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We begin with the simplest question: given a sequence of symbols, determine if it is a 
natural sentence. 

Turn this into a probabilistic question: What’s the probability of a given sequence of 
symbols from the distribution of natural sentences?  Here we assume there is a 
ground-truth distribution over natural sentences (e.g., imagine putting together all 
the natural sentences ever spoken/written and think of the uniform distribution over 
them).

This is called the language modeling problem. The distribution over sentences is 
called the language model. It is the basis for many (if not all) natural language 
processing tasks. 
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Estimate these probabilities (equivalently estimating the probability tables of these 
distributions): often using statistical methods on data. This is regarded as training. 

The probability tables are too large; not enough data to estimate the entries reliably. 
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We make conditional independence assumptions (Markov-type), such that we only 
need to handle smaller tables. Note that practical data may not satisfy these 
assumptions. We can think of that we are just trying to find a language model 
satisfying the assumptions that can best approximate the ground-truth.

8



To see how well the approximation is, we can first use data to estimate the terms on 
the right hand side to get the language model, and then sample from this language 
model to see if it generates good natural sentences. 

The sampled sentences from the unigram model are bad.
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The sampled sentences from the unigram model are better.
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How to estimate the terms in the n-gram model: just counts from data; equivalently, 
use frequency to estimate the probability. 
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Smoothing: a technique for estimating probabilities from counts.
Suppose we have V values and we want to estimate their probabilities from their 
counts (ie, the histogram over the V values). Then we add 1 to each count, and then 
compute the frequencies as the estimate of the probabilities.

Example: For P(w_i | w_{i-1}), consider a concrete value w_{i-1}=”the”. Then the V 
values are the possible values of w_i (the vocabulary), and the counts are the counts 
of different values of w_i appearing after “the”, ie, the count(”the”, value of w_i). We 
add 1 to all the counts, and normalize them by their sum to get the frequency. Note 
that the sum of (count(”the”, value of w_i) + 1) over all values is exactly 
count(“the”)+V. This gives the smoothed estimate for P(w_i | w_{i-1}).

We can add some other smoothing factor other than adding 1.  And there are other 
more sophisticated smoothing methods.
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Evaluation: extrinsic or intrinsic.

Perplexity is the standard intrinsic metric. 
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The math expression on the slide gives the perplexity of the sentence W in this 
language model. The perplexity of the language model on a sentence distribution is 
the expected perplexity over the sentences from the distribution. 

22



23



24



25



26



27



Recent NLP methods use machine learning models on top of the text data. We first 
need to represent text as numeric numbers. 

Basic: represent each word as a numeric vector. Traditional: one-hot encoding 
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Recent method: word embeddings, ie, represent each word as a dense vector. More 
general and more powerful compared to one-hot encoding. 
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How to get a set of word embeddings, given a set of sentences as training data? 

Need to define some scoring of different sets of word embeddings, and then use the 
scoring to pick the best set of word embeddings. 

Word2vec uses a likelihood of the text training data. For simplicity, let \theta denote 
the set of word embeddings. Also concatenate the whole set of sentences as one big 
sentence of length T. 
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Given a set of word embeddings, we can use the P(o|c) math expression to compute 
the probabilities for P(w_{t+j} | w_t), and then compute the likelihood. So this gives a 
definition (also a computation method) for the likelihood of a set of word 
embeddings. 

We then try to find the set of word embeddings that gives the best quality metric (the 
likelihood). 
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Recent systems for NLP are using even more sophisticated methods to get the 
embeddings. 
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