CS 540 Introduction to Atrtificial Intelligence
Natural Language Processing

Yingyu Liang
University of Wisconsin-Madison
Sept 28, 2021

Based on slides by Fred Sala

What is NLP?

Combining computing with human language. Want to:
— Answer questions
— Summarize or extract information
— Translate between languages
— Generate dialogue/language
— Write stories automatically

Why is it hard?

Many reasons:
— Ambiguity: “We saw her duck”. Several meanings.
— Non-standard use of language
— Segmentation challenges

— Understanding of the world
* “Bob and Joe are brothers”.
* “Bob and Joe are fathers”.

Approaches to NLP

A brief history

— Symbolic NLP: 50’s to 90’s

— Statistical/Probabilistic: 90’s to present
* Neural: 2010’s to present

Lots of progress! a(Q

Lots more to work to do P

ELIZA program

Outline

* Introduction to language models

— n-grams, training, improving issues, evaluation
* Classic NLP tasks

— Part-of-speech tagging, parsing, dependencies
* Word representations

— One-hot, word embeddings, transformer-based

Language Models

* Basic idea: use probabilistic models to assign a

probability to a sentence

P(W) = P(wy,w, ..., w,) or P(nexfr, w2)

Lrzo=nier ypproamalon

IXEOML FXKHRIFZIUNALPWXEWIXY]
FFIEYVICQSGHYD
QPAANMEBZAACTRZLEIQD

* Goes back to Shannon A

OCROIILC RGCWR NMICLWISEULL
NBNESEBYA TH EEIALHENHTTPA
0OSTLVANAH BRL

— Information theory: letters ses s

Third-arder appraximanon

T irst-order woed approxiniation

ON TE ANTSOUTINYS ARF T TNCTORFE
ST BE § DEAMY ACHIN D ILONASIVE
TUCOOWE AT TEASONARE FUSO TIZIN
ANDY TOBE SEACE CLISBE

™N NO 18T LAT WHEY CRATICT

FROURE RIRS GROCTD PONDENOME
OF DEMONSTURES OF TIIE REPTAGIN
IS REGOACTIONA OF CRE |
REPRESENTING AND SPEEDILY I$ AN
GOON APT OR COME CAN DIFFERENT

INATURAL HERE HE THE A IN CAME

i = P

We begin with the simplest question: given a sequence of symbols, determine if it is a

natural sentence.

Turn this into a probabilistic question: What's the probability of a given sequence of
symbols from the distribution of natural sentences? Here we assume there is a
ground-truth distribution over natural sentences (e.g., imagine putting together all
the natural sentences ever spoken/written and think of the uniform distribution over

them).

This is called the language modeling problem. The distribution over sentences is
called the language model. It is the basis for many (if not all) natural language

processing tasks.

Training The Model
Recall the chain rule

P(wy, wa,...,wy) = P(wy)P(we|wy)... Plwy|lwp_1...w;)

* How do we estimate these probabilities
— Same thing as “training”
* From data?

— Yes, but not directly: too many sentences.
— Can’t estimate reliably.

Estimate these probabilities (equivalently estimating the probability tables of these
distributions): often using statistical methods on data. This is regarded as training.

The probability tables are too large; not enough data to estimate the entries reliably.

Training: Make Assumptions

* Markov-type assumptions:

P (u‘"z'.”u“"i—l'u“'i—‘z e 'wl) =P (:'u""z',lwi—l'u""z',—2 e ‘u.’rz'.-k.)

* Present doesn’t depend on whole past
— Just recent past

— Markov chains have k=1. (Present only depends on
immediate past).

— What’s k=0?

We make conditional independence assumptions (Markov-type), such that we only
need to handle smaller tables. Note that practical data may not satisfy these
assumptions. We can think of that we are just trying to find a language model
satisfying the assumptions that can best approximate the ground-truth.

k=0: Unigram Model

* Full independence assumption:
— (Present doesn’t depend on the past)

P(wy, w,...,w,) = P(wy)P(w3) ... P(wy,)

* Example (from Dan Jurafsky’s notes)

fifth, an, of, futures, the, an, incorporated, a, a, the,
inflation, most, dollars, quarter, in, is, mass thrift, did,
eighty, said, hard, 'm, july, bullish that, or, limited, the

To see how well the approximation is, we can first use data to estimate the terms on
the right hand side to get the language model, and then sample from this language
model to see if it generates good natural sentences.

