
CS 540 Introduction to Artificial Intelligence
Game II

Yingyu Liang
University of Wisconsin-Madison

Nov 30, 2021
Based on slides by Fred Sala

Outline

• Review of game theory basics
– Properties, sequential games

• Speeding up sequential game search
– Heuristics, pruning, random search

• Simultaneous Games
– Normal form, strategies, dominance, Nash equilibrium

Review of Games: Multiple Agents

Games setup: multiple agents

– Now: interactions between agents
– Still want to maximize utility
– Strategic decision making.

World

Player 1

Player 2

Player 3

Review of Games: Properties

Let’s work through properties of games
• Number of agents/players
• State & action spaces: discrete or continuous
• Finite or infinite
• Deterministic or random
• Sum: zero or positive or negative
• Sequential or simultaneous

Wiki

Sequential Games

Games with multiple moves
• Represent with a tree
• Find strategies: perform search over the tree

Wiki

II-Nim: Example Sequential Game

2 piles of sticks, each with 2 sticks.
• Each player takes one or more sticks from pile
• Take last stick: lose

• Two players: Max and Min
• If Max wins, the score is +1; otherwise -1
• Min’s score is –Max’s
• Use Max’s as the score of the game

(ii, ii)

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min
+1

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- i) Min
+1

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

Game tree for II-Nim

(ii ii) Max

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

Game tree for II-Nim

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

(ii ii) Max
-1

Game tree for II-Nim

(ii ii) Max
-1

(i ii) Min
-1

(- ii) Min
-1

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- -) Min
-1

(- i) Min
+1

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

The first player always loses, if the
second player plays optimally!

Game tree for II-Nim

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is a terminal state)
then return (terminal value of s)
else

α := – infinity
for each s’ in Succ(s)

α := max(α , Min-value(s’))
return α

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state)
then return (terminal value of s)
else

β := infinity
for each s’ in Succs(s)

β := min(β , Max-value(s’))
return β

Minimax Algorithm
Time complexity?
• O(bm)
Space complexity?
• O(bm)

S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

H
150

I
100

α=-¥

Minimax algorithm in execution

Minimax algorithm in execution

S

A

C
200

D
100

B

E
120

F
20 G

α=-¥

β=+¥

H
150

I
100

max

min

max

min

S

A

C
200

D
100

B

E
120

F
20 G

α=-¥

β=200

H
150

I
100

The execution on the
terminal nodes is omitted.

Minimax algorithm in execution
max

min

max

min

S

A
100

C
200

D
100

B

E
120

F
20 G

α=-¥

β=100

H
150

I
100

Minimax algorithm in execution
max

min

max

min

S

A
100

C
200

D
100

B

E
120

F
20 G

α=100

β=100

H
150

I
100

Minimax algorithm in execution
max

min

max

min

S

B

E
120

F
20 G

α=100

β=+¥A
100

C
200

D
100

H
150

I
100

Minimax algorithm in execution
max

min

max

min

Minimax algorithm in execution

S

B

E
120

F
20 G

β=120A
100

C
200

D
100

α=100

H
150

I
100

max

min

max

min

Minimax algorithm in execution

S

B

E
120

F
20 G

β=20A
100

C
200

D
100

α=100

H
150

I
100

max

min

max

min

Minimax algorithm in execution

S

B

E
120

F
20 G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=-¥

max

min

max

min

Minimax algorithm in execution

S

B

E
120

F
20 G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=150

max

min

max

min

Minimax algorithm in execution

S

B

E
120

F
20

G
150

β=20A
100

C
200

D
100

α=100

H
150

I
100

max

min

max

min

Minimax algorithm in execution

S

B
20

E
120

F
20

G
150

A
100

C
200

D
100

α=100

H
150

I
100

max

min

max

min

Can We Do Better?

One downside: we had to examine the entire tree
An idea to speed things up: pruning
• Goal: want the same minimax value, but faster
• We can get rid of bad branches:

when we are sure that pruning them
doesn’t affect the minimax value

Minimax algorithm in execution

S

B

E
120

F
20 G

β=20A
100

C
200

D
100

α=100

H
150

I
100

max

min

max

min

Alpha-beta pruning
function Max-Value (s,α,β)
inputs:

s: current state in game, Max about to play
α: best score (highest) for Max along path to s
β: best score (lowest) for Min along path to s

output: min(β , best-score (for Max) available from s)
if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succ(s)

α := max(α , Min-value(s’,α,β))
if (α ≥ β) then return β /* alpha pruning */

return α
function Min-Value(s,α,β)
output: max(α , best-score (for Min) available from s)

if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succs(s)

β := min(β , Max-value(s’,α,β))
if (α ≥ β) then return α /* beta pruning */

return β

Starting from the root:
Max-Value(root, -¥, +¥)

How effective is alpha-beta pruning?

