
Symbiosis: The Art of Application and Kernel Cache Cooperation
Yifan Dai, Jing Liu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau

University of Wisconsin–Madison

Abstract. We introduce Symbiosis, a framework for key-
value storage systems that dynamically configures applica-
tion and kernel cache sizes to improve performance. We in-
tegrate Symbiosis into three production systems – LevelDB,
WiredTiger, and RocksDB – and, through a series of exper-
iments on various read-heavy workloads and environments,
show that Symbiosis improves performance by 1.5× on av-
erage and over 5× at best compared to static configurations,
across a wide range of synthetic and real-world workloads.

1 Introduction
Key-value storage engines, such as LevelDB [23],
RocksDB [50], and WiredTiger [51], are essential com-
ponents in modern data-intensive applications. These
systems are deployed in numerous settings, including un-
derneath relational databases [32,52, 56], distributed storage
systems [3, 18], graph processing engines [6, 13, 31, 55],
stream processing systems [4, 12], and machine learning
pipelines [30, 70].

A key factor in the performance of key-value storage sys-
tems is the effectiveness of in-memory caching. Unlike the
traditional database approach [63], in which raw devices or
other “direct I/O” mechanisms are employed to avoid file
system caching, today’s key-value storage systems are of-
ten built on top of the file system, and thus (by default)
will cache (compressed) data in the file system page cache.
Furthermore, modern storage engines implement additional
application-level caching structures (where data is cached in
uncompressed form). The effectiveness of these combined
caches can dramatically affect overall performance; proper
usage can improve performance by an order of magnitude.

Unfortunately, this two-level structure greatly complicates
performance tuning. How large should the application (un-
compressed) cache be? How much memory should be dedi-
cated to kernel-level (compressed) caching? The proper an-
swer to this question requires sophisticated knowledge of
workload, machine configuration, OS behavior, compression
costs, and other relevant details; as workloads change over
time, the answer too may change.

In this paper, we introduce Symbiosis, a system to co-
ordinate application and kernel caches to maximize perfor-
mance. The core component is an online approximate sim-
ulator used by a key-value store directly to adapt the size
of the user-level cache. The simulator uses a modified form
of ghost caching [19] to predict how different sized appli-
cation caches will perform; Symbiosis uses these simulation
results to periodically adjust the size of the application cache,
thus improving performance. The online simulation includes
novel optimizations to lower space overheads and handle nu-

anced kernel behaviors (such as prefetching), and guardrails
to protect against unmodeled corner-case behaviors.

We show the utility of Symbiosis by incorporating it
into three different key-value storage systems: LevelDB,
WiredTiger, and RocksDB. Most of our work focuses on
LevelDB, a popular LSM-based key-value storage system
from Google [23]; through careful re-use of existing code
(where appropriate), our modifications add roughly 1K lines
to the code base. Across a range of read-heavy workloads,
we show that Symbiosis improves LevelDB performance
significantly (greater than 5×) as compared to unmodified
LevelDB. We also show that our approach adapts effectively
to workload changes and that the overheads are low.

Our other two implementations (in WiredTiger [51] and
RocksDB [50]) demonstrate the generality of our approach.
WiredTiger has a substantially different caching architecture
than LevelDB, and yet we readily integrated Symbiosis into
it with minor code alterations. In doing so, we also discov-
ered a caching bug (acknowledged by the MongoDB team
as major); we both fix the bug and show that Symbiosis im-
proves performance. Finally, RocksDB can be configured
to avoid the kernel cache; its two-level application-managed
caching structure consists of a compressed cache of data read
from disk and an uncompressed cache to service queries. We
show Symbiosis works well when the application manages
both caches directly, again improving performance.

The rest of this paper is structured as follows. We intro-
duce the cache partitioning problem and its significance (§2).
Then, we conduct a simulation study of the general two-level
cache partitioning problem to guide the design, approxima-
tions, and optimizations of Symbiosis (§3). We present Sym-
biosis’s design and implementation, including its incorpora-
tion into LevelDB, WiredTiger, and RocksDB (§4). Finally,
we perform an evaluation of our system (§5) using both syn-
thetic and real workloads. We show that our approach im-
proves performance, in some cases by an order of magni-
tude. We also show the costs of online simulation are not
high and various optimizations work well. Overall, we show
that Symbiosis is an effective approach to cache-size config-
uration for modern key-value storage systems.

2 Motivation and Framework
Databases and key-value stores utilize similar caching archi-
tectures (Figure 1). Irrespective of underlying data struc-
ture organization (log-structure-merge trees [23, 50] or B-
trees [51, 61]), these systems use both a custom application-
level cache and the underlying file system page cache.

To access a key-value pair, a request first queries an index-
like structure, and, if successful, searches for the value in the
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Figure 1: The Cache Architecture across the Storage
Stack. Modern applications commonly utilize storage en-
gines (e.g., LevelDB) to manage on-disk data. A storage en-
gine keeps compressed data on disk, and usually has sep-
arate index structures and an in-memory buffer for uncom-
pressed data. The arrows depict the common read path.

user-level application cache. If the value is not present in
the application cache, a file system read request is issued to
fetch the data. This read request may be served by the kernel
page cache, which holds a compressed version of the data. If
the file is not present in the kernel cache, the file system is-
sues necessary I/Os to complete the request, and then caches
the (compressed) data. In data-intensive workloads, mem-
ory used by the application and kernel caches constitutes a
majority of the storage engine’s memory usage [14, 30].

Most mainstream storage engines prefer the kernel page
cache for buffering on-disk data, to utilize its robust per-
formance under various workloads and to avoid the labor
of implementing a sophisticated user-level device-friendly
caching and prefetching approach. Thus, we focus our
study on this application-kernel cache structure. However,
some storage engines can be configured to manage their
own second-level cache for compressed on-disk data (e.g.,
RocksDB). As we will see later, our techniques also work
well on this (simpler) user/user configuration.

2.1 The Application-Kernel Cache Structure
We now describe the main properties of two-layer caching.
In the first layer, storage engines keep decompressed and de-
serialized data. These application caches store ready-to-use
data to serve requests efficiently.

For example, LevelDB [23], the main storage engine we
study, is an LSM-based key-value storage engine with a
block-based application cache. Data blocks are variable-
sized and not aligned. When a thread inserts an item and
overflows the cache, it is responsible for performing evic-
tions using LRU replacement. In contrast, WiredTiger [51],
the underlying storage engine of the popular database
MongoDB, is a B-Tree-based engine and has a significantly
different caching mechanism. Instead of a unified cache
structure, WiredTiger constructs an in-memory B-Tree rep-
resentation and allows each B-Tree node to dynamically allo-
cate memory to cache data. When the total amount of cached
data reaches the limit, background threads are initiated to

traverse the tree and perform evictions. Each node records
last-access recency to approximate LRU replacement.

The second layer of this cache structure is a compressed
cache that commonly utilizes the underlying OS kernel’s
page cache. Storage engines compress on-disk data to re-
duce device bandwidth and save space on disk; furthermore,
by using the kernel page cache, one can leverage years of
performance tuning that is present therein.

In Linux, the eviction algorithm is 2Q with a clock al-
gorithm for each queue and involves sophisticated heuris-
tics for promotion, demotion, and size partitioning among
the queues. In addition, Linux performs read-ahead to en-
sure high bandwidth utilization. The current read-ahead ap-
proach uses heuristics to determine which pages/when to
prefetch (including basing its decisions on the cache pres-
ence of pages neighboring the target page), which can sig-
nificantly affect hit ratio in some scenarios.

