5] Apple. n.d.. Attack, decay, sustain, and release. Last accessed Aug
5, 2023. https://support.apple.com/guide/logicpro/attack-decay-sustain-and-
release-lgsife419620/mac.

[6] Apple Inc. n.d.. Audio Graph — Apple Developer Documentation. https:
//developer.apple.com/documentation/accessibility/audio_graphs.

[7] Stephen Barrass. 1995. Personify: a Toolkit for Perceptually Meaningful Sonifica-
tion. In Proceedings of the Australian Computer Music Association Conference.

[8] Leilani Battle, Danni Feng, and Kelli Webber. 2022. Exploring D3 Implementation
Challenges on Stack Overflow. In 2022 IEEE Visualization and Visual Analytics
(VIS). 1–5. https://doi.org/10.1109/VIS54862.2022.00009

[9] Oded Ben-Tal, Jonathan Berger, Bryan Cook, Michelle Daniels, Gary Scavone,
and Perry Cook. 2002. SonART: The sonification application research toolbox.
In Proceedings of the 2002 International Conference on Auditory Display (Kyoto,
Japan) (ICAD ’02). ICAD, 151–153.

[10] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 Data-Driven
Documents. IEEE Trans. Visual Comput. Graphics 17, 12 (2011), 2301–2309. https:
//doi.org/10.1109/TVCG.2011.185

[11] Ethan Brown. 2011. Play It By R. Last accessed July 20, 2023. http://playitbyr.
org/gettingstarted.html.

[12] Larry Buchanan, Jon Huang, and Adam Pearce. 2017. Nine Rounds a Second:
How the Las Vegas Gunman Outfitted a Rifle to Fire Faster. Last accessed Sep. 3,
2023. https://www.nytimes.com/interactive/2017/10/02/us/vegas-guns.html.

[13] Robert M. Candey, Anton M. Schertenleib, and Wanda L. Diaz Merced. 2006.
xSonify Sonification Tool for Space Physics. In Proceedings of the 2006 International
Conference on Auditory Display (London, UK) (ICAD ’06). ICAD.

[14] Stanley J. Cantrell, Bruce N. Walker, and Øystein Moseng. 2021. Highcharts
Sonification Studio: An Online, Open-source, extensible, and Accessible Data
Sonification Tool. In Proceedings of the 2021 International Conference on Auditory
Display (ICAD ’21). ICAD, 211–216. https://doi.org/10.21785/icad2021.005

[15] Pramod Chundury, Yasmin Reyazuddin, J. Bern Jordan, Jonathan Lazar, and
Niklas Elmqvist. 2023. TactualPlot: Spatializing Data as Sound using Sensory
Substitution for Touchscreen Accessibility. IEEE Transactions on Visualization
and Computer Graphics (2023), 1–11. https://doi.org/10.1109/TVCG.2023.3326937

[16] André Cibils. 2020. SODA: SOnification of DAta for Learning Analytics. https:
//github.com/AndreCI/Soda4LA.

[17] Slivia Dini, Luca Andrea Ludovico, Sergio Mascetti, and Maria Joaquina
Valero Gisbert. 2023. Translating Color: Sonification as a Method of Sensory
Substitution within the Museum. In Proceedings of the 20th International Web
for All Conference (W4A ’23). Association for Computing Machinery, 162–163.
https://doi.org/10.1145/3587281.3587706

[18] Florian Dombois, Oliver Brodwolf, Oliver Friedli, Iris Rennert, and Thomas
Koenig. 2008. SonifYer: A Concept, a Software, a Platform. In Proceedings of
the 2008 International Conference on Auditory Display (Paris, France) (ICAD ’08).
ICAD.