The sampled sentences from the unigram model are bad.

k=1: Bigram Model

* Markov Assumption:
— (Present depends on immediate past)

P(wy,wy, ..., w,) = P(w)P(wsy|w;)P(ws|ws) ... P(w,|wn—1)

* Example:

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a,
boiler, house, said, mr., gurria, mexico, 's, motion, control,
proposal, without, permission, from, five, hundred, fifty, five,
yen outside, new, car, parking, lot, of, the, agreement, reached
this, would, be, a, record, november

The sampled sentences from the unigram model are better.

10

k=n-1: n-gram Model

Can do trigrams, 4-grams, and so on
* More expressive as n goes up
* Harder to estimate

Training: just count? l.e, for bigram:

tlw;_1.w;
P(wi|wi_1) = count(w;_1, w;)

count (w;—_1)

How to estimate the terms in the n-gram model: just counts from data; equivalently,
use frequency to estimate the probability.

11

n-gram Training

count (w; _1,w;)
count(w;_1)

Issues: P(‘lL-‘.,'|'lL"-,'_1) =
e 1. Multiply tiny numbers?
— Solution: use logs; add instead of multiply

* 2. n-grams with zero probability?
— Solution: smoothing

count (w;_q,w;) + 1
count(w;—1) +V

P (‘lL"i |-w,l: B 1) =

allegations

[reonrs |
= |
=

[] attac

“ man

[] oulcome

Dan Klein

Smoothing: a technique for estimating probabilities from counts.

Suppose we have V values and we want to estimate their probabilities from their
counts (ie, the histogram over the V values). Then we add 1 to each count, and then
compute the frequencies as the estimate of the probabilities.

Example: For P(w_i | w_{i-1}), consider a concrete value w_{i-1}="the”. Then the V
values are the possible values of w_i (the vocabulary), and the counts are the counts
of different values of w_i appearing after “the”, ie, the count(”the”, value of w_i). We
add 1 to all the counts, and normalize them by their sum to get the frequency. Note
that the sum of (count(”the”, value of w_i) + 1) over all values is exactly
count(“the”)+V. This gives the smoothed estimate for P(w_i | w_{i-1}).

We can add some other smoothing factor other than adding 1. And there are other
more sophisticated smoothing methods.

12

Other Solutions: Backoff & Interpolation

For issue 2, back-off methods

e Use n-gram where there is lots of information, r-
gram (with r << n) elsewhere. (trigrams / bigrams)

Interpolation
* Mix different models: (tri- + bi- + unigrams)

p('lifi"u.’.i_l, 'll..".zj_g) =)\1P(U:‘i "u,.‘.i_l : 'lL.‘.l"_Q) +)\QP('U.?il'u.!,i_l) |)\3 P(U"i)

13

n-gram Training Issues

Issues:
e 1. Multiply tiny numbers?

— Solution: use logs; add instead of multiply
* 2.Sparse n-grams

— Solution: smoothing, backoff, interpolation

* 3. Vocabulary: open vs closed
— Solution: use <UNK> unknown word token

14

Vocabulary: open vs closed

* Possible to estimate size of unknown vocabulary
— Good-Turing estimator

* Originally developed to crack the Enigma machine

15

Break & Quiz

Q 1.1: Which of the below are bigrams from the sentence
“It is cold outside today”.

e A ltis

* B. cold today
 C.iscold

* DA&C

16

Break & Quiz

Q 1.1: Which of the below are bigrams from the sentence
“It is cold outside today”.

e A ltis
* B. cold today

e C.iscold
* DA&C

17

Break & Quiz

Q 1.2: Smoothing is increasingly useful for n-grams
when

* A.ngets larger

* B. ngets smaller

* C. always the same
* D.nlarger than 10

18

Break & Quiz

Q 1.2: Smoothing is increasingly useful for n-grams
when

* A. ngets larger

* B. n gets smaller

* C. always the same
* D.nlarger than 10

19

Evaluating Language Models

How do we know we’ve done a good job?
* Observation
* Train/test on separate data & measure metrics

* Metrics:
— 1. Extrinsic evaluation
— 2. Perplexity

Evaluation: extrinsic or intrinsic.

Perplexity is the standard intrinsic metric.