To summarize, this two-level cache structure has several
important characteristics. First, the application and ker-
nel caches form a two-level caching scheme that shares the
same memory quota (i.e., if one cache grows, the other must
shrink). The kernel cache often stores compressed data,
making it more efficient in terms of memory usage, while
the application cache provides lower latency as its data is
ready to be used, saving the cost of decompression and ker-
nel crossing. Second, with data compression, the two caches
store data in different forms, units, and alignments. One
block in the application cache may correspond to several
pages in the kernel page cache due to misalignment, which
further complicates the management of the two caches and
the optimization of overall performance.

2.2 Challenge: Memory Partitioning
Given this two-level caching architecture, a natural ques-
tion arises: how should memory be allocated between the
two caches, in order to maximize performance? To illus-
trate some of the complexities of this issue, we present the
following motivating experiment. Here, we study the perfor-
mance of different cache configurations in two representative
storage engines, LSM-based LevelDB [23] and B-tree-based
WiredTiger [51]. We run uniform random workloads with
1 GB of available memory. We use small data sets here to
speed our analysis; as we will show later, results are nearly
identical when data sets are scaled up.

We compare two extremes: one which devotes all avail-
able memory to the application cache, and the other which
devotes all memory to the kernel cache. We show how
performance varies across two different data set sizes (Du),
1 GB and 2 GB (uncompressed); the compression ratio is
0.5. Figure 2 presents our results.

We see similar trends from both storage engines. When
the data set size is 1 GB (and hence fits, uncompressed, into
the application cache), devoting as much memory as possi-
ble to the application cache outperforms the kernel-cache by
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Figure 2: Storage Engine Performance Varying Data Set
Size. Each bar depicts one application cache size (8MB
or 1GB); each pair of bars shows performance for a given
dataset size. The y-axis is the latency normalized to the low-
est value; numbers above are absolute latencies (us/op).
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Figure 3: Overview of Symbiosis. This figure shows the
main components of Symbiosis and their interactions.

2.5× to 3×. In contrast, when the data set size is 2 GB (and
hence fits compressed into the kernel cache, but is too large
for the uncompressed application cache), the kernel cache
outperforms the application cache, by up to 7×.

The experiment demonstrates that cache configuration im-
pacts performance significantly; no single configuration per-
forms well across different workloads and settings. A deeper
understanding of the performance characteristics of this two-
level structure is required; a systematic approach that can co-
ordinate the two caches to maximize performance is needed.

2.3 Cache Coordination with Symbiosis
To address this problem, we propose Symbiosis, a system to
coordinate application and kernel caches to maximize per-
formance across differing workloads and system configura-
tions. Figure 3 presents an overview of the system architec-
ture. A key element of Symbiosis is an online cache simula-
tor that monitors performance levels given the current appli-
cation/kernel configuration and determines necessary adap-
tations to improve performance. The simulator selectively
applies ghost caching [19] to determine whether a different
application cache size would be beneficial; if so, it changes
the size of the application cache (and thus implicitly makes
more or less memory available for the kernel cache).

Detailed online simulation can be prohibitively slow.
Therefore, Symbiosis uses a simplified representation of the
actual caching approaches used by real systems. The core
challenge thus lies in determining how to abstract the essence
of the cache sizing problem and adopt the right level of sim-
plification, aiming for a balance between overhead and accu-
racy. We show how to strike this balance later (§4).

3 The Cache Partitioning Problem
Through offline simulations, we show the factors that influ-
ence how memory should be divided between the applica-
tion and kernel caches. Our simulations demonstrate that the
division of memory between application and kernel caches
has a large impact on performance (e.g., up to 9×), and that
the best division is highly dependent on a wide variety of
factors, some of which are specific to the environment (e.g.,
application and kernel miss costs) and some of which can
vary depending upon workload (e.g., the size of the data set,
compression ratio, and application/kernel cache hit rates).

3.1 Influential Factors
We define a number of system and workload parameters that
impact the best division of memory.

Memory Cache Sizes: M depicts the total amount of
memory that can be used for the application cache (Ma) and
kernel cache (Mk); Ma +Mk = M. M can represent the to-
tal physical memory on a single machine, a containers’ re-
source limit [26, 38, 72], or enforcement by other mecha-
nisms [71, 78]. We arbitrarily fix M to 1 GB in the simu-
lations, since only the relative size of memory to the data
size matters, and not its absolute size.

Data Size: The amount of compressed data that is stored
on disk by an application is Dc; the corresponding uncom-
pressed data size is Du. We simulate 1GB ≤ Du ≤ 10 GB.

Compression Ratio: (α , 0 < α 6 1): The ratio of com-
pressed data to decompressed data is α (i.e., α = Dc

Du
). α is

affected by the compressibility of the data and the specific
compression algorithm [73]; for instance, in WiredTiger, we
found that compressing a data set of Du = 1 GB using four
different compression algorithms (zstd, zlib, snappy, and lz4)
takes between 9µs and 204µs and results in compression ra-
tios between 0.36 to 0.51. We simulate values of α between
0.22 (observed in production [13]) and 0.5 (the default for
RocksDB’s db bench [18]).

Retaining Data Size: (Dmem): We find the notion of a re-
taining data size useful: the size of the resulting data when
it is all decompressed from memory. The minimum Dmem
occurs when all of M is devoted to the uncompressed appli-
cation cache; that is, Dmin

mem = M. The maximum Dmem occurs
when all of M is devoted to the compressed kernel cache (i.e.,
Dmax

mem = M
α

). A higher Dmem reduces device accesses.
Hit Rates: The hit rate of the application cache is Ha and

the kernel cache is Hk. Hit rates are functions not only of the
cache sizes, but also of access patterns and cache replace-
ment policies. We examine uniform random, skewed, and
mixed access patterns. Our simulations focus on LRU; note
that improvements in replacement policies [9] are comple-
mentary to our approach as we aim to better use available
memory regardless of the policy.

Miss Cost: Application miss cost is Ca and kernel cache
miss cost is Ck. Ca is highly application dependent; em-
pirically, we found Ca varied between 40µs and 250µs de-
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Figure 4: Simulation Results.

pending on the compression algorithm in WiredTiger and is
< 10µs in LevelDB; thus, the simulation varies Ca from 10 to
100. The main factor influencing Ck is device performance;
we set Ck to 100µs for common devices. Again, the ratio of
miss costs (Ca

Ck
) matters and not their absolute values.

3.2 Analysis
Our goal is to find the value of Mk that optimizes perfor-
mance given the other system and workload parameters; our
offline simulations do this by sweeping through the full range
of valid values of Mk. To quantify the performance of the
cache structure, we use average latency: Le = (1−Ha) ∗
(Ca + (1−Hk) ∗Ck). Generally, as Mk increases, Hk in-
creases, but Ha decreases; thus, the ideal hit rates for Hk and
Ha depend on the relative values of Ck and Ca.

3.2.1 Uniform Workload
We begin simulations with a uniform workload as it leads
to the most intuitive results. With a uniform workload and
LRU replacement, the hit rate of a given cache is simply its
size divided by the data size; specifically, Ha =

M−Mk
Du

where

0 6 Mk 6 M, and Hk =
Mk

α∗Du
where 0 6 Mk 6 α ∗Du. Le can

be calculated as a quadratic function of Mk with a negative
quadratic term coefficient; thus, the two boundary points of
the domain (Mk = 0 and min(M,α ∗Du)) are two local min-
ima, but which of the two is the global minimum depends on
all factors, as we illustrate.
Miss Cost (Ca vs. Ck): We begin by showing the best ker-
nel cache size as a function of miss costs. In our two-layer
caching architecture, the ratio Ca

Ck
determines how much each

miss rate contributes to overall performance. While this ra-
tio does not impact the cache configurations of the two local
minima, it does influence which is the global minimum.