[19] Gaël Dubus and Roberto Bresin. 2013. A Systematic Review of Mapping Strategies
for the Sonification of Physical Quantities. PLOS ONE 8, 12 (12 2013), 1–28.
https://doi.org/10.1371/journal.pone.0082491

[20] John Dunn and Mary Anne Clark. 1999. Life Music: The Sonification of Proteins.
Leonardo 32, 1 (02 1999), 25–32. https://doi.org/10.1162/002409499552966

[21] Leo Ferres, Gitte Lindgaard, Livia Sumegi, and Bruce Tsuji. 2013. Evaluating a
Tool for Improving Accessibility to Charts and Graphs. ACMTrans. Comput.-Hum.
Interact. 20, 5 (2013). https://doi.org/10.1145/2533682.2533683

[22] Pallab Ghosh. 2010. God particle signal is simulated as sound. Last accessed Aug
2, 2023. https://www.bbc.co.uk/news/10385675.

[23] Jeffrey Hannam. 2014. StarSound. https://www.jeffreyhannam.com/starsound.
[24] Thomas Hermann. 2008. Taxonomy and definitions for sonification and auditory

display. (2008), 1–8.
[25] Md Naimul Hoque, Md Ehtesham-Ul-Haque, Niklas Elmqvist, and Syed Masum

Billah. 2023. Accessible Data Representation with Natural Sound. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA,
Article 826. https://doi.org/10.1145/3544548.3581087

[26] Shakila Cherise S Joyner, Amalia Riegelhuth, Kathleen Garrity, Yea-Seul Kim, and
Nam Wook Kim. 2022. Visualization Accessibility in the Wild: Challenges Faced
by Visualization Designers. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems (CHI ’22). Association for Computing Machinery,
New York, NY, USA, Article 83. https://doi.org/10.1145/3491102.3517630

[27] Zachary Kondak, Tianchu Alex Liang, Brianna Tomlinson, and Bruce N Walker.
2017. Web sonification sandbox-an easy-to-use web application for sonifying
data and equations. (2017).

[28] Gregory Kramer, Bruce Walker, Terri Bonebright, Perry Cook, John H Flowers,
Nadine Miner, and John Neuhoff. 1997. Sonification report: Status of the field and
research agenda. (1997). Report prepared for the National Science Foundation.

[29] Suresh K Lodha, John Beahan, Travis Heppe, Abigail Joseph, and Brett Zane-
Ulman. 1997. Muse: A musical data sonification toolkit. In Proceedings of the 1997
International Conference on Auditory Display (ICAD ’97). ICAD.

[30] MDN. n.d.. AudioNode - Web APIs. Last accessed Sep 12, 202. https://developer.
mozilla.org/en-US/docs/Web/API/AudioNode.

[31] MDN. n.d.. Web Audio API. Last accessed Aug 5, 2023. https://developer.mozilla.
org/en-US/docs/Web/API/Web_Audio_API.

[32] MDN. n.d.. Web Speech API. Last accessed Aug 5, 2023. https://developer.mozilla.
org/en-US/docs/Web/API/Web_Speech_API.

[33] Sandra Pauletto and Andy Hunt. 2004. A Toolkit for Interactive Sonification. In
Proceedings of the 2004 International Conference on Auditory Display (ICAD ’04).
ICAD.

[34] Sean Phillips and Andres Cabrera. 2019. Sonification workstation. In Proceedings
of the 1997 International Conference on Auditory Display (Newcastle upon Tyne,
UK) (ICAD ’19). ICAD.

