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Probability: What is it good for?

* Language to express uncertainty

Probability is the math language to model uncertainty.




In Al/ML Context
* Quantify predictions

[p(lion), p(tiger)] = [0.98,0.02]

[p(lion), p(tiger)] = [0.01,0.99] 0 4?((;1;};]),p(tlgcr)] =

In Al/ML, probability theory is particularly useful as uncertainty is ubiquitous in this
context, e.g., uncertainty in predictions; data distributions




Model Data Generation

* Model complex distributions

StyleGAN2 (Kerras et al '20)




Outline

* Basics: definitions, axioms, RVs, joint distributions

* Independence, conditional probability, chain rule

* Bayes’ Rule and Inference




Basics: Outcomes & Events

* Qutcomes: possible results of an experiment
* Events: subsets of outcomes we’re interested in

Ex: Q= {1.2,3,4,5,6}

~"

outcomes
P00 2] oo 120

events

Key: an event is just a subset of the outcome space.




Basics: Outcomes & Events

* Event space can be smaller:

F={0,{1,3,5},{2,4,6},0)

events

* Two components always in it!

0,

We may consider a family of special events, not necessary all the subsets of the
outcome space. But the event space must include the empty set and the full set.




Basics: Probability Distribution

* We have outcomes and events.
* Now assign probabilities For E € F, P(E) € [0, 1]

Back to our example:
F=1{0,{1,3,5},{2,4,6},Q}
e@fn.s

P({1,3,5}) = 0.2, P({2,4,6}) = 0.8
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Basics: Axioms

* Rules for probability:
— Forallevents Fc F P(E)>0
— Always, P(()) =0,P(Q) =1
— For disjoint events, P(E; U Ey) = P(E,) + P(Es)

* Easy to derive other laws. Ex: non-disjoint events
P(E, UE;) = P(Ey) + P(E;) — P(Ey N Ey)

A probability (distribution) is a function mapping from the event space to real
numbers, ie, assign a value to each event in the event space. The assignment needs
to satisfy the axioms.

(The slide show the axioms for the finite event space. We have slightly more
complicated axioms for infinite event space.)
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Visualizing the Axioms: |

* AXiom1l: Ec€ F,P(E)>0
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Visualizing the Axioms: Il

* Axiom 2: P(()) =0,P(Q) =1
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Visualizing the Axioms: IlI

* Axiom 3:disjoint P(E,UE,)= P(E,)+ P(E,)

.% P(E1 U E») = P(E1) + P(E»)
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Visualizing the Axioms

* Also, other laws:

-

P(El Uf¥) — P(El) -I-P(fg) —P(El N El)
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Break & Quiz

Q 1.1: There are exactly 3 candidates for a presidential
election. We know X has a 30% chance of winning, B has
a 35% chance. What'’s the probability that C wins?

A.0.35
B.0.23
€-0:333
D.0.8
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Break & Quiz

Q 1.1: There are exactly 3 candidates for a presidential
election. We know X has a 30% chance of winning, B has
a 35% chance. What'’s the probability that C wins?

A. 0.35
B.0.23
€-0:333
D.0.8

1-30%-35%
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Break & Quiz

Q 1.2: What’s the probability of selecting a black card
or a number 6 from a standard deck of 52 cards?

A. 26/52
B.4/52

C. 30/52
D. 28/52
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Break & Quiz

Q 1.2: What’s the probability of selecting a black card
or a number 6 from a standard deck of 52 cards?

A. 26/52
B. 4/52

C. 30/52
D. 28/52

#black cards: 52/2=26
ttcard 6 that are not black: 2




Basics: Random Variables

* Really, functions
* Map outcomestorealvalues X : () - R

& .
e 1@ OF
— So far, everything is a set. —

— Hard to work with!
— Real values are easy to work with

Random numbers are also functions, mapping from the outcome space to real
numbers, ie, for each outcome we have a real value for the random variable.
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Basics: CDF & PDF

* Can still work with probabilities:
PX = )= P{{ursX(w) =3})

* Cumulative Distribution Func. (CDF)
Fx(z) = P(X < z)

* Density / mass function px(z)

N

Wiki CDF
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Basics: Expectation & Variance

