CS 540 Introduction to Atrtificial Intelligence
Game |

Yingyu Liang
University of Wisconsin-Madison
Nov 30, 2021

Based on slides by Fred Sala

Outline

* Review of game theory basics
— Properties, sequential games

* Speeding up sequential game search
— Heuristics, pruning, random search

e Simultaneous Games
— Normal form, strategies, dominance, Nash equilibrium

Review of Games: Multiple Agents

Games setup: multiple agents

T >

®

® — 3
A Ry, LA
: Player 3

Player 1 (_>
— Now: interactions between agents /\
— Still want to maximize utility Player 2

— Strategic decision making.

The general model of games:

1. We have multiple agents/players that interact with each other and with the world

2. Each player has its own reward function, and each player just wants to maximize
its own reward.

3. However, the reward of any single player depends on the actions of all players and
the state of the world. So the reward function captures the interactions between
the players and the world.

4. Because the player wants to maximize its reward, we say the player is strategic or
rational or selfish.

Review of Games: Properties

Let’s work through properties of games

Number of agents/players
State & action spaces: discrete or continuous
Finite or infinite

Deterministic or random

Sum: zero or positive or negative
Sequential or simultaneous

Wiki

Games have different properties. We can divide the games into different categories

based on these properties, and then study each category.

Sequential Games

Games with multiple moves

Represent with a tree
Find strategies: perform search over the tree

U (0,0)

D’ (2,1)

188 1,2)
2)

D (3,1)

[I-Nim: Example Sequential Game

2 piles of sticks, each with 2 sticks.

Each player takes one or more sticks from pile
Take last stick: lose G

Two players: Max and Min

If Max wins, the score is +1; otherwise -1
Min’s score is —Max’s

Use Max’s as the score of the game

There are two players. They take turns to make a move. The first player makes the
first move, and then the second player makes a move, and then the first player, and

SO on.

Since the two players’ scores sum up to 0, when we describe the outcome of the
game, we can just mention one player’s score. The other player’s score is just the
negation. The convention is to use the first player’s score. We just define the score of

the game to be that of the first player.

So the first player wants to maximize the score of the game: that’s why we call the

first player Max. The second player wants to maximize its own score, that is to
minimize the score of the game, so we call the second player Min.

Game tree for II-Nim

Two players:

Max and Min (ii ii) Max \
/(i i) Min __ (-_ii) Min\
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max
\ -
(- i) Min Ee) Min (- i) Min -) Min (- -) Min
-1 1

(=is) Max (c5) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for lI-Nim
Two players:
Max and Min (}n) i -
/(iii) Min\ (- ii/) Min\
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max
\ +1
(- i) Min Ee) Min (- i) D e Min (- -) Min
-1 -1 1
fate) Max o) Max
+1 +1 Max wants the largest score
Min wants the smallest score

Recall the game-theoretical value of a current state: assume from this state the two players will play optimally, and at the end we will reach a terminal state. The score of
the terminal state is defined to be the game-theoretical value of the current state.

We can compute the value from bottom up.

Terminal state: = the score of the game in this terminal state
A state where Min is going to play: take the minimum value of the children
A state where Max is going to play: take the maximum value of the children

Game tree for II-Nim

Two players:

Max and Min (i i) Max -
(i iy (-_ii) Min\
(- ii)) Max (i i) Max (- i) Max (-) Max) (- -) Max
+1

(- i) Min Es) Min (- i) Min (- -) Min (- -) Min
+1 -1 +1 ol -1
(- -) Max 3 Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:

Max and Min (il 1)) M |
—
(i_ii) Min ((- ii) Min
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max
+1 -1 -1 +1

(- i) Min Es) Min (- i) Min (- -) Min (- -) Min
+1 -1 +1 ol -1
(=is) Max (c5) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:

Max and Min (il 1) M. |
(i_ii) Min (- ji) Min
/ \\ -1 / \
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max
+1 -1 -1 +1

(- i) Min Ee) Min (- i) Min (- -) Min (- -) Min
+1 -1 +1 il -1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim
Two players:
Max and Min (i if) Max_
(i ii) Min The first player always loses, if the
/“r \ second vlays optimally!
(- ii) Max (i i) Max (- i) Max (- i) Max o Max
+1 -1 -1 +1
(- i) Min Ee) Min (- i) Min (- -) Min (- -) Min
+1 -1 +1 -1 -1
(=) Max (_ _) Max
+1 +1 Max wants the largest score
Min wants the smallest score

Interesting conclusion: the first player will always lose if the second player plays optimally. From the rule of the game we don’t immediately see who will win. However,
with the game tree and the game-theoretical value, we can obtain the highly non-trivial conclusion that the first player will always lose if the second player plays optimally.