Figure 4 I(a) shows latency as a function of Mk, varying
Ca from 10 to 100 (interval=10) and fixing Du = 1.43 GB
(i.e., M

Du
= 0.7) and α = 0.5. For all values of Ca, the local

minima are at Mk = 0 and Mk = α ∗Du, and the global min-
imum changes from 0 to α ∗Du as Ca decreases (i.e., when
Ca < 60). In general, when 0<Mk <α ∗Du, Le is larger than
at both extremes because both caches are non-zero and con-
tain duplicates; when Mk grows beyond α ∗Du, Le increases
because the kernel cache already holds all compressed data.
Additional Mk causes more application cache misses. With a
higher Ca, the global minimum of Mk is smaller, as applica-
tion cache misses are penalized more.

Figure 4 II(a) summarizes the best kernel cache size for
different parameters, illustrating that different systems and
workloads benefit from very different cache configurations,
with best values of Mk from 0 to M and all points between.
More specifically, the first two subplots show uniform work-
loads; comparing points across these first two subplots con-
firms that a higher value of Ca (i.e., Ca = 50 vs. Ca = 10)
makes the best kernel cache size smaller. Figure 4 II(b)
shows how much latency is improved when the cache sys-
tem is configured correctly; specifically, the graphs compare
latency with the best cache partition to two reasonable de-
fault cache configurations: Ma = 0 (dashed lines) and Mk = 0
(solid lines). For example, with a smaller Ca, latency can be
nine times larger with a poor choice cache configuration (i.e.,
Mk = 0) than with the best choice.
Compression Ratio (α): Figure 4 I(b) shows the impact of
α on the best kernel cache size, by varying α from 0.1 to 1
with an interval of 0.05 and setting Du = 2 GB and Ca = 50;
Du is set larger than M so that it is not possible to cache all
uncompressed data in memory.

Given a lower α (for a fixed Du), a larger kernel cache
tends to be better as it is more efficient with compressed data;
with a low α , the kernel cache provides larger Dmem, avoid-
ing more device accesses than the application cache. Specif-
ically, with a very low α (i.e., the bottom line with α = 0.1),
latency drops sharply from Mk = 0 to Mk = α ∗Du = 0.2.
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Generally, while the latency at Mk = 0 remains the same,
the latency at Mk = min(M,α ∗Du) decreases with smaller
values of α; as a result, the global minimum changes from
Mk = 0 to Mk = min(M,α ∗Du) when α < 0.65.

Figure 4 II(a) confirms that larger kernel caches are more
beneficial with smaller values of α and Figure 4 II(b) shows
that the performance improvement is more dramatic with
smaller α; the potential benefit of the kernel cache is high.
Data Size (Du) vs. Memory Capacity (M): Figure 4 I(c)
shows the impact of varying Du from 1 GB to 10 GB (i.e.,
varying M

Du
from 0.1 to 1.0) while α = 0.3 and Ca = 50.

While the two local minima for Mk (0 and min(M,α ∗Du))
follow the studied trends of Le, we make three specific ob-
servations. First, when Du is very small, the application
cache can fit all of the data uncompressed, so all memory
should be devoted to the application cache (Mk = 0). Second,
when Du is much higher than M (e.g., when Du = 10 GB),
the impact of different values of Mk is smaller since most
accesses miss both caches. Finally, as Du grows larger
than 2 GB, the global minimum changes from Mk = 0 to
Mk = min(M,α ∗Du); for these values of Du, the larger Mk
is better because it leads to a larger Dmem at the cost of a
lower Ha. In summary, the best Mk tends to be 0 for a very
large or very small Du, and min(M,α ∗Du) for a medium Du.

In Figure 4 II(a), the α = 0.7 line in the first graph shows
this trend best. As shown in Figure 4 II(b), with a medium
Du, the performance gain over Mk = 0 is large and with a
small Du the gain over Ma = 0 is generally larger; with a
very large Du, the gain is small as all cache configurations
perform similarly.

3.2.2 Non-Uniform Workload
While the hit rates (and thus the best values of Mk) can
be precisely calculated for uniformly-random workloads, in
practice, most real-world workloads are more complex [13,
17]. We simulate a skewed workload containing a hotspot
with locality as suggested by production RocksDB [13] in
which 20% of the key space serves 80% of requests. Figure 4
I(d) shows that this skewed workload exhibits a significantly
different performance curve from a uniform workload (Fig-
ure 4 I(c)). The trend observed for a uniform workload, in

which the best Mk grows with increasing Du, does not hold
for skewed workloads and the best Mk becomes highly un-
predictable. Generally, for a skewed workload, a larger ap-
plication cache is preferred since more accesses occur within
a smaller hotspot and the same size of application cache pro-
vides a higher hit rate; this effect can be roughly viewed as
effectively reducing Du. Figure 4 II(a) shows this preference
to the application cache, comparing the right half of graphs
to the left half; Figure 4 II(b) confirms that the performance
gain over Mk = 0 is smaller than for uniform workloads and
that over Ma = 0 is larger.

Our second non-uniform workload contains a mix of read
and scan operations, as commonly found in real deploy-
ments [13, 17]. We use the YCSB benchmark [17] to gen-
erate 90% reads and 10% scans with an 80/20 hotspot and
a scan length uniformly distributed between 0 and 100 KB.
The results in Figure 5 show that the trends are even more
irregular: although the best Mk increases with decreasing
M
Du

(i.e., increasing Du), the best Mk decreases significantly
when M

Du
decreases from 0.45 to 0.4, and never at the ex-

treme points (i.e., 0 and M) when M
Du

< 0.9. In summary, the
best cache configuration for a non-uniform workload is more
difficult to predict with an offline simulation or model.

3.3 Discussion
Our simulations have shown that the best cache configura-
tion is highly sensitive to factors such as memory capac-
ity, compression ratio, and miss cost, which depend on data
and hardware; non-uniform workloads further exacerbate the
complexity. The performance gain curves in Figure 4 II(b)
show that improvements compared to a default cache config-
uration can be significant, but that the best kernel cache size
varies significantly. Statically determining the best configu-
ration is impractical due to the dynamic nature of workloads,
directing us to a runtime adaptive approach. Fortunately, al-
though the amount of gain is difficult to predict, the curves
are relatively smooth without abrupt changes, indicating that
some inaccuracy in online simulation can be tolerated.

4 Design and Implementation of Symbiosis
We present our design and implementation of Symbiosis,
which performs online cache simulation to dynamically and
adaptively configure two levels of cache for high perfor-
mance. The key challenge is to achieve simulation accuracy
and configuration coverage while maintaining high perfor-
mance to minimize the impact on the foreground workload.

4.1 Design
Symbiosis is an add-on module built into a storage en-
gine that automatically adjusts the application cache size
(Ma), implicitly changing the kernel cache size (Mk). Fig-
ure 6 illustrates how Symbiosis integrates into existing stor-
age engines. Symbiosis contains two main components:
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dark red portion represents the kernel cache.

Tracker and GhostSim. Tracker continuously audits applica-
tion and kernel cache accesses to collect performance statis-
tics; Tracker decides when to activate GhostSim to find a bet-
ter <Ma,Mk> and which specific candidate to adopt. Ghost-
Sim uses efficient online cache simulation to predict the per-
formance of candidates.

We design Symbiosis to achieve several goals. First, low
overhead: incur negligible overhead for the in-memory read
path, taking less than a few microseconds if a request hits
in the caches. Second, memory efficient: minimize memory
to reduce interference with the memory-constrained storage
engine. Finally, robust performance: deliver superior per-
formance in most cases, while guaranteeing baseline perfor-
mance for arbitrary workloads.

To minimize the overhead of configuration exploration
and changes, GhostSim is activated only when necessary. To
lower our overhead and memory consumption, we maximize
ghost cache reuse with a pipelined simulation of <Ma,Mk>
configurations in the order of increasing Ma. To reduce mem-
ory consumption and maintain high accuracy, we use sam-
pling specifically tailored to our cache structure, accounting
for misalignment and read-ahead in the kernel cache. Finally,
to guarantee performance improvements, we apply a policy
to guard against (uncommon) inaccurate simulation results.

