

Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth, Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau

Data Lookup

Data lookup is important in systems

How do we perform a lookup given an array of data?

Linear search

What if the array is sorted?

Binary search

What if the data is huge?

Data Structures to Facilitate Lookups

Assume sorted data

Traditional solution: build specific data structures for lookups

B-Tree, for example

Record the position of the data

What if we know the data beforehand?

Bring Learning to Indexing

Lookups can be faster if we know the distribution The model f(•) learns the distribution

Leaned Indexes

Time Complexity – O(1) for lookups

Space Complexity – O(1)

Only 2 floating points – slope + intercept

Kraska et al. The Case for Learned Index Structures. 2018

Challenges to Learned Indexes

How to efficiently support insertions/updates?

Data distribution changed

Need re-training, or lowered model accuracy

How to integrate into production systems?

Bourbon

Bourbon

A Learned index for LSM-trees

Built into production system (WiscKey)

Handle writes easily

LSM-tree fits learned indexes well

Immutable SSTables with no in-place updates

Learning guidelines

How and when to learn the SSTables

Cost-Benefit Analyzer

Predict if a learning is beneficial during runtime

Performance improvement

1.23x – 1.78x for read-only and read-heavy workloads

~1.1x for write-heavy workloads

LevelDB

Key-value store based on LSM

2 in-memory tables

7 levels of on-disk SSTables (files)

Update/Insertion procedure

Buffered in MemTables

Merging compaction

From upper to lower levels

No in-place updates to SSTables

Lookup procedure

From upper to lower levels

Positive/Negative internal lookups

Learning Guidelines

Learning at SSTable granularity
No need to update models
Models keep a fixed accuracy

Factors to consider before learning:

- 1. Lifetime of SSTables

 How long a model can be useful
- 2. Number of Lookups into SSTables
 How often a model can be useful

Learning Guidelines

1. Lifetime of SSTables

How long a model can be useful

Experimental results

Under 15Kops/s and 50% writes

Average lifetime of L0 tables: 10 seconds

Average lifetime of L4 tables: 1 hour

A few very short-lived tables: < 1 second

Learning guideline 1: Favor lower level tables Lower level files live longer

Learning guideline 2: Wait shortly before learning Avoid learning extremely short-lived tables

Learning Guidelines

2. Number of Lookups into SSTables
How often a model can be useful

Affected by various factors

Depending on workload distribution, load order, etc.

Higher level files may serve more internal lookups

Learning guideline 3: Do not neglect higher level tables Models for them may be more often used

Learning guideline 4: Be workload- and data-aware Number of internal lookups affected by various factors

Learning Algorithm: Greedy-PLR

Greedy Piecewise Linear Regression

From Dataset DMultiple linear segments $f(\cdot)$ $\forall (x,y) \in D, |f(x)-y| < error$ error is specified beforehand In bourbon, we set error = 8

Train complexity: O(n)
Typically ~40ms

Inference complexity: O(log #seg)
Typically <1µs

Xie et al. Maximum error-bounded piecewise linear representation for online stream approximation. 2014

Bourbon Design

Bourbon: Build upon WiscKey

WiscKey: key-value separation built upon LevelDB

(Key, value_addr) pair in the LSM-tree

A separate value log

Why WiscKey?

Help handle large and variable sized values Constant-sized KV pairs in the LSM-tree Prediction much easier

Bourbon Design

Evaluation

Read-only workloads: 1.23x – 1.78x

Datasets

Load Orders

Request Distributions

YCSB core workloads: see graph below

SOSD & CBA effectiveness & Experiments on fast storage

In our paper

Conclusion

Bourbon

Integrates learned indexes into a production LSM system

Beneficial on various workloads

Learning guidelines on how and when to learn

Cost-Benefit Analyzer on whether a learning is worthwhile

How will ML change computer system mechanisms?

Not just policies

Bourbon improves the lookup process with learned indexes

What other mechanisms can ML replace or improve?

Careful study and deep understanding are required

Thank You for Watching!

The ADvanced Systems Laboratory (ADSL)

https://research.cs.wisc.edu/wind/

Microsoft Gray Systems Laboratory

https://azuredata.microsoft.com/