Two other important implications:
We can compute the game-theoretical values easily from bottom up.
Once we have the values of the children of a current state, then we know which is the best action. That is, to play the game, all we need is to compute the values of the

current state.

Minimax Algorithm

function Max-Value(s) Time compIeXIty?
inputs: o O(bm)

s: current state in game, Max about to play .
output: best-score (for Max) available from s Space com pleXIty?

if (s is a terminal state) ° O(bm)

then return (terminal value of s)

else

a :=—infinity
for each s’ in Succ(s)
o :=max(a, Min-value(s’))
return o

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state)
then return (terminal value of s)

else
B := infinity
for each s’ in Succs(s)
B :=min(B, Max-value(s’))
return

The minimax algorithm replaces the bottom-up computation with recursion.

The key idea of recursion: we assume that smaller problems are already solved, and we want to use the solutions for the smaller problems to solve the current problem.
Here, the smaller problems are the values of the children, and the current problem is the value of the current state.

On a state where Max is going to play:
it’s terminal then we can return the terminal score which is the value by definition

If not terminal, just take the maximum of the values of the children (here we pretend that we have already solve the smaller problems of computing the values of the
children)

This is the Max-Value function. Similar for the Min-Value function that computes the value of a state where Min is going to play.

Minimax algorithm in execution

Minimax algorithm in execution

Minimax algorithm in execution

max

min

The execution on the
terminal nodes is omitted.

Beta is recording the minimum value of the children we obtain up to the current time point.

Minimax algorithm in execution

max

min

Minimax algorithm in execution

max

min

Minimax algorithm in execution

Minimax algorithm in execution

Minimax algorithm in execution

max
min
max
min

Minimax algorithm in execution

max
min
max
min

Minimax algorithm in execution

Minimax algorithm in execution

Minimax algorithm in execution

max

min

Can We Do Better?

One downside: we had to examine the entire tree

An idea to speed things up: pruning

* Goal: want the same minimax value, but faster

* We can get rid of bad branches:
when we are sure that pruning them
doesn’t affect the minimax value

26

Minimax algorithm in execution

max a=100 e

min Ao o B=20

= E
Ca500 Caoo

min

Example: when beta on B node is updated to 20. Then we know that G can be pruned.

1. No matter what G’s value is, B’s value is <= 20
2. Then because beta < alpha, alpha will not be updated.
3. So we don’t need to compute B’s exact value anymore; no need to check the remaining chil

Alpha-beta pruning

fgsggs?n Max-Value (s,a,B) Starting from the root:

s: current state in game, Max about to play . -
a: best score Ehighest) for Max along path to s Max-Value(root, -oo, +0)

B: best score (lowest) for Min along path to s
output: min(B , best-score (for Max) available from s)

if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succ(s)
a:= maxs a, Min-value(s',a,B?)
if (a2 B)thenreturnB /* alpha pruning */
return a

function Min-Value(s,a,B)
output: max(a , best-score (for Min) available from s)

if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succs(s)
=min(B, Max—value(s',a,g))
if (a 2[36) then return a /* beta pruning */
return

Meaning of alpha beta: up to this point, the best Max/min can force; alpha is lower bound of the game value, beta is upper bound. Begin with infinity.

The pseudo code of Min-Value: similar to minimax algo, but can stop when alpha>= beta.

Why one can do the pruning: e.g., a := max(a, Min-value), so we can stop Min-value if we know it’'s smaller than a. Refer to the example in the previous slide.

Alpha-Beta Pruning

How effective is alpha-beta pruning?

* Depends on the order of successors!
— Best case, the #of nodes to search is O(b™?)

— Happens when each player's best move is the leftmost child.
— The worst case is no pruning at all.

* In DeepBlue, the average branching factor was about 6
with alpha-beta instead of 35-40 without.