4.1.1 Auditing by Tracker: Metric and States
Symbiosis alternates between two states: Stable and Adapt-
ing. In the initial stable state, Tracker detects workload
changes using the expected latency, calculated as Le = (1−
Ha) ∗ (Ca + (1−Hk) ∗Ck)). Le focuses on two major fac-
tors: Ha and Hc (and consequently the relative cache sizes)
and the relative impact of each type of miss. Specifically,
Tracker continuously audits the hit/miss result of each cache

and calculates Le with statically configured miss costs by of-
fline measurement. Tracker periodically compares the cur-
rent calculated Le to the initial Le for this round; if the differ-
ence is larger than a fixed threshold (currently 10%), Tracker
considers it a workload change and enters the adapting state
that starts a simulation round. Thus, GhostSim is activated
only when necessary.

4.1.2 Simulating with GhostSim: Lifetime of a Round
The basic idea of the adapting state is to systematically gen-
erate several <Ma,Mk> candidates, run simulations to pre-
dict their Le’s, and determine if the best of them has sufficient
performance gain to be applied to the real system. GhostSim
is responsible for efficiently predicting the performance of
different cache configurations for the current workload. To
simulate live workloads and predict their expected latency,
GhostSim maintains a ghost cache [19,22,53,75], filled with
the same indices as in the embedded storage engine, but
without the actual data. To minimize memory consumption
and performance overhead, GhostSim simulates only one in-
stance of ghost cache at a time, adopting a pipelined simula-
tion of candidates in the order of increasing Ma to maximize
ghost cache reuse. After collecting the Le of each candi-
date <Ma,Mk> through simulation, Tracker derives the po-
tential gain of the best candidate configuration and applies it
to the real system if the gain surpasses a certain threshold.
The ghost cache entries are then discarded to save memory.
Symbiosis waits for the real caches to warm up and generate
a stable initial Le as the reference point in the next period.

We strictly bound the ghost cache’s space and time over-
head with a collection of techniques (described below), as a
naive full simulation incurs unacceptable memory consump-
tion (> 5%) and performance overhead (> 30%).

4.2 GhostSim Optimization Techniques
We introduce four techniques to achieve sufficient simula-
tion accuracy, memory efficiency, performance, and robust-
ness; overall, we identify and solve new challenges for sam-
pled ghost cache simulation raised by the unique interac-
tion pattern of the two-level cache structure. First, we re-
set to a cache configuration during simulation that will per-
form reasonably for the current workload; second, we sim-
ulate a pipelined sequence of candidate configurations to
achieve high coverage and efficiency; third, we use sampling
to achieve accurate simulation with reduced memory; fourth,
we guard against (uncommon) flawed simulation results that
could occur due to not modeling all kernel caching features.

4.2.1 Initialization: Reset Policy
During Adapting State, GhostSim must use a cache configu-
ration that performs reasonably for the live foreground work-
load; GhostSim either continues using the current cache con-
figuration, or if Le has increased (likely from an increase in
Du), it resets to the minimal default Ma used by the original
storage engine (which increases Dmem). We show the bene-
fits of this reset policy in Section §5.2.4.
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4.2.2 Incremental reuse of a single Ghost Cache
We extend the idea of storing cache access metadata with a
ghost cache [19, 22, 53, 75] to efficiently handle two-levels
of caches while minimizing the memory footprint. Multiple
first-level cache sizes can be simulated simultaneously with
only the amount of memory required for the largest cache
if the first-level cache follows the stack property [48] (e.g.,
LRU). However, the second-level cache sees different access
patterns depending on the size of the first level, and thus has
different contents when sized differently. Thus, simultane-
ous simulations of all second-level size candidates within
one ghost cache instance is infeasible.

To efficiently simulate memory configurations with ghost
caches, Figure 6 illustrates our choices of <Ma,Mk> candi-
dates. Our simulation results (Figure 4 II(a)) indicated that
the best memory configuration could be anywhere within the
search space; therefore, GhostSim forms the candidate set
by dividing the search space into a fixed number of equal
ranges (currently 8) without skipping candidates or stopping
early; this provides relatively high coverage of the search
space with reasonable convergence time. Since warming up
each candidate ghost cache is a significant source of over-
head, Symbiosis simulates each in the order of increasing
Ma to maximize the reuse of ghost cache contents. Specif-
ically, we keep the application ghost cache at its full size
and simulate different Ma’s using the stack property, so that
when Ma is increased for the next candidate, the contents of
the increased portion are already known. A short warm up
for the kernel ghost cache after Mk is decreased is required
to let its contents approach those of the next candidate’s con-
figuration.

4.2.3 Sampling with Misalignment and Read-ahead
Even with reuse, the memory consumed by a ghost cache is
significant (e.g., 50 MB for 1 GB data). To reduce mem-
ory consumption, we incorporate a key-space sampling tech-
nique by hashing the indices so that one slot represents sev-
eral keys [67, 68]. A sample ratio (R) of 0.01-0.001 mini-
mizes memory usage while preserving accuracy.

Approximating Hk with sampling poses new challenges.
An important difference between Symbiosis and other two-
layer cache structures is that the kernel caches at the page
level while the application caches in application-defined

blocks that misalign with pages; as a result, the independent
reference model [2] does not hold, as each request may ac-
cess different targets in each layer and multiple contiguous
targets in the kernel cache. Moreover, read-ahead strongly
affects Hk, but a full simulation would be too costly.

We introduce different hashing approaches that accurately
model these real-system effects. Figure 7 shows the hit rate
curves for various kernel cache implementations and sam-
pling approaches. Figure 7(a) shows a SimpleLRU simulator
that caches in the unit of blocks instead of pages and thus
does not take misalignment into account, deviates signifi-
cantly from a kernel implementation that has read-ahead dis-
abled (Kernel-nora). The LRU+Misalign simulation, which
caches in the unit of pages and accounts for misalignment
just as the kernel does, approximates the Kernel-nora line
well. However, Figure 7(b) shows that spatial sampling
(R = 1

2 ) is not effective in the presence of misalignment, de-
viating from the Kernel-nora line. With misalignment, ac-
cessing a block across pages will read both pages into the
cache, hitting neighboring blocks; spatial sampling’s hash-
ing scheme loses locality and cannot capture such behavior.
We introduce misalignment-aware sampling that groups con-
tiguous G application blocks before hashing to preserve lo-
cality; the M-aware Sampling line (R = 1

2 and G = 32) ap-
proximates the Kernel-nora line well. Finally, to compensate
for read-ahead, we adopt a heuristic that slightly increases
the size of our modeled kernel cache. Figure 7(c) shows that
this final version (GhostSim) approximates the Kernel better
than M-aware Sampling.

Our sampling method produces similar hit rate curves with
R > 1

256 ; we choose R = 1
64 due to the acceptable variance

and sufficiency to realize a low-overhead online simulation.
We confirm that our method broadly works well.

4.2.4 Guard against Unmodeled Cases and Fall Back
Although we have modeled misalignment between caches,
GhostSim may be inaccurate in some workloads due to un-
modeled kernel features such as read-ahead. Thus, Symbio-
sis only performs cache size adjustment if the predicted re-
sult improves latency by a threshold amount; we do not adapt
away from settings that already works well. To understand
why this approach is robust, consider a workload that per-
forms strided access of one key per page. The kernel cache
sees a linear access, triggers read-ahead, and thus achieves
a high Hk, while GhostSim without read-ahead produces a
low Hk. However, Symbiosis observes that the predicted Le
for all the candidate cache sizes is larger than the measured
current Le, and therefore rejects all simulation results.