https://github.com/vega/vega-datasets
https://github.com/vega/vega-datasets
https://csound.com/
https://tonejs.github.io/
https://hcii.cmu.edu/mhci/capstone/2016/bloomberg/index.html
https://hcii.cmu.edu/mhci/capstone/2016/bloomberg/index.html
https://support.apple.com/guide/logicpro/attack-decay-sustain-and-release-lgsife419620/mac
https://support.apple.com/guide/logicpro/attack-decay-sustain-and-release-lgsife419620/mac
https://developer.apple.com/documentation/accessibility/audio_graphs
https://developer.apple.com/documentation/accessibility/audio_graphs
https://doi.org/10.1109/VIS54862.2022.00009
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
http://playitbyr.org/gettingstarted.html
http://playitbyr.org/gettingstarted.html
https://www.nytimes.com/interactive/2017/10/02/us/vegas-guns.html
https://doi.org/10.21785/icad2021.005
https://doi.org/10.1109/TVCG.2023.3326937
https://github.com/AndreCI/Soda4LA
https://github.com/AndreCI/Soda4LA
https://doi.org/10.1145/3587281.3587706
https://doi.org/10.1371/journal.pone.0082491
https://doi.org/10.1162/002409499552966
https://doi.org/10.1145/2533682.2533683
https://www.bbc.co.uk/news/10385675
https://www.jeffreyhannam.com/starsound
https://doi.org/10.1145/3544548.3581087
https://doi.org/10.1145/3491102.3517630
https://developer.mozilla.org/en-US/docs/Web/API/AudioNode
https://developer.mozilla.org/en-US/docs/Web/API/AudioNode
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Kim et al.

[35] Andrea Polli. 2005. Atmospherics/Weather Works: A Spatialized Meteorological
Data Sonification Project. Leonardo 38, 1 (02 2005), 31–36. https://doi.org/10.
1162/leon.2005.38.1.31

[36] Maxime Poret, Jean-Michaël Celerier, Desainte-Catherine Myriam, and Semal
Cahterine. 2023. Proof of Concept of a Generic Toolkit for Sonification: The
Sonification Cell in Ossia Score. In Proceedings of the 2003 International Conference
on Auditory Display (Norrköping, Sweden) (ICAD ’03). ICAD.

[37] Dale Purves, George J. Augustine, David Fitzpatrick, Lawrence C. Katz, Anthony-
Samuel LaMantia, James O. McNamara, and S. Mark Williams. 2001. The Audible
Spectrum. In Neuroscience (2nd ed.). Sinauer Associates. https://www.ncbi.nlm.
nih.gov/books/NBK10924/.

[38] Donya Quick and Paul Hudak. 2013. Grammar-Based Automated Music Composi-
tion in Haskell. In Proceedings of the First ACM SIGPLAN Workshop on Functional
Art, Music, Modeling & Design (Boston, Massachusetts, USA) (FARM ’13). ACM,
59–70. https://doi.org/10.1145/2505341.2505345

[39] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis) (2017). https://doi.org/10.1109/TVCG.2016.2599030

[40] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2016. Re-
active Vega: A Streaming Dataflow Architecture for Declarative Interactive Vi-
sualization. In IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis ’15).
https://doi.org/10.1109/TVCG.2015.2467091

[41] Carla Scaletti. 1994. Sound synthesis algorithms for auditory data representations.
In Auditory Display, Sonification: Audification, and Auditory INterfaces, Gregory
Kramer (Ed.). 223–251.

[42] Arnold Seong and Joonyoung Seo. 2020. DataGoBoop. Last accessed July 20,
2023. https://github.com/akseong/datagoboop.

[43] Ather Sharif. 2022. Sonifer.JS. Last accessed July 20, 2023. https://github.com/
athersharif/sonifier.

[44] Ather Sharif, Olivia H. Wang, and Alida T. Muongchan. 2022. “What Makes
Sonification User-Friendly?” Exploring Usability and User-Friendliness of Soni-
fied Responses. In Proceedings of the 24th International ACM SIGACCESS Con-
ference on Computers and Accessibility (Athens, Greece) (ASSETS ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 45. https:
//doi.org/10.1145/3517428.3550360

[45] Alexa Siu, Gene S-H Kim, Sile O’Modhrain, and Sean Follmer. 2022. Supporting
Accessible Data Visualization Through Audio Data Narratives. In Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans,
LA, USA) (CHI ’22). ACM. https://doi.org/10.1145/3491102.3517678

[46] Alexandra Supper. 2014. Sublime frequencies: The construction of sublime
listening experiences in the sonification of scientific data. Social Studies of Science
44, 1 (2014), 34–58. https://doi.org/10.1177/0306312713496875

