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Probability is the math language to model uncertainty. 
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In AI/ML, probability theory is particularly useful as uncertainty is ubiquitous in this 
context, e.g., uncertainty in predictions; data distributions 
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Key: an event is just a subset of the outcome space. 
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We may consider a family of special events, not necessary all the subsets of the 
outcome space. But the event space must include the empty set and the full set. 
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A probability (distribution) is a function mapping from the event space to real 
numbers, ie, assign a value to each event in the event space. The assignment needs 
to satisfy the axioms.  
(The slide show the axioms for the finite event space. We have slightly more 
complicated axioms for infinite event space.)
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1 - 30% - 35%
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#black cards: 52/2=26
#card 6 that are not black: 2
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Random numbers are also functions, mapping from the outcome space to real 
numbers, ie, for each outcome we have a real value for the random variable.  
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If we have n variables, then the joint probability table is of an n-dim array. If each 
variable has k values, then the number of entries in this table is k*k*…*k = k^n.  
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If all n variables are independent, then we only need to write down the individual 
tables for each individual variable, and can compute the joint probability by the 
definition of independence.  
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Key definition; used a lot in AI/ML, such as Bayes’ rule. 

Random variables X and Y are independent conditioned on random variable Z, if their 
joint probability (conditioned on Z) is the product of their marginal probabilities 
(conditioned on Z). 
We can think of P( |Z) as a new probability distribution. 
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P(hot|cloudy) = P(hot, cloudy) / P(cloudy) = (40/365) / (40/365 + 60/365) = 2/5
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P(married | woman) = P(married woman) / P(woman) = 6% / 30% = 0.2
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Probabilistic reasoning: first is to convert a decision making problem into a 
conditional probability problem
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Bayes’ rule: followed from two applications of the definition of conditional 
probability. 

Useful: when P(F|S) is hard to reason about but P(S|F) is easy. For example, inferring 
the disease from the symptoms is hard, but inferring the symptoms from the disease 
is easy (by looking at statistics). 
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Here E_1 denotes the event that the opened envelop is the envelop with two black 
balls, and E2 the event that it’s the one with one black and one red. “Black ball”  
denotes the event that you see a black ball in the opened envelop. 

We first convert the decision making problem into the problem of computing the 
conditional probabilities P(E_1 | Black ball) and P(E_2 | Black ball).
By Bayes’ rule, we can compute the two. The former is larger than the latter. So it’s 
more likely that the opened envelop contains two black balls and we should switch. 
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We first convert the problem into the problem of computing the conditional 
probability P(nonspam | detected as spam).

By Bayes’ rule, we have
P(nonspam | detected as spam) 
= P(detected as spam | nonspam)  P(nonspam) / P(detected as spam)
= 5% * (1-50%) / (50% * 99% + 50% * 5%)
= 5/104
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The sequence can be HHT, HTH, THH. Each case has a probability 1/8, so in total 3/8. 
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