4.2.5 Limitation and Discussion
We assume that workloads change infrequently. If the work-
load changes before a simulation round ends, Symbiosis de-
tects the change, discards the current results, and starts over.
If the workload changes repeatedly during simulation, Sym-
biosis stops the simulation as it is unable to finish and yield



benefits. In our experimental environment, Symbiosis takes
at most 45 seconds to detect and simulate new workloads.

Symbiosis generally offers larger and more robust benefits
to existing storage engines in read-heavy workloads, which
are observed as dominant in various studies [13, 17]. The
idea of simulation-based cache size adaption can work with
write-heavy workloads, yet will require additional research
to realize in robust form. For example, LSM-based engines
often schedule asynchronous background compaction in the
write path; thus, speed differences in the foreground work-
load caused by different cache size configurations can lead to
varying tree structures and thus different cache access traces.
Further, write performance itself is less stable than read per-
formance [8], which is more challenging for prediction.

4.3 Multiple Implementations
We have integrated Symbiosis into three different storage en-
gines: LevelDB [23], WiredTiger [51], and RocksDB [50].
Modifying LevelDB to leverage Symbiosis required adding
fewer than 1000 LoC to the 30000-LoC codebase. First, the
required keys for the ghost cache are collected during the
original processing of each request. Second, hit/miss statis-
tics are recorded when accessing the application cache and
inferred from timing when accessing the kernel cache. Third,
LevelDB’s LRUCache is modified to build the ghost cache
utilizing the stack property, greatly reducing the amount of
new code. Finally, a generic interface is added to the applica-
tion cache to dynamically resize it to Ma and allow the kernel
cache to automatically use the rest of the memory (M−Ma).

We have also ported Symbiosis to WiredTiger and
RocksDB to demonstrate its generalizability. Despite the fact
that WiredTiger’s B-Tree-based engine has a completely dif-
ferent caching mechanism than LevelDB, the modifications
required are similar to the four outlined above; the basic port
added fewer than 100 LoC to WiredTiger and Symbiosis.
Interestingly, as part of this porting process, we uncovered
a bug in WiredTiger’s cache eviction mechanism. Despite
its claimed LRU-like behavior, the bug makes it evict data
regardless of recency and its cache performance becomes
extremely poor and unpredictable. This bug has been re-
ported to MongoDB which recognized it as a major bug; we
have added a workaround to restore the intended LRU pol-
icy, which significantly improves performance and enables
Symbiosis to correctly simulate its cache behavior.

RocksDB is based on LevelDB and has a similar caching
mechanism. To study Symbiosis’s capability to handle
an application-managed compressed data cache, we en-
able RocksDB’s option to use its built-in compressed data
cache and direct I/O. Whenever the application cache size is
changed, we explicitly set the size of the compressed data
cache to be all memory not used by the application cache
(i.e., M−Ma). Due to RocksDB’s similarity to LevelDB,
the port required minimal effort.

Table 1: Factors for Static Workload. Access patterns are
generated by YCSB [17]. Zipfian has scattered hotspots over
the key range to avoid space locality. Hotspot{30,20,10}
means that 70%, 80%, and 90% of requests access 30%,
20%, and 10% keys in a contiguous range.

Factors Presented Space

Workloads
Data Set Size

(GB)
5, 2.5, 1.67, 1.25, 1

(M : Du= 0.2, 0.4, 0.6, 0.8, 1)

Access Pattern uniform, zipfian, hotspot{30,20,10}

Software Compression Lib snappy (default), zstd

Storage Engine LevelDB (default), RocksDB, WiredTiger

Hardware
CPU
Freq.

HW1: Xeon 5128R (2.9 GHZ)
HW2 [57]: Xeon D-1548 (2.0 GHz)

Device
Latency

HW1: OptaneSSD 900P (∼ 10µs)
HW2: Toshiba NVMe flash (∼ 70µs)

5 Evaluation
We evaluate Symbiosis to answer the follow questions: (1)
How much better does Symbiosis perform than reason-
able static cache size configurations (<Ma,Mk>) for differ-
ent data set sizes (Du), compression ratios (α), miss costs
(Ca and Ck), and access patterns for different storage en-
gines such as LevelDB, WiredTiger, and RocksDB? (2) How
quickly does Symbiosis react to workload changes and how
much overhead does Symbiosis incur for simulation and
changing cache sizes? (3) How well does Symbiosis handle
real-world workloads?

Setup. We use HW1 in Table 1 unless otherwise noted; the
available memory M is fixed at 1 GB by cgroup. We evaluate
Symbiosis by comparing it with two static configurations:
Ma = 8 MB (LevelDB’s default) and Ma =1 GB (Mk ≈ 0),
referred to as StaticMa=8MB and StaticMa=1GB, respectively.

5.1 Static Workloads
We first evaluate Symbiosis under various static workloads,
demonstrating that Symbiosis finds a better <Ma,Mk> for
different data set sizes (Du), compression ratios (α), miss
costs (Ca and Ck), and access patterns. Table 1 shows the
full range of factors. To vary α , Ca, and Ck, we use a sec-
ondary compression library (zstd) and hardware (HW2). We
also evaluate its performance in WiredTiger and RocksDB to
demonstrate its generalizability to different storage engines.

5.1.1 LevelDB Performance
Figure 8 compares the performance for LevelDB with Sym-
biosis to the two static baselines as a function of M

Du
for five

access patterns on five different settings.
Large datasets and memory (a): To evaluate Symbiosis
in the context of modern data center machines with large
amounts of memory, we begin with M = 10GB and a range
of large data sets (Du=50, 25, 16.7, 12.5, 10 GB); we use
the basic setting of HW1 and LevelDB’s default compression
(α = 0.5). In all cases, Symbiosis matches the performance
of the better baseline. StaticMa=8MB tends to perform better
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(b) Basic setting. α = 0.5, Ca = 3, Ck = 16.
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(c) Different compression ratio. α = 0.22, Ca = 3, Ck = 16.
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(e) Different hardware (HW2). α = 0.5, Ca = 5, Ck = 80.
Figure 8: Performance under Static Workloads. X-axis is
M
Du

. Ma=8MB means StaticMa=8MB, similarly for Ma=1GB.

when the data set is very large, and StaticMa=1GB when the
data set size is small; the only exception is hotspot10, where
the highly skewed accesses to the small hotspot should al-
ways reside in the application cache (StaticMa=1GB). Again,
Symbiosis dynamically sizes the two caches to obtain the
best observed performance.
Basic Setting (b): The setting is the same as (a), except to
reduce the running time of our experiments, we use 1/10-th
the data set sizes and M = 1GB. As desired, the full range
of results are extremely similar to that of (a); thus, for effi-
ciency, we use the smaller data set sizes and M = 1GB in the
remainder of our experiments.
Different Compression Ratio (c): We change the compres-
sion ratio from α = 0.5 in (b) to 0.22 in (c). With a smaller α ,
the performance gap between the two baselines increases, as
noted in our offline simulations (§3). Thus, with better com-
pression, Symbiosis achieves a larger performance increase
over the worse baseline (commonly > 1.2×) and some im-
provement over the best baseline (11.1% on average), espe-
cially when M : Du is within [0.4,0.8].
Different Compression Algorithm (d): We change the
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Figure 9: Static Workload with 20% Overwrites. (a) X-
axis is M

Du
. Ma=8MB means StaticMa=8MB, similarly for

Ma=1GB. α = 0.22, Ca = 3, Ck = 16. (b) shows the pre-
dicted application cache hit ratio of the Ma = 1GB configu-
ration using cache traces from configuration Ma = 8MB and
Ma = 1GB, and the observed hit ratio when Ma = 1GB, un-
der different compaction rates. The workload is uniform with
20% overwrite and M = Du.

compression algorithm to alter α from 0.5 to 0.43 and Ca
from 3 to 9. Now, StaticMa=1GB usually performs better than
StaticMa=8MB because Ca

Ck
is large (0.56) and StaticMa=8MB

incurs the cost of the higher Ca. Symbiosis again always
matches the performance of the better baseline, properly de-
voting most space to Ma, while correctly identifying the ex-
ceptions (e.g., the leftmost points in uniform and hotspot30).
Different hardware platform (e): We switch to HW2 so
that device access is far slower than decompression (Ca

Ck
=

0.0625). Now, StaticMa=8MB usually performs better than
StaticMa=1GB because it avoids costly disk accesses, except
for the hotspot10 workload where the cost of frequent ap-
plication cache misses on the hotspot outweighs the benefit
of reduced disk accesses. In several cases (e.g., M

Du
= 0.8),

Symbiosis performs significantly better than both baselines
by properly balancing application cache misses and disk ac-
cesses, with an average gain of 6.9% over the better baseline.
Summary: In our LevelDB experiments, Symbiosis
achieves as high of performance as the better baseline and
outperforms the other baseline by up to 5.77×. In some
cases, Symbiosis performs significantly better than both
baselines (up to 1.32×), demonstrating the benefit of a fully
flexible configuration of <Ma,Mk>.