[47] John R Thompson, Jesse JMartinez, Alper Sarikaya, Edward Cutrell, and Bongshin
Lee. 2023. Chart Reader: Accessible Visualization Experiences Designed with
Screen Reader Users. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing
Machinery, New York, NY, USA, Article 802. https://doi.org/10.1145/3544548.
3581186

[48] Brianna J Tomlinson, R MichaelWinters, Christopher Latina, Smruthi Bhat, Milap
Rane, and Bruce N Walker. 2017. Solar system sonification: exploring earth and
its neighbors through sound. In The 23rd international conference on auditory
display (ICAD 2017). 128–134. https://doi.org/doi.org/10.21785/icad2017.027

[49] James Trayford. 2021. STRAUSS. https://github.com/james-trayford/strauss.
[50] Samuel Van Ransbeeck. n.d.. Sonification Art. Last accessed Aug 2, 2023

https://sonificationart.wordpress.com/.
[51] Bruce N Walker. 2002. Magnitude estimation of conceptual data dimensions for

use in sonification. Journal of experimental psychology: Applied 8, 4 (2002), 211.
[52] Bruce N Walker. 2007. Consistency of magnitude estimations with conceptual

data dimensions used for sonification. Applied Cognitive Psychology: The Official
Journal of the Society for Applied Research in Memory and Cognition 21, 5 (2007),
579–599.

[53] Bruce N. Walker and Joshua T. Cothran. 2003. Sonification Sandbox: A Graphical
Toolkit for Auditory Graphs. In Proceedings of the 2003 International Conference
on Auditory Display (Boston, MA, USA) (ICAD ’03). ICAD, 161–163.

[54] Bruce N Walker, Mark T Godfrey, Jason E Orlosky, Carrie Bruce, and Jon Sanford.
2006. Aquarium sonification: Soundscapes for accessible dynamic informal learn-
ing environments. In Proceedings of the 12th International Conference on Auditory
Display. 238–241. http://www.icad.org/Proceedings/2006/WalkerGodfrey2006.
pdf.

[55] B. N. Walker and L. M. Mauney. 2010. Universal Design of Auditory Graphs: A
Comparison of SonificationMappings for Visually Impaired and Sighted Listeners.
ACM Trans. Access. Comput. 2, 3, Article 12 (mar 2010). https://doi.org/10.1145/
1714458.1714459

[56] R. Wang, C. Jung, and Y. Kim. 2022. Seeing Through Sounds: Mapping Auditory
Dimensions to Data and Charts for People with Visual Impairments. Computer
Graphics Forum 41, 3 (2022), 71–83. https://doi.org/10.1111/cgf.14523

[57] Hadley Wickham. 2010. A Layered Grammar of Graphics. Journal of Compu-
tational and Graphical Statistics 19, 1 (2010), 3–28. https://doi.org/10.1198/jcgs.

2009.07098
[58] Wikipedia. n.d.. Pulse-code modulation. Last accessed Sep. 6, 2023. https:

//en.wikipedia.org/wiki/Pulse-code_modulation.
[59] Leland Wilkinson. 2012. The grammar of graphics. Springer.
[60] Catherine MWilson and Suresh K Lodha. 1996. Listen: A data sonification toolkit.

(1996).
[61] Haixia Zhao, Catherine Plaisant, Ben Shneiderman, and Jonathan Lazar. 2008.

Data Sonification for Users with Visual Impairment: A Case Study with Geo-
referenced Data. ACM Trans. Comput.-Hum. Interact. 15, 1 (2008). https:
//doi.org/10.1145/1352782.1352786

A TECHNICAL DETAILS OF ERIE
This appendix details the Erie grammar.

A.1 Customizing a Tone
The tone of a single sonification design is defined in terms of in-
strument type, whether the sound is continued, and a set of audio
filters. To use custom instruments to express diverse sonification
designs, a developer can define new instruments using synth (for
FM and AM synthesizer), wave (directly defining a wave function),
and sampling (importing external audio files) objects in a top-level
spec. The developer can apply custom instruments to the tone type
and a timbre encoding channel by referencing their names.