Another advantage of RVs are “'summaries”
Expectation: E[X]=3, ax P(z =a)

— The “average”
Variance: Var[X] = E[(X — E[X])*]

— A measure of spread

Higher moments: other parametrizations
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Basics: Joint Distributions

* Move from one variable to several
* Joint distribution: P(X =a,Y =)
— Why? Work with multiple types of uncertainty
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Basics: Marginal Probability
* Given a joint distribution P(X =a,Y =)
— Get the distribution in just one variable:

P(X=a)=Y,P(X =a,Y =b)

— This is the “marginal” distribution.
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Basics: Marginal Probability

P(X=a)=Y,P(X =a,Y =b)

Sunny |Cloudy | Rainy
hot 150/365 | 40/36 5/365
cold |50/365 |160/365 | 60/365

[P(hot), P(cold)] = [322,

35|
365

27



Probability Tables

* Write our distributions as tables

Sunny Cloudy Rainy
hot 150/365 40/365 5/365
cold 50/365 60/365 60/365

* # of entries? 6.

— If we haven variables with & values, we get k" entries

— Big! For a 1080p screen, 12 bit color, size of table: 1074

— No way of writing down all terms

If we have n variables, then the joint probability table is of an n-dim array. If each
variable has k values, then the number of entries in this table is k*k*...*k = k*n.
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Independence

* Independence between RVs:

P(X,Y) = P(X)P(Y)

* Why useful? Go from k" entries in a table to ~ kn
* Collapses joint into product of marginals

If all n variables are independent, then we only need to write down the individual
tables for each individual variable, and can compute the joint probability by the
definition of independence.
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Conditional Probability

* For when we know something,

Pl —dpr—gj ==l =b)

* Leads to conditional independence
P(X,Y|Z) = P(X|2)P(Y|Z)

Credit: Devin Soni

P(Y =b) -

Key definition; used a lot in Al/ML, such as Bayes’ rule.

Random variables X and Y are independent conditioned on random variable Z, if their
joint probability (conditioned on Z) is the product of their marginal probabilities

(conditioned on 2).
We can think of P( |Z) as a new probability distribution.
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Chain Rule

* Apply repeatedly,
P(Aj;Ajj.cyAn)
= P(A;)P(A2|A1)P(A3|Az, Ay) ... P(Ap|An—1,-..,41)
* Note: still big!
— If some conditional independence, can factor!
— Leads to probabilistic graphical models
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Break & Quiz

Q 2.1: Back to our joint distribution table:

Sunny

Cloudy

Rainy

hot

150/365

40/365

5/365

cold

50/365

60/365

60/365

What is the probability the temperature is hot given the

weather is cloudy?
A. 40/365

B. 2/5

C. 3/5

D. 195/365
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Break & Quiz

Q 2.1: Back to our joint distribution table:

Sunny Cloudy Rainy
hot 150/365 40/365 5/365
cold 50/365 60/365 60/365

What is the probability the temperature is hot given the
weather is cloudy?

A. 40/365
B. 2/5
C. 3/5
D. 195/365

P(hot|cloudy) = P(hot, cloudy) / P(cloudy) = (40/365) / (40/365 + 60/365) = 2/5




Break & Quiz

Q 2.2: Of a company’s employees, 30% are women and 6% are
married women. Suppose an employee is selected at random.
If the employee selected is a woman, what is the probability
that she is married?

A. 0.3
B. 0.06
C. 0.24
D. 0.2




Break & Quiz

Q 2.2: Of a company’s employees, 30% are women and 6% are
married women. Suppose an employee is selected at random.
If the employee selected is a woman, what is the probability
that she is married?

A. 0.3
B. 0.06
C. 0.24
D. 0.2

P(married | woman) = P(married woman) / P(woman) = 6% / 30% = 0.2
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Reasoning With Conditional Distributions

* Evaluating probabilities:

— Wake up with a sore throat.
— Do | have the flu?

(-]
Oo
o
o

|

* Oneapproach: S — F

— Too strong.

* Inference: compute probability given evidence P(F|S)
— Can be much more complex!