Minimax With Heuristics

Note that long games are yield huge computation

* To deal with this: limit d for the search depth

* Q: What to do at depth d, but no termination yet?
— A: Use a heuristic evaluation function e(x)

function MiNIMAX(o.) returns an estimate of «'s utility value
inputs: 1, current state in game
o, an upper bound on the search depth
if is a terminal state then return Max’s payoff at

else if () then return < |2
else if it is Max’s move at « then

return o { MINIMAX(v, —1) @ v is a child of 1}
else return i {MINIMAX (v, /1) : vis a child of x}

Credit: Dana Nau

The time complexity of the minimax algo is not good: exponential in m, the number
of steps.

We can address this by limiting the search depth, similar to what we have done in
iterative deepening. That is, if we want to compute the value of a current state, we
only go down the current state for depth d.

The question is: what if we get to a node at depth d but it’s not a terminal state?
What value should we return? We can just use some estimation.

30

Heuristic Evaluation Functions

* e(x) often a weighted sum of features (like our linear models)
e(z) = wy f1(z) + wafo(z) + ... + wy fu(z)

* Chess example: f(x) = difference between number of white
and black, with i ranging over piece types.
— Set weights according to piece importance

— E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black
knights)

A common way to design the heuristic function: linear model, which is a weighted
sum of some designed features.

The features are typically some intuitive important information about the state, like
the difference of white and black pieces in Chess.
The weights are set according to the importance of the features.

31

Going Further

* Monte Carlo tree search (MCTS)
Uses random sampling of the search space

* AlphaGo and other big results!

Choose some children (heuristics to figure out #)

Record results, use for future play

Self-play

\
© * |
8 o |

° eee
|
]
® 00 eeeeee
o o0 o
e o o o0
000 e00
000 000
000000 o0000e

N CEé&it: Surag Nair

32

Q 1.1: During minimax tree search, must we examine every node?

A. Always
B. Sometimes
C. Never

Break & Quiz

33

Q 1.1: During minimax tree search, must we examine every node?

A. Always
B. Sometimes
C. Never

Break & Quiz

34

Break & Quiz

Q 1.1: During minimax tree search, must we examine every node?

A. Always (No: consider alpha-beta pruning: consider layer k, where
we take the max of all the mins of its children at layer k+1. If the
current value of a min node at k+1 already smaller than the current
max, we don’t need to continue the minimization.)

B. Sometimes
C. Never (No: the event above may simply not happen).

35

Another Example: Prisoner’s Dilemma

Famous example from the ‘50s.

Two prisoners A & B. Can choose to betray the other or not.

— A and B both betray, each of them serves two years in prison
— One betrays, the other doesn’t: betrayer free, other three years
— Both do not betray: one year each

Properties: 2-player, discrete, finite,
deterministic, negative-sum, simultaneous

36

Simultaneous Games

The players make moves simultaneously
e Can express reward with a simple diagram
* Ex: for prisoner’s dilemma

Player 2
Stay silent Betray
Player 1
Stay silent -1,-1 -3,0

Betray 0,-3 -2,-2

37

Normal Form

Mathematical description of simult. games. Has:
* nplayers{1,2,...,n}
* Player i strategy a;from A. All: a = (a,, a,, ..., a,)
* Player i gets rewards u;(a) for any outcome
— Note: reward depends on other players!

» Setting: all of these spaces, rewards are known

In general, we can have a math description of simultaneous games called normal
form.

Suppose we have n players, and player | can choose action/strategy from a set A_i.
Let a denote the set of actions by all players. Then let u_i(a) denote the reward/utility

for player i when the actions are a.

We can present u_i’s as a n-dimensional array, as in the Prisoners’ dilemma.

38

Example of Normal Form

Ex: Prisoner’s Dilemma

Player 2
Stay silent Betray
Player 1
Stay silent -1,-1 -3,0
Betray 0,-3 =l =l

» 2 players, 2 actions: yields 2x2 matrix
 Strategies: {Stay silent, betray} (i.e, binary)
* Rewards: {0,-1,-2,-3}

39

Dominant Strategies

Let’s analyze such games. Some strategies are better

* Dominant strategy: if a; better than a/ regardless of what
other players do, a; is dominant

s le,

u;(ag, a_;) > ui(al, a_;)Va; # a; and Va_;

t

All of the other entries
of a excluding i

* Don’t always exist!

Another important notion: dominant strategies.

