
1

2

The general model of games:
1. We have multiple agents/players that interact with each other and with the world
2. Each player has its own reward function, and each player just wants to maximize

its own reward.
3. However, the reward of any single player depends on the actions of all players and

the state of the world. So the reward function captures the interactions between
the players and the world.

4. Because the player wants to maximize its reward, we say the player is strategic or
rational or selfish.

3

Games have different properties. We can divide the games into different categories
based on these properties, and then study each category.

4

5

There are two players. They take turns to make a move. The first player makes the
first move, and then the second player makes a move, and then the first player, and
so on.

Since the two players’ scores sum up to 0, when we describe the outcome of the
game, we can just mention one player’s score. The other player’s score is just the
negation. The convention is to use the first player’s score. We just define the score of
the game to be that of the first player.

So the first player wants to maximize the score of the game: that’s why we call the
first player Max. The second player wants to maximize its own score, that is to
minimize the score of the game, so we call the second player Min.

6

Recall the game-theoretical value of a current state: assume from this state the two players will play optimally, and at the end we will reach a terminal state. The score of
the terminal state is defined to be the game-theoretical value of the current state.

We can compute the value from bottom up.

Terminal state: = the score of the game in this terminal state

A state where Min is going to play: take the minimum value of the children

A state where Max is going to play: take the maximum value of the children

Interesting conclusion: the first player will always lose if the second player plays optimally. From the rule of the game we don’t immediately see who will win. However,
with the game tree and the game-theoretical value, we can obtain the highly non-trivial conclusion that the first player will always lose if the second player plays optimally.

Two other important implications:

We can compute the game-theoretical values easily from bottom up.

Once we have the values of the children of a current state, then we know which is the best action. That is, to play the game, all we need is to compute the values of the
current state.

The minimax algorithm replaces the bottom-up computation with recursion.

The key idea of recursion: we assume that smaller problems are already solved, and we want to use the solutions for the smaller problems to solve the current problem.

Here, the smaller problems are the values of the children, and the current problem is the value of the current state.

On a state where Max is going to play:

it’s terminal then we can return the terminal score which is the value by definition

If not terminal, just take the maximum of the values of the children (here we pretend that we have already solve the smaller problems of computing the values of the
children)

This is the Max-Value function. Similar for the Min-Value function that computes the value of a state where Min is going to play.

Beta is recording the minimum value of the children we obtain up to the current time point.

26

Example: when beta on B node is updated to 20. Then we know that G can be pruned.

1. No matter what G’s value is, B’s value is <= 20
2. Then because beta < alpha, alpha will not be updated.
3. So we don’t need to compute B’s exact value anymore; no need to check the remaining children like G.

Meaning of alpha beta: up to this point, the best Max/min can force; alpha is lower bound of the game value, beta is upper bound. Begin with infinity.

The pseudo code of Min-Value: similar to minimax algo, but can stop when alpha>= beta.

Why one can do the pruning: e.g., α := max(α , Min-value), so we can stop Min-value if we know it’s smaller than α. Refer to the example in the previous slide.

The time complexity of the minimax algo is not good: exponential in m, the number
of steps.

We can address this by limiting the search depth, similar to what we have done in
iterative deepening. That is, if we want to compute the value of a current state, we
only go down the current state for depth d.

The question is: what if we get to a node at depth d but it’s not a terminal state?
What value should we return? We can just use some estimation.

30

A common way to design the heuristic function: linear model, which is a weighted
sum of some designed features.

The features are typically some intuitive important information about the state, like
the difference of white and black pieces in Chess.
The weights are set according to the importance of the features.

31

32

33

34

35

36

37

In general, we can have a math description of simultaneous games called normal
form.

Suppose we have n players, and player I can choose action/strategy from a set A_i.
Let a denote the set of actions by all players. Then let u_i(a) denote the reward/utility
for player i when the actions are a.

We can present u_i’s as a n-dimensional array, as in the Prisoners’ dilemma.

38

39

Another important notion: dominant strategies.

For a player, suppose it discovers that one action a_i is always not worse than the
other actions. That is, for any configurations of the other players’ actions, a_i leads to
no worse outcome than all the other actions.

40

Betray is the dominant strategy for Player 1.

When Player 2 stay silent: if Player 1 takes action betray, it gets better outcome
When Player 2 betray: if Player 1 takes action betray, it also gets better outcome

41

Another important notion is Equilibrium.

In an equilibrium, any player who deviates by itself will suffer.

If all players have dominant strategies, then the configuration of all dominant
strategies is an equilibrium, just by the definition of dominant strategies.

42

A pure strategy is a special case of mixed strategies: putting probability 1 on one
action and 0 on the others.

43

In x*, each player has a mixed strategy, a probabilistic distribution over its action
space.

Nash equilibrium: all the players do not have an incentive to deviate from its current
mixed strategy.

Focus on any player i: If the other players keep their strategies, then player i will
suffer from using other mixed strategy.

44

Good: existence
Bad: more than one; hard to compute

45

46

47

48

55

56

	CS540-Games2-WithQuiz.pdf
	CS540-Games-2-WithQuizNote.pdf
	CS540-Games2-WithQuizNote.pdf
	CS540-Games2-WithQuizNote-part2.pdf
	CS540-Games2-WithQuizNote-part1.pdf