5.1.2 Workload with Writes in LevelDB
During simulations, Symbiosis uses cache access traces from
the real system with a certain cache configuration, which de-
viates from the true cache access traces for other cache con-
figurations when compaction exists. Figure 9(b) shows that
Symbiosis’s prediction is affected by such deviations under
a large compaction rate. By limiting the compaction rate, the
inaccuracy can be significantly reduced.

Figure 9(a) shows Symbiosis’s performance with 20%
overwrites. Compared to its read-only counterpart (Fig-
ure 8(c)), StaticMa=1GB performs worse than StaticMa=8MB
even when M

Du
= 1 due to the immutable nature of LSM-tree

that causes duplication with overwrites and makes the actual
database size larger. Similarly, Symbiosis offers lower ben-
efits, but still outperforms StaticMa=8MB when the workload
is very skewed and Du is small.



0

10

20

30

L
a
te

n
c
y
 (

u
s
)

0
.2

0
.4

0
.6

0
.8

1
.0

uniform

0
.2

0
.4

0
.6

0
.8

1
.0

zipfian

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot30

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot20

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot10
Ma=256MB Ma=1GB Symbiosis WT-orig-Ma=256MB

(a) WiredTiger. α = 0.2, Ca = 20, Ck = 16.
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(b) RocksDB. α = 0.5, Ca = 3, Ck = 16.
Figure 10: WiredTiger and RocksDB (Static Workload).
X-axis is M

Du
. Ma=8MB means StaticMa=8MB, similarly

for Ma=1GB. In (a), WT-orig-Ma=256MB is the original
WiredTiger, while Ma=256MB, Ma=1GB, and Symbiosis
uses our modified WiredTiger with LRU-like eviction policy.

5.1.3 WiredTiger Performance
Figure 10(a) shows the performance benefits of incorporat-
ing Symbiosis into WiredTiger. As mentioned in §4.3, we
began by modifying WiredTiger to correctly implement its
claimed LRU-like behavior for its application cache; our
modified version performs the same or better than the orig-
inal version (WT-orig Ma=256MB) for all static workloads
and is used in our baselines (Ma=256MB and Ma=1GB).
WiredTiger has a significantly larger application cache miss
penalty (Ca

Ck
= 1.25) than LevelDB, so even with a very small

compression ratio (α = 0.2), the baseline with a larger ap-
plication cache (Ma=1GB) performs better than the other
baseline for almost all workloads. Since WiredTiger’s per-
formance drops significantly when its cache size is less than
its 256 MB default, Symbiosis searches for application cache
sizes between 256 MB and 1 GB and outperforms or matches
the better baseline, showing its capability on a completely
different storage engine.

5.1.4 RocksDB Performance
Figure 10(b) shows the performance improvement when
RocksDB uses Symbiosis to manage the sizes of its own de-
compressed and the compressed data cache. Making Sym-
biosis work with high accuracy is easier in this setting since
we do not need to approximate complex kernel cache behav-
ior. These results show a similar trend to that in Figure 8(a)
where Symbiosis outperforms or matches the performance
of the better baseline, demonstrating its capability to handle
application-managed compressed data caches.

5.2 Dynamic Workloads
We demonstrate that Symbiosis adapts to workload changes
with a reasonable convergence time and negligible overhead.

5.2.1 Example: LevelDB Behavior over Time
We begin by illustrating how Symbiosis within LevelDB be-
haves over time for a dynamic workload. Figure 11 presents
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Figure 11: Timeline of Latency under a Dynamic Work-
load (hotspot20:1.0-2.0). The workload changes are
aligned at ∼ 26sec, and we label state transfer of Symbio-
sis by the gray vertical lines. Sim-off means we turn off the
simulation and shows the effect of only resetting the appli-
cation cache size to default; its steady performance is the
same as StaticMa=1GB before the change, and the same as
StaticMa=8MB afterwards. (α = 0.22)

the performance of Symbiosis (the bottom) and the two base-
lines (the top) for a workload with two phases; the access
pattern in both phases is hotspot20 and α = 0.22, but Du
varies from 1 GB to 2 GB.

The StaticMa=8MB baseline quickly obtains stable (but rel-
atively poor) performance in the first phase, since the kernel
cache can hold all the compressed data. When Du increases,
the latency increases while the kernel cache is warmed with
the larger data set, but eventually returns to its previous per-
formance since the kernel cache can still hold all compressed
data (Mk ≈M > α ∗Du and Hk = 1).

The StaticMa=1GB baseline takes longer to warm the ap-
plication cache in the first phase, but then achieves better
performance since the application cache can hold all the de-
compressed data. When Du increases, the latency increases
because the application cache cannot contain all the data
(Ma < Du) and disk accesses are necessary.

Symbiosis is able to obtain as good of performance as
StaticMa=1GB in the first phase and better than both in the
second. Symbiosis starts with a default value for Ma =
8 MB while simulating cache configurations for ∼ 5sec; af-
ter determining that Ma = M delivers the best performance,
it increases the application cache and matches the perfor-
mance of StaticMa=1GB after the application cache is warmed
at ∼ 12sec. After Symbiosis detects the significant increase
in Le at ∼ 28sec, Symbiosis defaults back to Ma = 8 MB
and re-starts the simulations; the large initial overhead is
due primarily to warming up the kernel cache (as shown
by the Sim-off line which undergoes the same changes in
cache configurations without simulation). Once the kernel
cache is warmed, the simulation itself incurs negligible over-
head (compared to StaticMa=8MB) and finishes at ∼ 42sec, at
which point Symbiosis changes to Ma = 0.5M, warms up the
cache ∼ 2 seconds, and then achieves the lowest latency.

5.2.2 Performance Gain and Dynamic Adaptation
To quantify the benefits, convergence time, and resulting
cache configurations for a wide range of workloads with two
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Figure 12: Performance under Dynamic Workloads (α =
0.22). In the Latency subplot, each group has three bars:
StaticMa=8MB, StaticMa=1GB and Symbiosis. Each adjacent
bar group represents one workload1→workload2 change
and the next group reverses the workloads. The first two
rows contains 12 workloads where Du varies (shown in the
x-axis labels). The third row contains 2 workloads varying
hotspot positions and 4 varying hotness and hotspot posi-
tions, each with a fixed Du. For instance, 2g:Hot20 means
a hotspot20 workload with Du = 2 GB and 2g:Hot20-T mir-
rors the hotspot to the tail. 2g:Hot20→2g:Hot20-T is sum-
marized as 2g:Mirror (hotspot change). The Conv. Time and
Ma/M subplots only show the behaviors of Symbiosis.

phases, we construct a suite of 18 experiments varying Du,
access patterns, and α (0.22 and 0.5). We present the results
with α = 0.22 in Figure 12 (α = 0.5 omitted for brevity) but
consider both αs when discussing extremes and averages.