A dataset typically exists as a set of data points; even if it repre-
sents a continuous distribution, its digital format is a set of approx-
imated data points. Thus, a data representation should be able to
capture the continuity or discreteness between data points (e.g., line
chart vs. scatterplot). In the walkthrough, for example, we used a
discrete (continued = 𝑓 𝑎𝑙𝑠𝑒) tone to indicate that each sound rep-
resents a discrete bin. On the other hand, a developer could use a
continuous (continued = 𝑡𝑟𝑢𝑒) tone for a sonification of a continu-
ous distribution. A sound is discrete if it is momentarily paused and
resumed as auditory values change (e.g., a sound “beep Beep BEEP”
with varying loudness). A sound is continuous if it is not paused as
its auditory values change (e.g., a sweeping sound “bee𝐶3-ee𝐶#3-
eep𝐷3” with increasing pitch).

When more artistic sound effects (e.g., dynamic compression,
distortion) are needed, a developer can apply them using the filter
property of a tone. A filter object is an ordered list of filter names,
and each filter is applied after the previous filter, reflecting how
audio filters are commonly applied to electric sounds. Erie consid-
ers the properties of an audio filter (e.g., level of compression) as
encoding channels so that a developer can configure audio filters
both statically and dynamically (mapped to data variables). Our im-
plementation offers several preset filters (e.g., dynamic compressor)
and APIs for audio experts to define and use custom filters.

A.2 Encoding
Below, we detail how to indicate specific properties for different
encoding channels and auxiliary or shortcut properties for diverse
sonification designs.

A.2.1 Expressing time as an encoding. Time is to sonification as
position is to visualization. An audio graph arranges its auditory
values along a time axis. Erie expresses time as encoding to enable
data-driven time control. For example, the start time of each sound
can be mapped to a certain data variable.

The time axis of a sonification encodes data either in terms of the
start and end times of a sound (time and time2) or the start time and

https://doi.org/10.1162/leon.2005.38.1.31
https://doi.org/10.1162/leon.2005.38.1.31
https://www.ncbi.nlm.nih.gov/books/NBK10924/
https://www.ncbi.nlm.nih.gov/books/NBK10924/
https://doi.org/10.1145/2505341.2505345
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://github.com/akseong/datagoboop
https://github.com/athersharif/sonifier
https://github.com/athersharif/sonifier
https://doi.org/10.1145/3517428.3550360
https://doi.org/10.1145/3517428.3550360
https://doi.org/10.1145/3491102.3517678
https://doi.org/10.1177/0306312713496875
https://doi.org/10.1145/3544548.3581186
https://doi.org/10.1145/3544548.3581186
https://doi.org/doi.org/10.21785/icad2017.027
https://github.com/james-trayford/strauss
https://sonificationart.wordpress.com/
http://www.icad.org/Proceedings/2006/WalkerGodfrey2006.pdf
http://www.icad.org/Proceedings/2006/WalkerGodfrey2006.pdf
https://doi.org/10.1145/1714458.1714459
https://doi.org/10.1145/1714458.1714459
https://doi.org/10.1111/cgf.14523
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1198/jcgs.2009.07098
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://doi.org/10.1145/1352782.1352786
https://doi.org/10.1145/1352782.1352786

Erie: A Declarative Grammar for Data Sonification CHI ’24, May 11–16, 2024, Honolulu, HI, USA

duration of a sound (time and duration). On the one hand, two data
variables sharing the same unit (e.g., monthly lowest and highest
temperature) can be mapped to start and end times. On the other
hand, two data variables with different units (e.g., country names
and CO2 emissions) can be mapped to start time and duration. Erie
supports expressing when a sound starts and ends (time + time2)
or when and how long it is played (time + duration).

