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Outline

* Unsupervised Learning: Density Estimation
— Kernel density estimation: high-level intro

* Supervised Learning & Linear Models

— Parameterized model, model classes, linear models, train vs. test

* Linear Regression

— Least squares, normal equations, residuals, logistic

regression




Short Intro to Density Estimation

Goal: given samples x;, ..., x,, from some distribution B
estimate P.

* Compute statistics (mean, variance)
* Generate samples from P |
* Run inference




Simplest Idea: Histograms

Goal: given samples x;, ..., x,, from some distribution B
estimate P.
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Define bins; count # of samples in each bin, normalize




Simplest Idea: Histograms

Goal: given samples x;, ..., x,, from some distribution B
estimate P.

| Histogram
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ii) Not continuous
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Kernel Density Estimation

Goal: given samples x;, ..., x,, from some distribution B
estimate P.

Idea: represent density as combination of “kernels”
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Kernel Density Estimation

Idea: represent density as combination of kernels
* “Smooth” out the histogram
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Break & Quiz

Q 1.1: Which of the following is not true?

A. Using a Gaussian kernel for KDE, all possible values for x, will have
non-zero probability.

* B. The goal of KDE is to approximate the true probability distribution
function of X.

* C. When using a histogram, every bucket must be represented
explicitly in memory

* D. With some kernels, KDE can assign zero probability to some subset
of values for x..
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Break & Quiz

Q 1.1: Which of the following is not true?

A. Using a Gaussian kernel for KDE, all possible values for x, will have
non-zero probability. (Gaussian PDF positive for all inputs)

* B. The goal of KDE is to approximate the true probability distribution
function of X. (same goal as histograms)

* C. When using a histogram, every bucket must be represented
explicitly in memory

* D. With some kernels, KDE can assign zero probability to some subset
of values for x.. (Consider K = uniform(0,1))

About C: we don’t necessarily need to keep every bucket explicitly. For example, we
can keep only those that are non-empty.
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Back to Supervised Learning

Supervised learning:

* Make predictions, classify data, perform regression
* Dataset: (X1,y1), (X2,%2);- -, (Xn,¥Yn)

Features / Covariates / Input Labels / Outputs

* Goal: find function f : X — Y to predict label on new data

S ER-L

indoor cutdoor
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Back to Supervised Learning

How do we know a function fis good?
* |ntuitively: “matches” the dataset f(z;) ~y;
* More concrete: pick a loss function to measure this: /(f(z).y)

* Training loss/empirical loss/empirical risk f
n
1 Loss / Cost / Objecti
/ i« : jective
; [(f(lz)* yi) Function
ot

* Find a fthat minimizes the loss on the training data (ERM)

Three key elements:
1. A class of functions from which we choose our model

2. Aloss function measuring the match between the prediction and the true label
3. A method to minimize the training loss
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Loss Functions

What should the loss look like?

e If f(zi)=y ,should be small (0 if equal!)
* For classification: 0/1 loss /(f(z),y) = {f(z;) # y;}

* For regression, square loss  y(f(z),y)

Others too! We’ll see more.

= (f(zi) = )’
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Functions/Models

The function fis usually called a model
* Which possible functions should we consider?

* One option: all functions
— Not a good choice. Consider  f(z) =Y 1{z =z},
— Training loss: zero. Can’t do better! k=2
— How will it do on x not in the training set?

X3

If we consider choosing our model among the family of all (measurable) functions,
then we can have the constructed function which has zero training loss but can have
large error on future test inputs.

The phenomenon that a function gets much lower training loss than on test inputs is
called overfitting. It usually happens when we choose model from a too large family
of functions. Intuitively, it’s likely that a very large family of functions contains some
function that can fit the training data but not the test data.
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Functions/Models

Don’t want all functions

* Instead, pick a specific class

* Parametrize it by weights/parameters
* Example: linear models

f(x) =00+ 0121 4+ 020 + ... + 0424 =0 + 270

Weights/ Parameters

So we should choose a more specific class of functions. This lecture considers the
family of linear functions.
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Training The Model

* Parametrize it by weights/parameters
* Minimize the Ioss

Best _>1mn - ZF ), Vi)
parameters = Linear model
best function f V- class f

= = Z((eo g5 -TTH yi)
n «

Square loss
:_ZGO_{_,LTH y)Zk
n
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How Do We Minimize?

Need to solve something that looks like mom q(0)

* Generic optimization problem; many algorithms
— A popular choice: stochastic gradient descent (SGD)

* Most algorithms iterative:
find some sequence of
points heading towards the
optimum

Ui
: e (e
; ,,1'1{{’,','!',;;(;'{}'."77

M. Hutson

We have specify our class of functions and the loss function. Now we need a method
to do the optimization. Many modern machine learning methods use SGD to do the

optimization.




Train vs Test

Now we’ve trained, have some f parametrized by €
— Train loss is small = f predicts most x; correctly
— How does f do on points not in training set? “Generalizes!”
— To evaluate this, create a test set. Do not train on it!

(Xl' yl)a (X‘Za y2)' LI LN (xn- y‘n.) (x'n.-*-la y'IH-l)a LRSS (x'n-{-pa 'y'n.+p)
\ J | J
| |

Training Data Test Data

We say a model generalizes well, if it gets good predictions on test data.
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Train vs Test

Use the test set to evaluate f
— Why? Back to our “perfect” train function
— Training loss: 0. Every point matched perfectly
— How does it do on test set? Fails completely!