Probabilistic reasoning: first is to convert a decision making problem into a
conditional probability problem

36



Using Bayes’ Rule

* Want: P(F|S)
’ : P(F, P(S|F)P(F
* Bayes’ Rule: P(F|S) = ;,(Sﬁ) - (S}L()Sf)’( )
* Parts:
—  P(S)=0.1 Sorethroat rate

- P(F)=0.01 Flurate
— P(S|F)=10.9 Sore throat rate among flu sufferers

So: P(F|S) = 0.09

Bayes’ rule: followed from two applications of the definition of conditional
probability.

Useful: when P(F|S) is hard to reason about but P(S|F) is easy. For example, inferring
the disease from the symptoms is hard, but inferring the symptoms from the disease
is easy (by looking at statistics).
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Using Bayes’ Rule

* Interpretation P(F|S) =0.09
— Much higher chance of flu than normal rate (0.01).

— Very different from P(S|F) = 0.9
* 90% of folks with flu have a sore throat
* But, only 9% of folks with a sore throat have flu

* |dea: update probabilities from
evidence
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Bayesian Inference

* Fancy name for what we just did. Terminology:

P(E|H)P(H)

P(HIE) = 5

* His the hypothesis
* FEisthe evidence
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Bayesian Inference

e Terminology:

P(E‘H)P(:.U) <«——— Prior
P(E)

P(H|E) =

* Prior: estimate of the probability without evidence
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e Terminology:

P(H|E) =

* Likelihood: probability of evidence given a

hypothesis.

Bayesian Inference

Likelihood

vl
P(E|H)P(H)
P(E)
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Bayesian Inference

e Terminology:

P(E|H)P(H)
P(E)

P(H|E) =
?

Posterior

* Posterior: probability of hypothesis given evidence.
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Two Envelopes Problem

* We have two envelopes:
— E, has two black balls, E, has one black, one red
— The red one is worth $100. Others, zero
— Open an envelope, see one ball. Then, can switch (or not).
— You see a black ball. Switch?
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Two Envelopes Solution
P(Black ball|E;)P(E;)

* Let’s solve it. P(E;|Black ball) = P(Black ball
=k Fa

] st
- i, P(E, |Black ball) = :
Now plug in: (FaBlacs bal) P(Black ball)
1yl
P(E,|Black ball) = ——2 "2
(Ea|Black ball) P(Black ball)

So switch!

Here E_1 denotes the event that the opened envelop is the envelop with two black
balls, and E2 the event that it’s the one with one black and one red. “Black ball”
denotes the event that you see a black ball in the opened envelop.

We first convert the decision making problem into the problem of computing the
conditional probabilities P(E_1 | Black ball) and P(E_2 | Black ball).

By Bayes’ rule, we can compute the two. The former is larger than the latter. So it’s
more likely that the opened envelop contains two black balls and we should switch.
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Break & Quiz

Q 3.1: 50% of emails are spam. Software has been applied to filter
spam. A certain brand of software can detect 99% of spam emails, and
the probability for a false positive (a non-spam email detected as
spam) is 5%. Now if an email is detected as spam, then what is the
probability that it is in fact a nonspam email?

A. 5/104
B. 95/100
C. 1/100
D. 1/2
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Break & Quiz

Q 3.1: 50% of emails are spam. Software has been applied to filter
spam. A certain brand of software can detect 99% of spam emails, and
the probability for a false positive (a non-spam email detected as
spam) is 5%. Now if an email is detected as spam, then what is the
probability that it is in fact a nonspam email?

A. 5/104
B. 95/100
C. 1/100
D. 1/2

We first convert the problem into the problem of computing the conditional
probability P(nonspam | detected as spam).

By Bayes’ rule, we have

P(nonspam | detected as spam)

= P(detected as spam | nonspam) P(nonspam) / P(detected as spam)
=5% * (1-50%) / (50% * 99% + 50% * 5%)

=5/104
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Break & Quiz

Q 3.2: A fair coin is tossed three times. Find the
probability of getting 2 heads and a tail

1/8
. 2/8
. 3/8
. 5/8

OO0 ®>
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Break & Quiz

Q 3.2: A fair coin is tossed three times. Find the
probability of getting 2 heads and a tail

1/8
. 2/8
. 3/8
. 5/8

The sequence can be HHT, HTH, THH. Each case has a probability 1/8, so in total 3/8.
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