We use the example above to explain the metrics in Fig-
ure 12, which corresponds to hotspot20:1g→2g (the fifth bar
group in the second row). Adjacent bars in the figure rep-
resent the two phases in an experiment. Latency is reported
when performance is stable (e.g., in the example workload,
latency is about 2.5µs for Symbiosis and StaticMa=1GB for
the first phase, and 5µs for StaticMa=8MB; it is about 3.7µs
for Symbiosis and 5µs for StaticMa=8MB and StaticMa=1GB in
the second phase). Convergence time represents the time to
finish simulation (e.g., ∼ 12 and 13 seconds for phase 1 and
2, respectively, shown by the time between the bars labeled
as Simulation and Done in Figure 11). Finally, the Ma/M
subplot shows the best application cache size found by Sym-
biosis (e.g., 1 and 0.5 for the example workload).

Figure 12 shows that Symbiosis delivers good latency in
all cases, at least as good as the best baseline and sometimes
better, with an average gain of 24% over StaticMa=8MB, 42%
over StaticMa=1GB, and a best case of 42% over the better of
the two (i.e., hotspot20:1.0→2.0). The average convergence
time is 15.4 seconds with a worst case of 40 seconds; gen-

Table 2: Tail Latency. Overhead is the comparison to
StaticMa=8MB. (α = 0.22)

p-95 Latency
Median

p-95 Latency
Max

p-99 Latency
Median

p-99 Latency
Max

Overhead (%) 8.6 14.5 15.3 52.0
Case - zipfian:1g→2g - uniform:1g→2g

10M 20M 30M 40M 50M 60M
Number of Requests
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Figure 13: Timeline of Latency under a Dynamic Work-
load with Gradual Change. The workload is uniform with
Du = 2 GB in the first 10M operations, Du = 1 GB in the last
10M operations, and a uniform gradual change during the
50M operations in between. (α = 0.22)

erally, more convergence time is required for larger Du and
Dc, and for less skewed workloads. During simulation, the
worst overhead of Symbiosis is 15.1%, but this contains two
portions: the larger is the overhead of possibly resetting Ma
to the default and warming up the kernel cache; the smaller
is the actual simulation overhead, which averages only 0.9%
with a worst case of 3.4%. Finally, Symbiosis chooses dif-
ferent Ma values, typically scaling up Ma with a decrease in
Du and increase in skewness (and vice versa).

Adapting the size online and potential latency spike symp-
toms raises concerns of tail latency. As shown in Table 2,
Symbiosis incurs reasonable tail latency overhead, with a
8.6% higher median p-95 latency and a 15.3% higher median
p-99 latency compared to StaticMa=8MB. Out of the 18 cases,
13 have less than 25% overhead for p-99 latency. The high-
est p-99 latency overhead is 52% in uniform:1g→2g. Extra
device accesses due to cache size change cause the higher tail
latency. Tail latency would be minimally impacted in work-
loads with a longer steady state or more device accesses.

5.2.3 Gradual Change
We show that Symbiosis also performs well in workloads
with more gradual changes (Figure 13). During the work-
load, StaticMa=8MB holds all the data in the kernel cache;
StaticMa=1GB cannot hold all the data in the application cache
when Du = 2 GB and performs worse, but then benefits from
the shrink of Du and finally eliminates device access when
Du = 1 GB and performs better than StaticMa=8MB.

Symbiosis matches the performance of StaticMa=8MB at
the beginning. Three simulations are triggered when the dif-
ference of Le reaches the threshold for workload change de-
tection, Ma is gradually increased according to the workload
when simulations occur, and the latency drops along with the
shrink of Du. Finally, Ma =M is chosen when Du approaches
1 GB and the performance of StaticMa=1GB is matched.

A gradual change of Le is necessary for Symbiosis to
match the change speed of workload. For workloads with
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overhead percentages without the reset policy.
faster changes beyond Symbiosis’s threshold during simula-
tion, simulations are halted until the workload stabilizes.

5.2.4 Effect of Optimization Techniques
We quantify the benefits of our techniques by comparing to
a simplified version without the corresponding technique.
Reset Policy: The reset policy (§4.2.1) aims for a cache size
that performs reasonably while simulating, despite an arbi-
trary new workload. The overhead of Symbiosis compared to
the StaticMa=8MB baseline during simulation is shown in Fig-
ure 14; large negative values occur when Symbiosis does not
reset Ma to default due to a decrease in Le and thus Symbiosis
performs better than the baseline (e.g., the uniform:2g→1g
experiment). As shown by the overhead numbers in gray
background in Figure 14, Symbiosis without the reset policy
performs poorly in many cases (e.g., up to 100×); therefore,
the reset policy is better on average and beneficial for more
stable performance.
Sampling: Sampling is essential for low overheads. The first
and third row in Table 3 shows the memory consumption and
operation overhead of Symbiosis with and without sampling.
Without sampling, simulation consumes 51 MB of memory
and adds 42% of overhead to every operation. Sampling
significantly reduces the costs, consuming only 460 KB of
memory and incurring only ∼90ns per operation. Further-
more, sampling only adds the overhead over the 16.7 second
simulation round – a negligible duration.
Incremental reuse of ghost cache: By comparing rows two
and three in Table 3, we see that incremental reuse reduces
both memory and time overhead by > 3×, but at the cost of
a longer convergence time, compared to a design that simply
uses one ghost cache instance for each candidate <Ma,Mk>.
Thus, the incremental reuse design has the lowest impact on
foreground workload and is most suitable.

5.3 Real World Workloads
We conclude by demonstrating that Symbiosis handles com-
plex and realistic workloads: performance is robust since
only a size change that is predicted to sufficiently improve
performance is adopted.

Two workloads generated from RocksDB’s mix graph
benchmark [13] are used, the first with the supplied param-
eters in the last example in paper [13], and the second mim-
icking an interesting two hot key-range symptom in the pa-
per, observed by Meta’s ZippyDB Get workload. The bench-

Table 3: Space and Time Overhead and Convergence
Time of Various Simulation Settings. Operation overhead
compares to baseline LevelDB. Sample rate is 1

64 .

Case Memory
Overhead (MB)

Operation
Overhead (us/op)

Conv.
Time (s)

Reuse & No Sampling 51 2.8 (42%) 22.9
No Reuse & Sampling 1.5 0.32 (4.8%) 7.35
Reuse & Sampling 0.46 0.09 (1.3%) 16.7

mark models key-space localities and closely approaches
real workloads in terms of storage I/O statistics.

Figure 15 shows the performance of LevelDB on four con-
secutive traces based on the two workloads. StaticMa=8MB
maintains relatively constant performance through the four
phases with Hk ≈ 1, as the kernel cache holds most of the
compressed data across all phases. StaticMa=1GB outper-
forms StaticMa=8MB in the first and the second phase be-
cause the workload is very skewed (over 70% of requests
access 1/30 of the data), and the gain of hitting in the ap-
plication cache for most accesses outweighs the additional
disk accesses for the data that does not fit; however, in the
third and fourth phases, StaticMa=1GB performs worse than
StaticMa=8MB as the workload becomes less skewed, with
80% of requests accessing 40% of the data, lowering Ha.

Symbiosis finds a <Ma,Mk> as good as (and often bet-
ter than) the better static configuration in every phase of the
complex production workload. To illustrate why Symbio-
sis is robust, the small bar charts show the predicted Le of
<Ma,Mk> candidates from Ma ≈ 0 to Ma = M and the real
Le (gray line) during each simulation. For each simulation,
Symbiosis resets Ma = 8 MB. In the first three phases, the
best candidate is Ma = 3

8 M and its Le is much lower than
the real Le, so Symbiosis applies it to the real system and
outperforms both two baselines. In the last phase, the best
candidate is Ma = 8 MB which is the default value that Sym-
biosis currently takes, so it keeps the default Ma and matches
the performance of the better baseline StaticMa=8MB.

