

Yingyu Liang
University of Wisconsin-Madison Sept 28, 2021

Based on slides by Fred Sala

What is NLP?

Combining computing with human language. Want to:

- Answer questions
- Summarize or extract information
- Translate between languages
- Generate dialogue/language
- Write stories automatically

Why is it hard?

Many reasons:

- Ambiguity: "We saw her duck". Several meanings.
- Non-standard use of language
- Segmentation challenges
- Understanding of the world
- "Bob and Joe are brothers".
- "Bob and Joe are fathers".

Approaches to NLP

A brief history

- Symbolic NLP: 50's to 90's
- Statistical/Probabilistic: 90's to present
- Neural: 2010's to present

Lots of progress!

Lots more to work to do

ELIZA program

Outline

- Introduction to language models
- n-grams, training, improving issues, evaluation
- Classic NLP tasks
- Part-of-speech tagging, parsing, dependencies
- Word representations
- One-hot, word embeddings, transformer-based

Language Models

- Basic idea: use probabilistic models to assign a probability to a sentence

$$
P(W)=P\left(w_{1}, w_{2}, \ldots, w_{n}\right) \text { or } P\left(w_{\text {next }} \mid w_{1}, w_{2} \ldots\right)
$$

- Goes back to Shannon

- Information theory: letters

Zeso-utet approximatom	$\begin{aligned} & \text { XFOML RXKHRJFEJUJALPWXFWJXYJ } \\ & \text { FFJEYVJCQSGHYD } \\ & \text { QPAAMKBZAACTBZLKJQD } \end{aligned}$
First order approxımation	OCRO IIIO RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVANAH BRL
Second-orcer spproximation	ON TE ANTSOUTINYS ARE T TNCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CIISBE
Third-order approximation	IN NO TST LAT WHEY CRATTCT FROURE BIRS GROCTD PONDENOME. OF DEMONSTLRIS OF TIIL RIPTAGIN [5 REGOACIIONA OF CRE
First order word approximation	REPRESENTING AND SPEEDILYIS AN GOOD APT OR CONF CANDIFFFRFNT NATURAL HERE HE THEA IN CAME

We begin with the simplest question: given a sequence of symbols, determine if it is a natural sentence.

Turn this into a probabilistic question: What's the probability of a given sequence of symbols from the distribution of natural sentences? Here we assume there is a ground-truth distribution over natural sentences (e.g., imagine putting together all the natural sentences ever spoken/written and think of the uniform distribution over them).

This is called the language modeling problem. The distribution over sentences is called the language model. It is the basis for many (if not all) natural language processing tasks.

Training The Model

Recall the chain rule

$$
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) \ldots P\left(w_{n} \mid w_{n-1} \ldots w_{1}\right)
$$

- How do we estimate these probabilities
- Same thing as "training"
- From data?
- Yes, but not directly: too many sentences.
- Can't estimate reliably.

Estimate these probabilities (equivalently estimating the probability tables of these distributions): often using statistical methods on data. This is regarded as training.

The probability tables are too large; not enough data to estimate the entries reliably.

Training: Make Assumptions

- Markov-type assumptions:

$$
P\left(w_{i} \mid w_{i-1} w_{i-2} \ldots w_{1}\right)=P\left(w_{i} \mid w_{i-1} w_{i-2} \ldots w_{i-k}\right)
$$

- Present doesn't depend on whole past
- Just recent past
- Markov chains have $k=1$. (Present only depends on immediate past).
- What's $\boldsymbol{k}=\mathbf{0}$?

We make conditional independence assumptions (Markov-type), such that we only need to handle smaller tables. Note that practical data may not satisfy these assumptions. We can think of that we are just trying to find a language model satisfying the assumptions that can best approximate the ground-truth.

k=0: Unigram Model

- Full independence assumption:

- (Present doesn't depend on the past)

$$
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{1}\right) P\left(w_{2}\right) \ldots P\left(w_{n}\right)
$$

- Example (from Dan Jurafsky's notes)

fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass thrift, did, eighty, said, hard, 'm, july, bullish that, or, limited, the

To see how well the approximation is, we can first use data to estimate the terms on the right hand side to get the language model, and then sample from this language model to see if it generates good natural sentences.

The sampled sentences from the unigram model are bad.

k=1: Bigram Model

- Markov Assumption:

- (Present depends on immediate past)

$$
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{2}\right) \ldots P\left(w_{n} \mid w_{n-1}\right)
$$

- Example:

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen outside, new, car, parking, lot, of, the, agreement, reached this, would, be, a, record, november

The sampled sentences from the unigram model are better.