The length of a sonification is also the range of its time channel.
Thus, Erie provides another shortcut, length, for the range of time
scale (i.e., [0, length]). When there is no need to encode end time
or duration, time channel can have band to set the duration of each
sound uniformly (for discrete tones).

Erie makes a distinction between when a sound starts (the value
of the time channel) and how a sound is timed in relation to other
sounds (timing). For example, a developer wants a sound to be
played after the previous sound (relative), to start on an exact time
(absolute), or to start with the other sounds (simultaneous). To con-
trol how a time channel assigns times, the developer can use the
timing property of the time channel’s scale. The above extensions
to the time channel’s scale is formalized as:

scaletime := {. . . , timing, length, band}
These time-related channels and the timing option produce the

following high-level combinations:
Case 1: time(field = 𝑥, scale.band = n). A time channel with a fixed
scale.band value defines sounds with a fixed duration (𝑛) and start
times varied by the encoded data variable (𝑥). If scale.timing is
simultaneous, then all of the sounds are played at the same time.
Case 2: time(field = 𝑥) + duration(field = 𝑦). Using both time and
duration channels defines sounds with varying durations and start
times.
Case 3: time(field = 𝑥, scale.timing = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒) + time2(field = 𝑦).
A time channel with absolute timing and a time2 channel specify
sounds with varying start and end times. Note that the two fields
mapped to the time and time2 channel must be defined on the same
data unit, such as bin start and endpoints.

A.2.2 Channel-specific properties. Specific auditory encoding chan-
nels may have different physical constraints that need channel-
specific properties in addition to the above definition. Erie consid-
ers such physical constraints in defining encodings for canonical
auditory channels. For example, pitch can have raw pitch frequency
values or have them rounded to musical notes. To enable this round-
ing, a developer can set round-to-note to true for the pitch channel.

A.2.3 Providing auditory reference elements. Tick for time channel.
A longer sonificationmay need to provide a sense of the progression
of time as Cartesian plots have axis ticks and grids. To do so, a
developer could use a tick sound that repeats every certain time
interval. The developer can define a tick directly in the time channel
or refer to a tick definition in the top-level tick.
Scale description markup. As we use legends for data visualizations,
it is important to provide the overview of the scales used in a soni-
fication [56]. The description of a scale can be skipped, defined as a
default audio legend set by a compiler, or customized. To customize
a scale description, Erie employs a markup expression that can
express literal texts, audio legends (<sound>), a list of items (<list>),

and reserved keywords, such as <domain.min> (for the minimum
domain value) and <field> (for the data field’s name). A developer
can also pass a number or date-time format in the channel defini-
tion.

A.2.4 Inline Transform. Inspired by Vega-Lite [39], it is possible to
provide an inline data transform: aggregate or bin. This is a shortcut
for defining a corresponding transform item and use the resulting
variables in the channel’s field. For example, the separately defined
transforms in the walkthrough can be rewritten as:

time = {field = miles-per-gallon, bin = true, · · · }
pitch = {aggregate = count, · · · }

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Data Sonification
	2.2 Sonification Tools and Toolkits
	2.3 Declarative Grammar

	3 Gaps in Sonification Development Practices
	4 Design Considerations
	5 Erie Grammar
	5.1 A Walkthrough Example
	5.2 Top-Level Specification and Stream
	5.3 Data, dataset, and Transform
	5.4 Tone
	5.5 Encoding
	5.6 Composition
	5.7 Configuration

	6 Erie Compiler and Player for Web
	6.1 Supported Presets
	6.2 Spec API
	6.3 Queue Compiler
	6.4 Player for Web
	6.5 Filter and Channel Extension

	7 Demonstration
	7.1 Example Sonification Designs
	7.2 Replication of Prior Use Cases

	8 Discussion
	8.1 Technological Hurdles
	8.2 Potential Use Cases of Erie
	8.3 Future Work
	8.4 Limitations

	9 Conclusion
	References
	A Technical Details of Erie
	A.1 Customizing a Tone
	A.2 Encoding