6 Related Work
Dynamic Cache Adaptation: As caching performance
hinges on workload access pattern, prior work has explored
how to dynamically adapt various aspects of cache manage-
ment. Our work, sharing a similar motivation to effectively
adapt to online workload changes, benefits from relevant in-
novations and operates within a more complex application-
kernel cache structure.

In the scenario of a single-level cache where no coopera-
tion is explicitly introduced, such efforts centered around dy-
namic replacement policies [5, 58, 69], cache allocation and
partitioning [20, 28, 36, 39, 49, 54, 60, 64, 65, 82], and online
cache performance approximation [37,46,59,67,68,74]. For
instance, SOPA [69] simulates different cache replacement
policies to dynamically decide the best policy. ACME [5] si-
multaneously runs multiple cache replacement policies and
updates their weights by the instant effectiveness. Recently,
machine learning techniques were also explored [58].



0 5M 10M 15M 20M 25M 30M 35M 40M# of req

0

5

10

15

20

L
a

te
n

c
y
 (

u
s
)

Sim. DoneStable Sim. Done Stable Sim. DoneStable Sim.DoneStable

[conv. time: 13.6s] [conv. time: 14.9s] [conv. time: 16.4s] [conv. time: 18.5s]
0

4

0

4

0

5

0

11

Ma=8MB

Ma=1GB

Symbiosis

Figure 15: Request Latency versus the Request Sequence. The 4 phases are composed of 2 workloads generated from
RocksDB’s mix graph benchmark. Two versions of the first workload exhibit a decrease in Du, with Keymax = 50M and
Du = 5 GB in phase 1 and Keymax = 25M and Du = 2.5 GB in phase 2. Similarly, two versions of the second workload exhibit
a increase in Du s (phase 3: Du = 2.5 GB and phase 4: Du = 5 GB). The four small bar charts around the top illustrates
the decision of Tracker; each chart is a simulation round. Each bar represents one simulated cache size setting (S{0,...,8} from
Ma = 8 MB to Ma = 1 GB), y-axis is the Le (expected latency), and the gray horizontal line shows the real system Le at the time
of simulation end. Tracker adopts the first three size changes, but rejects the last one; all four are good decisions. (α = 0.22)

Caching strategies designed for the properties of a given
layer are necessary, such as for flash endurance [16, 27,
29, 53]. Our work, instead, considers compression, as it
is widely-used in modern key-value storage engines. Re-
cent research also incorporates compression in storage sys-
tems [43, 47, 77, 81], underscoring its importance.
Hierarchical Cache Management: Earlier works have dis-
tilled and tackled several major problems introduced by hier-
archical cache management [79]: weak temporal locality in
the second layer [83] due to the first layer’s filtering effect,
duplication of data that wastes capacity [7,15,75], and a lack
of information in the second layer for decision making [7].
“Exclusiveness” is one of the main challenges. Either API
changes for cooperation are required [24, 75] or some sort
of hints from the upper layer needs to be propagated or de-
rived [7, 45, 79, 80]. For instance, with DEMOTE [75], the
lower level deletes a block from its cache when it is read by
the upper level. Achieving exclusiveness in the application-
kernel cache structure with one compressed layer would be
an interesting future work.

Evolving storage devices (e.g., NVM) [16, 33, 41, 42, 44,
76] and use cases (e.g., S3) [25, 35, 62] have led to new
techniques to manage storage hierarchies and cache cooper-
ation. For example, EDT [25] decides and adapts data place-
ment between tiers of SSDs and HDDs according to work-
load, aiming to minimize power consumption. D3N [35] also
adapts sizes for multi-level caching with a ghost cache, but
aiming to alleviate network imbalance. A whole-stack pro-
grammable caching scheme is proposed [62] with APIs for
size allocation of caches in layers within multi-tenant data
center. The adaptation space of Symbiosis, which accounts
for computation (compression), capacity, and IO, is enlarged
by modern fast block devices.

Our approach only tunes the sizes of caches and is op-
timized for the application-kernel cache structure, without
altering their interaction. Notably, it does not require modi-

fications to the OS kernel. These advanced communication
techniques and policies are complementary.
Kernel Cache and Application Coordination: Deep un-
derstanding of kernel caching is crucial to performance op-
timization across the storage stack. The performance impact
of kernel cache replacement policies and directory cache
have been studied [10, 34, 66]. Butt et al. [11] build a sim-
ulator studying kernel prefetching. Tricache [21] replaces
the kernel page cache for performance and also empha-
sizes transparent cache management for applications. Lee
et al. [40] enable application-specific kernel caching. Our
work, instead, utilizes simulation integrated into applications
in a live system to adapt cache configuration.

7 Conclusion
We have introduced Symbiosis, a framework to enable ro-
bust cache adaptation for key-value storage systems. With
careful study of the performance space, we develop an on-
line simulator which enables a live key-value storage system
to adapt its application cache size and achieve high perfor-
mance. Across a wide range of workloads and settings, we
demonstrate the overall benefits of our approach, as shown
through implementations in three production key-value stor-
age systems: LevelDB, WiredTiger, and RocksDB. We open
source our framework, workloads traces, modified systems,
and utilities to facilitate further investigation [1].
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A Artifact Appendix
Abstract
Symbiosis is a framework for key-value storage systems that
dynamically configures application and kernel cache sizes
to improve performance. This artifact includes code for
Symbiosis-integrated LevelDB, RocksDB, and WiredTiger,
the offline simulator, scripts to run these applications, and
several workload traces used in the paper.

Scope
Our artifact is fully functional, including all the features and
optimizations mentioned in the design and three implemen-
tations (i.e., Section 4). We provide several traces used in
our evaluation. Running the three storage engines with and
without Symbiosis in similar hardware settings can support
our findings of the cache-sizing problem and the effective-
ness of Symbiosis’s design and techniques.

The offline simulator can run various size configurations
and workloads; its kernel cache can be configured to mimic
the kernel cache behaviors (e.g., 2Q and read-ahead). Run-
ning the simulator experiments with the same configuration
as Section 3 is expected to exactly reproduce the results, sup-
porting our findings about the impacting factors and perfor-
mance gain under various workloads.

Contents
We describe the contents of the subdirectories in the root of
the repository as below:

• leveldb contains Symbiosis-embedded LevelDB that
is used to reproduce experiments in Section 5.1.1, Sec-
tion 5.2.2, and Section 5.3.

• wiredtiger contains Symbiosis-embedded
WiredTiger that is used to reproduce experiments
in Section 5.1.3.

• rocksdb contains Symbiosis-embedded RocksDB that
is used to reproduce experiments in Section 5.1.4.

• simulator contains the cache simulator (in Python)
used in Section 3.

• traces includes all the traces for the experiments men-
tioned above.

• scripts includes the scripts to run the experiments
mentioned above. Detailed instructions can be found
in ae readme.txt.

Hosting
The artifact is hosted on https://github.com/
daiyifandanny/Symbiosis, on branch main with
commit id 36e3ea7.

Requirements
Offline Simulations (Section 3):

• Software: Python 3.8. Python package numpy and
simpy.

Performance Evaluation (Section 5):

• Library: sdt, zstd, and snappy. Installation guide can be
found in ae readme.txt.

• System: Linux kernel 5.11 and Ubuntu 20.04.

• Hardware: Hardware listed in Table 1, especially an
OptaneSSD, is necessary for reproducing the exact
results. With different hardware, offline calibration
of the application and kernel cache miss costs is re-
quired; the result (in microsecond) needs to be set in
leveldb/util/adapter.h.
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