$\mathrm{k}=\mathrm{n}$-1: $\mathbf{n - g r a m ~ M o d e l}$

Can do trigrams, 4-grams, and so on

- More expressive as n goes up
- Harder to estimate

Training: just count? I.e, for bigram:

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)}
$$

How to estimate the terms in the n-gram model: just counts from data; equivalently, use frequency to estimate the probability.

n-gram Training

Issues:

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)}
$$

- 1. Multiply tiny numbers?

- Solution: use logs; add instead of multiply
- 2. n-grams with zero probability?
- Solution: smoothing

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)+1}{\operatorname{count}\left(w_{i-1}\right)+V}
$$

Dan Klein

Smoothing: a technique for estimating probabilities from counts.
Suppose we have V values and we want to estimate their probabilities from their counts (ie, the histogram over the V values). Then we add 1 to each count, and then compute the frequencies as the estimate of the probabilities.

Example: For P(w_i|w_\{i-1\}), consider a concrete value w_\{i-1\}="the". Then the V values are the possible values of $w_{-} i$ (the vocabulary), and the counts are the counts of different values of w_i appearing after "the", ie, the count("the", value of w_i). We add 1 to all the counts, and normalize them by their sum to get the frequency. Note that the sum of (count("the", value of $\left.w _i\right)+1$) over all values is exactly count("the")+V. This gives the smoothed estimate for $\mathrm{P}\left(\mathrm{w}_{-} \mathrm{i} \mid \mathrm{w} _\{i-1\}\right)$.

We can add some other smoothing factor other than adding 1. And there are other more sophisticated smoothing methods.

Other Solutions: Backoff \& Interpolation

For issue 2, back-off methods

- Use n-gram where there is lots of information, r gram (with $\mathrm{r} \ll n$) elsewhere. (trigrams / bigrams) Interpolation
- Mix different models: (tri- + bi- + unigrams)
$\hat{P}\left(w_{i} \mid w_{i-1}, w_{i-2}\right)=\lambda_{1} P\left(w_{i} \mid w_{i-1}, w_{i-2}\right)+\lambda_{2} P\left(w_{i} \mid w_{i-1}\right)+\lambda_{3} P\left(w_{i}\right)$

n-gram Training Issues

Issues:

- 1. Multiply tiny numbers?
- Solution: use logs; add instead of multiply
- 2. Sparse n-grams
- Solution: smoothing, backoff, interpolation
- 3. Vocabulary: open vs closed
- Solution: use <UNK> unknown word token

Vocabulary: open vs closed

- Possible to estimate size of unknown vocabulary
- Good-Turing estimator
- Originally developed to crack the Enigma machine

Break \& Quiz

Q 1.1: Which of the below are bigrams from the sentence "It is cold outside today".

- A. It is
- B. cold today
- C. is cold
- D. A \& C

Break \& Quiz

Q 1.1: Which of the below are bigrams from the sentence "It is cold outside today".

- A. It is
- B. cold today
- C. is cold
- D. A \& C

Break \& Quiz

Q 1.2: Smoothing is increasingly useful for n-grams when

- A. n gets larger
- B. n gets smaller
- C. always the same
- D. n larger than 10

Break \& Quiz

Q 1.2: Smoothing is increasingly useful for n-grams when

- A. n gets larger
- B. n gets smaller
- C. always the same
- D. n larger than 10

Evaluating Language Models

How do we know we've done a good job?

- Observation
- Train/test on separate data \& measure metrics
- Metrics:
- 1. Extrinsic evaluation
- 2. Perplexity

Evaluation: extrinsic or intrinsic.

Perplexity is the standard intrinsic metric.

Extrinsic Evaluation

How do we know we've done a good job?

- Pick a task and use the model to do the task
- For two models, M_{1}, M_{2}, compare the accuracy for each task
- Ex: Q/A system: how many questions right. Translation: how many words translated correctly
- Downside: slow; may change relatively

Intrinsic Evaluation: Perplexity

Perplexity is a measure of uncertainty

$$
\operatorname{PP}(W)=P\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{-\frac{1}{n}}
$$

Lower is better! Examples:

- WSJ corpus; 40 million words for training:
- Unigram: 962, Bigram 170, Trigram 109

The math expression on the slide gives the perplexity of the sentence W in this language model. The perplexity of the language model on a sentence distribution is the expected perplexity over the sentences from the distribution.