• Depends on the order of successors!
– Best case, the #of nodes to search is O(bm/2)
– Happens when each player's best move is the leftmost child.
– The worst case is no pruning at all.

• In DeepBlue, the average branching factor was about 6
with alpha-beta instead of 35-40 without.

Alpha-Beta Pruning

Minimax With Heuristics

Note that long games are yield huge computation
• To deal with this: limit d for the search depth
• Q: What to do at depth d, but no termination yet?

– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau

Heuristic Evaluation Functions

• e(x) often a weighted sum of features (like our linear models)

• Chess example: fi(x) = difference between number of white
and black, with i ranging over piece types.
– Set weights according to piece importance
– E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black

knights)

Going Further

• Monte Carlo tree search (MCTS)
– Uses random sampling of the search space
– Choose some children (heuristics to figure out #)
– Record results, use for future play
– Self-play

• AlphaGo and other big results!

Credit: Surag Nair

Another Example: Prisoner’s Dilemma

Famous example from the ‘50s.
Two prisoners A & B. Can choose to betray the other or not.

– A and B both betray, each of them serves two years in prison
– One betrays, the other doesn’t: betrayer free, other three years
– Both do not betray: one year each

Properties: 2-player, discrete, finite,
deterministic, negative-sum, simultaneous

Simultaneous Games

The players make moves simultaneously
• Can express reward with a simple diagram
• Ex: for prisoner’s dilemma

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2

Mathematical description of simult. games. Has:
• n players {1,2,…,n}
• Player i strategy ai from Ai. All: a = (a1, a2, …, an)
• Player i gets rewards ui (a) for any outcome
– Note: reward depends on other players!

• Setting: all of these spaces, rewards are known

Normal Form

Ex: Prisoner’s Dilemma

• 2 players, 2 actions: yields 2x2 matrix
• Strategies: {Stay silent, betray} (i.e, binary)
• Rewards: {0,-1,-2,-3}

Example of Normal Form

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2

Let’s analyze such games. Some strategies are better
• Dominant strategy: if ai better than ai’ regardless of what

other players do, ai is dominant
• I.e.,

• Don’t always exist!

Dominant Strategies

All of the other entries
of a excluding i

Back to Prisoner’s Dilemma
• Examine all the entries: betray dominates
• Check:

• Note: normal form helps locate dominant/dominated
strategies.

Dominant Strategies Example

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2

a* is an equilibrium if all the players do not have an
incentive to unilaterally deviate

• All players dominant strategies -> equilibrium
• Converse doesn’t hold (don’t need dominant

strategies to get an equilibrium)

Equilibrium

So far, all our strategies are deterministic: “pure”
• Take a particular action, no randomness

Can also randomize actions: “mixed”
• Assign probabilities xi to each action

• Note: have to now consider expected rewards

Pure and Mixed Strategies

Consider the mixed strategy x* = (x1*, …, xn*)
• This is a Nash equilibrium if

• Intuition: nobody can increase expected reward by
changing only their own strategy. A type of solution!

Nash Equilibrium

Better than doing
anything else,
“best response”

Space of
probability
distributions

Major result: (Nash 1951)
• Every finite game has at least one Nash equilibrium
– But not necessarily pure (i.e., deterministic strategy)

• Could be more than one!
• Searching for Nash equilibria: computationally hard!

Example: rock/paper/scissors has
(1/3, 1/3, 1/3) as a mixed strategy NE.

Properties of Nash Equilibrium

Summary

• Review of game theory basics
– Properties, sequential games

• Speeding up sequential game search
– Heuristics, pruning, random search

• Simultaneous Games
– Normal form, strategies, dominance, Nash equilibrium

Acknowledgements: Developed from materials by Yingyu Liang
(University of Wisconsin), James Skrentny (University of
Wisconsin), inspired by Haifeng Xu (UVA) and Dana Nau
(University of Maryland).