20

Extrinsic Evaluation

How do we know we’ve done a good job?
* Pick a task and use the model to do the task

* For two models, M;, M,, compare the accuracy for

each task

— Ex: Q/A system: how many questions right. Translation: how many
words translated correctly

* Downside: slow; may change relatively

Enter text Translation

21

Intrinsic Evaluation: Perplexity

Perplexity is a measure of uncertainty

_&
PP(W) = P(wy,wsy,...,wy,) n
Lower is better! Examples:

* WSIJ corpus; 40 million words for training:
— Unigram: 962, Bigram 170, Trigram 109

The math expression on the slide gives the perplexity of the sentence W in this
language model. The perplexity of the language model on a sentence distribution is
the expected perplexity over the sentences from the distribution.

22

Further NLP Tasks

Language modeling is not the only task. Two further
types:
1. Auxilliary tasks:
— Part-of-speech tagging, parsing, etc.
2. Direct tasks:

— Question-answering, translation, summarization,
classification (e.g., sentiment analysis)

23

Part-of-speech Tagging

Tag words as nouns, verbs, adjectives, etc.
* Tough part: ambiguous, even for people.

* Needs:
— Getting neighboring word parts right
— Knowledge of words (“man” is used as a noun, rarely as

verb)
Model Features | Token Unknown Sentence
56,805 |93.69% 82.61% 26.74%
239,767 |96.57% 86.78% | 48.27%

Chris Manning

24

Parsing

Get the grammatical structure of sentences

put
/‘R

boy tortoise on
m B
ru
The L g

The boy put the tortoise on the rug the th
e

Chris Manning
* Which words depend on each other? Note: input a
sentence, output a tree (dependency parsing)

25

Break & Quiz

Q 2.1: What is the perplexity for a sequence of n digits O-
97 All occur with equal probability.

A. 10 PP() = Plur,ws, ..,)~

B. 1/10
C.10"
D.0O

26

Break & Quiz

Q 2.1: What is the perplexity for a sequence of n digits O-
97 All occur with equal probability.

1

A.10 PP(V) = Plur,us, .. 0n)

B. 1/10
C.10"
D.0O

27

Representing Words

Remember value of random variables (RVs)
* Easier to work with than objects like ‘dog’

Traditional representation: one-hot vectors
dogz[O 0 0 01 0]
— Dimension: # of words in vocabulary
— Relationships between words?

Recent NLP methods use machine learning models on top of the text data. We first
need to represent text as numeric numbers.

Basic: represent each word as a numeric vector. Traditional: one-hot encoding

28

Smarter Representations

Distributional semantics: account for relationships

* Reps should be close/similar to other words that
appear in a similar context

Dense vectors:
dog = [0.13 0.87 —0.23 046 087 —0.31]"
cat = [0.07 1.03 —-043 —0.21 111 —0.34]"
AKA word embeddings ‘}
-

Recent method: word embeddings, ie, represent each word as a dense vector. More
general and more powerful compared to one-hot encoding.

29

Training Word Embeddings

Many approaches (super popular 2010-present)
* Word2vec: a famous approach

 What’s our likelihood?
o Windows of length 2a

-
L@ =11 II “Plwesshu.0)

/ t=1—a<j<a

Our word vectors \ p
All positions #f‘

(variables/hypotheses)
How to get a set of word embeddings, given a set of sentences as training data?

Need to define some scoring of different sets of word embeddings, and then use the
scoring to pick the best set of word embeddings.

Word2vec uses a likelihood of the text training data. For simplicity, let \theta denote
the set of word embeddings. Also concatenate the whole set of sentences as one big
sentence of length T.

30

Training Word Embeddings

Word2vec likelihood
T
L@ =] II PCwes;hw,0)

t=1 —a<j<a

* Maximize this; what’s the probability?
— Two vectors per word. v,,, u,, for center/context
(o is context word, c is center)

exp(ulv.)

Z weV exp (uz l"'(.'.) #P

Similarity P(o|c) =

Given a set of word embeddings, we can use the P(o|c) math expression to compute
the probabilities for P(w_{t+j} | w_t), and then compute the likelihood. So this gives a

definition (also a computation method) for the likelihood of a set of word
embeddings.

We then try to find the set of word embeddings that gives the best quality metric (the
likelihood).

31

Beyond “Shallow” Embeddings

* Transformers: special model architectures based on

attention
— Sophisticated types of neural networks
* Pretrained models

— Based on transformers: BERT
— Include context!

* Fine-tune for desired task

=

3

Vaswani et al. 17

Recent systems for NLP are using even more sophisticated methods to get the

embeddings.

32