Further NLP Tasks

Language modeling is not the only task. Two further types:

1. Auxilliary tasks:

- Part-of-speech tagging, parsing, etc.

2. Direct tasks:

- Question-answering, translation, summarization, classification (e.g., sentiment analysis)

Part-of-speech Tagging

Tag words as nouns, verbs, adjectives, etc.

- Tough part: ambiguous, even for people.
- Needs:
- Getting neighboring word parts right
- Knowledge of words ("man" is used as a noun, rarely as verb)

Model	Features	Token	Unknown	Sentence
Baseline	56,805	$\mathbf{9 3 . 6 9 \%}$	82.61%	26.74%
3Words	239,767	$\mathbf{9 6 . 5 7 \%}$	86.78%	48.27%

[^0]
Parsing

Get the grammatical structure of sentences

The boy put the tortoise on the rug

Chris Manning

- Which words depend on each other? Note: input a sentence, output a tree (dependency parsing)

Break \& Quiz

Q 2.1: What is the perplexity for a sequence of n digits 0 9 ? All occur with equal probability.

- A. 10

$$
\operatorname{PP}(W)=P\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{-\frac{1}{n}}
$$

- B. $1 / 10$
- C. 10^{n}
- D. 0

Break \& Quiz

Q 2.1: What is the perplexity for a sequence of n digits 0 9 ? All occur with equal probability.

- A. 10

$$
\operatorname{PP}(W)=P\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{-\frac{1}{n}}
$$

- B. $1 / 10$
- C. 10^{n}
- D. 0

Representing Words

Remember value of random variables (RVs)

- Easier to work with than objects like 'dog'

Traditional representation: one-hot vectors

$$
\operatorname{dog}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

- Dimension: \# of words in vocabulary
- Relationships between words?

Recent NLP methods use machine learning models on top of the text data. We first need to represent text as numeric numbers.

Basic: represent each word as a numeric vector. Traditional: one-hot encoding

Smarter Representations

Distributional semantics: account for relationships

- Reps should be close/similar to other words that appear in a similar context

Dense vectors:

$$
\begin{aligned}
& \operatorname{dog}=\left[\begin{array}{llllll}
0.13 & 0.87 & -0.23 & 0.46 & 0.87 & -0.31
\end{array}\right]^{T} \\
& \text { cat }=\left[\begin{array}{llllll}
0.07 & 1.03 & -0.43 & -0.21 & 1.11 & -0.34
\end{array}\right]^{T}
\end{aligned}
$$

AKA word embeddings

Recent method: word embeddings, ie, represent each word as a dense vector. More general and more powerful compared to one-hot encoding.

Training Word Embeddings

Many approaches (super popular 2010-present)

- Word2vec: a famous approach
- What's our likelihood?

How to get a set of word embeddings, given a set of sentences as training data?

Need to define some scoring of different sets of word embeddings, and then use the scoring to pick the best set of word embeddings.

Word2vec uses a likelihood of the text training data. For simplicity, let \theta denote the set of word embeddings. Also concatenate the whole set of sentences as one big sentence of length T.

Training Word Embeddings

Word2vec likelihood

$$
L(\theta)=\prod_{t=1}^{T} \prod_{-a \leq j \leq a} P\left(w_{t+j} \mid w_{t}, \theta\right)
$$

- Maximize this; what's the probability?
- Two vectors per word. $\mathrm{v}_{\mathrm{w}}, \mathrm{u}_{\mathrm{w}}$ for center/context (o is context word, c is center)

$$
\text { Similarity } \quad P(o \mid c)=\frac{\exp \left(u_{o}^{T} v_{c}\right)}{\sum_{w \in V} \exp \left(u_{w}^{T} v_{c}\right)}
$$

Given a set of word embeddings, we can use the $\mathrm{P}(\mathrm{o} \mid \mathrm{c})$ math expression to compute the probabilities for $\mathrm{P}\left(\mathrm{w} _\{\mathrm{t}+\mathrm{j}\} \mid \mathrm{w} _\mathrm{t}\right)$, and then compute the likelihood. So this gives a definition (also a computation method) for the likelihood of a set of word embeddings.

We then try to find the set of word embeddings that gives the best quality metric (the likelihood).

Beyond "Shallow" Embeddings

- Transformers: special model architectures based on attention
- Sophisticated types of neural networks
- Pretrained models
- Based on transformers: BERT
- Include context!
- Fine-tune for desired task

Vaswani et al. 17

Recent systems for NLP are using even more sophisticated methods to get the embeddings.

[^0]: Chris Manning

