
1

2

3

4

5

6

7

8

9

About C: we don’t necessarily need to keep every bucket explicitly. For example, we
can keep only those that are non-empty.

10

11

Three key elements:
1. A class of functions from which we choose our model
2. A loss function measuring the match between the prediction and the true label
3. A method to minimize the training loss

12

13

If we consider choosing our model among the family of all (measurable) functions,
then we can have the constructed function which has zero training loss but can have
large error on future test inputs.

The phenomenon that a function gets much lower training loss than on test inputs is
called overfitting. It usually happens when we choose model from a too large family
of functions. Intuitively, it’s likely that a very large family of functions contains some
function that can fit the training data but not the test data.

14

So we should choose a more specific class of functions. This lecture considers the
family of linear functions.

15

16

We have specify our class of functions and the loss function. Now we need a method
to do the optimization. Many modern machine learning methods use SGD to do the
optimization.

17

We say a model generalizes well, if it gets good predictions on test data.

18

What we really care about is the performance of the model on future test data. We
should not use the performance on the training data to evaluate the quality of the
model (because there could be overfitting).

19

20

21

22

23

24

25

26

27

28

Usually, we wrap intercept by doing:
1. Let \bar{\theta} be the concatenation of [\theta_0 \theta]
2. Let \bar{x} be the concatenation of [1 x].
Then f(x) = <\bar{x}, \bar{\theta}>. For simplicity, we reload the notation (writing
\bar{x} as x and \bar{\theta} as \theta), and then write f(x) = <x, \theta>.

X: each column is a data point.

29

Can do SGD.

When X^T X is invertible we can get a closed form solution.

30

31

32

For binary classification with labels {0,1}, we can squash the linear function output to
a probability value in [0,1] and use that to model p(y=1|x).

33