For a player, suppose it discovers that one action a_i is always not worse than the

other actions. That is, for any configurations of the other players’ actions, a_i leads to

no worse outcome than all the other actions.

40

Dominant Strategies Example

Back to Prisoner’s Dilemma
* Examine all the entries: betray dominates
* Check:

Player 2
Stay silent Betray
Player 1
Stay silent -1,-1 -3,0
Betray 0,-3 -2,-2

* Note: normal form helps locate dominant/dominated
strategies.

Betray is the dominant strategy for Player 1.

When Player 2 stay silent: if Player 1 takes action betray, it gets better outcome
When Player 2 betray: if Player 1 takes action betray, it also gets better outcome

41

Equilibrium

a* is an equilibrium if all the players do not have an
incentive to unilaterally deviate

'u..,-,(a.;‘, (L*_,i) > 'U»,j((l-,j. a"_l) Va; € A;

* All players dominant strategies -> equilibrium

* Converse doesn’t hold (don’t need dominant
strategies to get an equilibrium)

Another important notion is Equilibrium.

In an equilibrium, any player who deviates by itself will suffer.

If all players have dominant strategies, then the configuration of all dominant
strategies is an equilibrium, just by the definition of dominant strategies.

42

Pure and Mixed Strategies

So far, all our strategies are deterministic: “pure”
* Take a particular action, no randomness

Can also randomize actions: “mixed”
* Assign probabilities x; to each action

zi(a;), where Z Ti(a:) =1, zi(a;) 2 0

a; €A

* Note: have to now consider expected rewards

A pure strategy is a special case of mixed strategies: putting probability 1 on one
action and 0 on the others.

43

Nash Equilibrium

Consider the mixed strategy x* = (x;*, ..., x,*)
* This is a Nash equilibrium if

il 2l .) = wldix,) Vi€ AgpVoedl, 250}

K — (¥

t

Better than doing Space of
anything else, probability
“best response” distributions

* Intuition: nobody can increase expected reward by
changing only their own strategy. A type of solution!

In x*, each player has a mixed strategy, a probabilistic distribution over its action
space.

Nash equilibrium: all the players do not have an incentive to deviate from its current
mixed strategy.

Focus on any player i: If the other players keep their strategies, then player i will
suffer from using other mixed strategy.

Properties of Nash Equilibrium

Major result: (Nash 1951)
* Every finite game has at least one Nash equilibrium
— But not necessarily pure (i.e., deterministic strategy)
* Could be more than one!
» Searching for Nash equilibria: computationally hard!

Example: rock/paper/scissors has [&
(1/3, 1/3, 1/3) as a mixed strategy NE. 4

Good: existence
Bad: more than one; hard to compute

45

Break & Quiz

Q 2.1: Which of the following is true?
(i) Rock/paper/scissors has no dominant pure strategy
(i) There is no Nash equilibrium for rock/paper/scissors

A. Neither

B. (i) but not (ii)
C. (ii) but not (i)
D. Both

46

Break & Quiz

Q 2.1: Which of the following is true?
(i) Rock/paper/scissors has no dominant pure strategy
(i) There is no Nash equilibrium for rock/paper/scissors

A. Neither

B. (i) but not (ii)
C. (ii) but not (i)
D. Both

47

Break & Quiz

Q 2.1: Which of the following is true?
(i) Rock/paper/scissors has no dominant pure strategy
(i) There is no Nash equilibrium for rock/paper/scissors

A. Neither (i is indeed true: easy to check that there’s no deterministic
dominant strategy)

B. (i) but not (ii)
C. (ii) but not (i) (i is true)
D. Both (ii is false: there exists Nash equilibrium)

48

Summary

* Review of game theory basics
— Properties, sequential games

* Speeding up sequential game search
— Heuristics, pruning, random search

e Simultaneous Games
— Normal form, strategies, dominance, Nash equilibrium

55

Acknowledgements: Developed from materials by Yingyu Liang
(University of Wisconsin), James Skrentny (University of

Wisconsin), inspired by Haifeng Xu (UVA) and Dana Nau
(University of Maryland).

56

	CS540-Games2-WithQuiz.pdf
	CS540-Games-2-WithQuizNote.pdf
	CS540-Games2-WithQuizNote.pdf
	CS540-Games2-WithQuizNote-part2.pdf
	CS540-Games2-WithQuizNote-part1.pdf