* Test set helps detect overfitting

— Overfitting: too focused on train points X X 5
— “Bigger” class: more prone to overfit ;: X X ;(x X

. " X X X X
* Need to consider model capacity G T Yoy gt
Appropirate-fitting Over-fitting
GFG

What we really care about is the performance of the model on future test data. We
should not use the performance on the training data to evaluate the quality of the
model (because there could be overfitting).
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Break & Quiz

Q 2.1: When we train a model, we are

A. Optimizing the parameters and keeping the features fixed.
B. Optimizing the features and keeping the parameters fixed.

C. Optimizing the parameters and the features.

D. Keeping parameters and features fixed and changing the
predictions.
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Break & Quiz

Q 2.1: When we train a model, we are

A. Optimizing the parameters and keeping the features fixed.

B. Optimizing the features and keeping the parameters fixed.
C. Optimizing the parameters and the features.

D. Keeping parameters and features fixed and changing the
predictions.
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Break & Quiz

Q 2.1: When we train a model, we are

A. Optimizing the parameters and keeping the features fixed.

B. Optimizing the features and keeping the parameters fixed)
(Feature vectors xi don’t change during training).

C. Optimizing the parameters and the features. (Same as B)

D. Keeping parameters and features fixed and changing the
predictions. (We can’t train if we don’t change the parameters)
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Break & Quiz

Q 2.2: You have trained a classifier, and you find there is
significantly higher loss on the test set than the training set.
What is likely the case?

A. You have accidentally trained your classifier on the test set.

B. Your classifier is generalizing well.
C. Your classifier is generalizing poorly.
D. Your classifier is ready for use.

23



Break & Quiz

Q 2.2: You have trained a classifier, and you find there is
significantly higher loss on the test set than the training set.
What is likely the case?

A. You have accidentally trained your classifier on the test set.

B. Your classifier is generalizing well.
C. Your classifier is generalizing poorly.
D. Your classifier is ready for use.

24



Break & Quiz

Q 2.2: You have trained a classifier, and you find there is
significantly higher loss on the test set than the training set.
What is likely the case?

A. You have accidentally trained your classifier on the test set. (No, this
would make test loss lower)

B. Your classifier is generalizing well. (No, test loss is high means poor
generalization)

C. Your classifier is generalizing poorly.
D. Your classifier is ready for use. (No, will perform poorly on new data)
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Break & Quiz

Q 2.3: You have trained a classifier, and you find there is
significantly lower loss on the test set than the training set.
What is likely the case?

A. You have accidentally trained your classifier on the test set.

B. Your classifier is generalizing well.
C. Your classifier is generalizing poorly.
D. Your classifier needs further training.
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Break & Quiz

Q 2.3: You have trained a classifier, and you find there is
significantly lower loss on the test set than the training set.
What is likely the case?

A. You have accidentally trained your classifier on the test set. (This

is very likely, loss will usually be the lowest on the data set on which a
model has been trained)

B. Your classifier is generalizing well.
C. Your classifier is generalizing poorly.
D. Your classifier needs further training.
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Linear Regression

Simplest type of regression problem.

* Inputs: (Xla yl)- (X21 y2)1 cee (X-n.a 'y'n.)
— Xx's are vectors, y’s are scalars.
— “Linear”: predict a linear combination ; )
of x components + intercept C. Hansen

f(x) =0+ 60121+ 020+ ... +042g =0+ 2760

* Want: optimal parameters
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Linear Regression Setup

Problem Setup

* Goal: figure out how to minimize square loss

* Let’s organize it. Train set (X1, Y1), (X2,%2), ..., (Xn, Yn)
— Since f(z) =0y + 21, wrap intercept: f(z) = T

— Take train data and make it a matrix/vector: X = [x| x2 ..

— Then, square loss is Lo )
=) (2 0—y:)* ==|IX"0 -y’
T i1 T

A

Usually, we wrap intercept by doing:
1. Let \bar{\theta} be the concatenation of [\theta_0 \theta]

2. Let \bar{x} be the concatenation of [1 x].
Then f(x) = <\bar{x}, \bar{\theta}>. For simplicity, we reload the notation (writing

\bar{x} as x and \bar{\theta} as \theta), and then write f(x) = <x, \theta>.

X: each column is a data point.

29



Finding The Optimal Parameters

1
Have our loss: ;||XT9 —y?

* Could optimize it with SGD, etc...
* No need: minimum has a solution (easy with vector calculus)
.——*é - (XTX)_IXT'y

Hat: indicates an

estimate 1 “Noiis]
H ”
Not always Equations
invertible...
Can do SGD.

When XAT X is invertible we can get a closed form solution.
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How Good are the Optimal Parameters?

Now we have parameters § = (X7X)' X7y

* How good are they?
« Predictionsare f(z;)=0"xz; = (X" X)"' X y) z;
* Errors (“residuals”)

i — (@) = lyi — 07| = yi — (XTX) "' XTy)Tay

* |f datais linear, residuals are 0. Almost never the case!
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Train/Test for Linear Regression?

So far, residuals measure error on train set

* Sometimes that’s all we care about (Fixed Design LR)
— Data is deterministic.
— Goal: find best linear relationship on dataset

* Or, create a test set and check (Random Design LR)
— Common: assume datais y = 0Tz +¢

— The more noise, the less linear \ 0-mean
Gaussian noise
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Linear Regression - Classification?

What if we want the same idea, but yis0 or 1?
* Need to convert the §7 s to a probability in [0,1]

1 e furct
p(y = 1‘:1?) = g CXp(—QT:U) 4= Logistic function

Why does this work?
o If Tz is really big, exp(—60"z) is really small - p close to 1
* If really negative exp is huge - p close to 0

“Logistic Regression”

For binary classification with labels {0,1}, we can squash the linear function output to
a probability value in [0,1] and use that to model p(y=1]x).
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