

CS 540 Introduction to Artificial Intelligence Logic

Yingyu Liang University of Wisconsin-Madison Sept 23, 2021

Based on slides by Fred Sala

Logic & Al

Why are we studying logic?

- Traditional approach to AI ('50s-'80s)
 - "Symbolic AI"
 - The Logic Theorist 1956
 - Proved a bunch of theorems!
- Logic also the language of:
 - Knowledge rep., databases, etc.

Symbolic Techniques in Al

Lots of systems based on symbolic approach:

- Ex: expert systems, planning, more
- Playing great chess

• Less popular recently!

J. Gardner

Symbolic vs Connectionist

Rival approach: connectionist

- Probabilistic models
- Neural networks

years

• Extremely popular last 20

M. Minsky

Symbolic vs Connectionist

Analogy: Logic versus probability

- Which is better?
- Future: combination; best-of-bothworlds
 - Actually been worked on:
 - Example: Markov Logic Networks

Outline

• Introduction to logic

- Arguments, validity, soundness

- Propositional logic
 - Sentences, semantics, inference
- First order logic (FOL)
 - Predicates, objects, formulas, quantifiers

Basic Logic

- Arguments, premises, conclusions
 - Argument: a set of sentences (premises) + a sentence (a conclusion)
 - Validity: argument is valid iff it's necessary that if all premises are true, the conclusion is true
 - Soundness: argument is sound iff valid & premises true
 - Entailment: when valid arg., premises entail conclusion

Propositional Logic Basics

Logic Vocabulary:

- Sentences, symbols, connectives, parentheses
 - Symbols: P, Q, R, ... (atomic sentences)
 - Connectives:

∧ and
∨ or
⇒ implies
⇔ is equivalent
¬ not

[conjunction] [disjunction] [implication] [biconditional] [negation]

– Literal: P or negation $\neg P$

Propositional Logic Basics

- Examples:
- $(P \lor Q) \Longrightarrow S$
 - "If it is cold or it is raining, then I need a jacket"
- $Q \Rightarrow P$
 - "If it is raining, then it is cold"
- ¬R
 - "It is not hot"

Propositional Logic Basics

Several rules in place

- Precedence: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Use parentheses when needed
- Sentences: well-formed or not well-formed:
 - $P \Rightarrow Q \Rightarrow S \qquad X \text{ (not associative!)}$

Sentences & Semantics

- Think of symbols as defined by user
- Sentences: built up from symbols with connectives
 - Interpretation: assigning True / False to symbols
 - Semantics: interpretations for which sentence evaluates to True
 - Model: (of a set of sentences) interpretation for which all sentences are True

Evaluating a Sentence

• Example:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Note:
 - If P is false, P⇒Q is true regardless of Q ("5 is even implies 6 is odd" is True!)
 - Causality unneeded: "5 is odd implies the Sun is a star" is True!)

Evaluating a Sentence: Truth Table

• Ex:

Ρ	Q	R	—P	Q∧R	¬P∨Q∧R	¬P∨Q∧R⇒Q
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

• Satisfiable

- There exists some interpretation where sentence true

Knowledge Bases

- Knowledge Base (KB): A set of sentences
 - Like a long sentence, connect with conjunction

Model of a KB: interpretations where all sentences are True

Goal: inference to discover new sentences

Entailment

Entailment: a sentence logically follows from others

- Like from a KB. Write $A \models B$
- A ⊨ B iff in every interpretation where A is true, B is also true
 All interpretations

Inference

- Given a set of sentences (a KB), logical inference creates new sentences
 - Compare to prob. inference!
- Challenges:
 - Soundness
 - Completeness
 - Efficiency

Methods of Inference: 1. Enumeration

- Enumerate all interpretations; look at the truth table
 - "Model checking"
- Downside: 2ⁿ interpretations for n symbols

S. Leadley

Methods of Inference: 2. Using Rules

- *Modus Ponens*: $(A \Rightarrow B, A) \models B$
- And-elimination
- Many other rules
 - Commutativity, associativity, de Morgan's laws, distribution for conjunction/disjunction

Methods of Inference: 3. Resolution

- Convert to special form and use a single rule
- Conjunctive Normal Form (CNF)

$$(\underline{\neg A \lor B \lor C}) \land (\neg B \lor A) \land (\neg C \lor A)$$

a clause

Conjunction of clauses; each clause disjunction of literals

• Simple rules for converting to CNF

Methods of Inference: 3. Resolution

Start with our KB and query B

- Add ¬B
- Show that this leads to a contradiction
- Take clauses with a symbol and its complement
 - Merge, throw away symbol: $P \lor Q \lor R$, $\neg Q \lor S \lor T$: $P \lor R \lor S \lor T$
 - If no symbol left, KB entails B
 - No new clauses, KB does not entail B

First Order Logic (FOL)

Propositional logic has some limitations

- Ex: how to say "all squares have four sides"
- No context, hard to generalize; express facts

FOL is a more expressive logic; works over

• Facts, Objects, Relations, Functions

First Order Logic (FOL)

Basics:

- Constants: "16", "Green", "Bob"
- Functions: map objects to objects
- Predicates: map objects to T/F:
 - Greater(5,3)
 - Color(grass, green)

First Order Logic (FOL)

Basics:

- Variables: x, y, z
- Connectives: Same as propositional logic
- Quantifiers:
 - \forall universal quantifier: $\forall x$ human(x) \Rightarrow mammal(x)
 - ∃ existential quantifier: ∃x mammal(x)