

CS 540 Introduction to Artificial Intelligence **Probability**

Yingyu Liang University of Wisconsin-Madison Sept 14, 2021

Based on slides by Fred Sala

Probability: What is it good for?

• Language to express **uncertainty**

In AI/ML Context

• Quantify predictions

[p(lion), p(tiger)] = [0.98, 0.02]

[p(lion), p(tiger)] = [0.01, 0.99]

[p(lion), p(tiger)] = [0.43, 0.57]

Model Data Generation

• Model complex distributions

StyleGAN2 (Kerras et al '20)

Outline

• Basics: definitions, axioms, RVs, joint distributions

• Independence, conditional probability, chain rule

• Bayes' Rule and Inference

Basics: Outcomes & Events

- Outcomes: possible results of an **experiment**
- Events: subsets of outcomes we're interested in

Ex:
$$\Omega = \{\underbrace{1, 2, 3, 4, 5, 6}_{\text{outcomes}}$$

 $\mathcal{F} = \{\emptyset, \{1\}, \{2\}, \dots, \{1, 2\}, \dots, \Omega\}$
events

Basics: Outcomes & Events

• Event space can be smaller:

$$\mathcal{F} = \underbrace{\{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}}_{\text{events}}$$

• Two components always in it!

 \emptyset, Ω

Basics: Probability Distribution

- We have outcomes and events.
- Now assign probabilities For $E \in \mathcal{F}, P(E) \in [0,1]$

Back to our example: $\mathcal{F} = \underbrace{\{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}}_{\text{events}}$ $P(\{1, 3, 5\}) = 0.2, P(\{2, 4, 6\}) = 0.8$

Basics: Axioms

- Rules for probability:
 - For all events $E \in \mathcal{F}, P(E) \ge 0$
 - Always, $P(\emptyset) = 0, P(\Omega) = 1$
 - For disjoint events, $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

• Easy to derive other laws. Ex: non-disjoint events

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Visualizing the Axioms: I

• Axiom 1: $E \in \mathcal{F}, P(E) \ge 0$

Visualizing the Axioms: II

• Axiom 2: $P(\emptyset) = 0, P(\Omega) = 1$

Visualizing the Axioms: III

• Axiom 3: disjoint $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

Visualizing the Axioms

• Also, other laws:

Basics: Random Variables

- Really, functions
- Map outcomes to real values $X: \Omega \to \mathbb{R}$

- Why?
 - So far, everything is a set.
 - Hard to work with!
 - Real values are easy to work with

Basics: CDF & PDF

• Can still work with probabilities:

$$P(X = 3) := P(\{\omega : X(\omega) = 3\})$$

• Cumulative Distribution Func. (CDF)

$$F_X(x) := P(X \le x)$$

• Density / mass function $p_X(x)$

Wiki CDF

Basics: Expectation & Variance

- Another advantage of RVs are ``summaries''
- **Expectation:** $E[X] = \sum_{a} a \times P(x = a)$
 - The "average"
- Variance: $Var[X] = E[(X E[X])^2]$
 - A measure of spread
- Higher moments: other parametrizations

Basics: Joint Distributions

- Move from one variable to several
- Joint distribution: P(X = a, Y = b)
 - Why? Work with multiple types of uncertainty

Basics: Marginal Probability

• Given a joint distribution P(X = a, Y = b)

- Get the distribution in just one variable:

$$P(X = a) = \sum_{b} P(X = a, Y = b)$$

- This is the "marginal" distribution.

24	Cating to						39.6
1632	Curring o						,
Octa 1	Ginger Beer					" 6	,
2	de Brace of Grouse ade	"	10	" 2			
"	Packing Vel 20	*					
	Duner at Cut					26	
"	Coffice			- St		. 6	
12	Breakfast _			2	"	16	2.i
13	Breakfast -			3.		10	-
1.	Sea			ЗŠ,		" (5.
14	Breakfast				"	10	5
15	Breakfast			1		10	5.
1833	Breakfast						
Jan 20	Sea at himos chil			33		0	5
	Breakfast					10	
	South & la					1.	
	Joda Water -					. 6	
22	Aranges						
11. 19	2 3in Julibes &			1		10	
				20		1.	
	Bindle of asparagus			1		. 1.	
	Breakfast		1				
	Maiter -		**	6	"	2 .	
	Seen to				"	11	/
June /	Sees				"	1	×
			-	to	1	19	11
						-	

Basics: Marginal Probability

$$P(X = a) = \sum_{b} P(X = a, Y = b)$$

$$[P(hot), P(cold)] = [\frac{195}{365}, \frac{170}{365}]$$

Probability Tables

• Write our distributions as tables

	Sunny	Cloudy	Rainy
hot	150/365	40/365	5/365
cold	50/365	60/365	60/365

- # of entries? 6.
 - If we have n variables with k values, we get k^n entries
 - Big! For a 1080p screen, 12 bit color, size of table: 107490589
 - No way of writing down all terms

Independence

• Independence between RVs:

$$P(X,Y) = P(X)P(Y)$$

- Why useful? Go from k^n entries in a table to $\sim kn$
- Collapses joint into **product** of marginals

Conditional Probability

• For when we know something,

$$P(X = a | Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)}$$

Leads to conditional independence

Credit: Devin Soni

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

Chain Rule

• Apply repeatedly,

 $P(A_1, A_2, \ldots, A_n)$

 $= P(A_1)P(A_2|A_1)P(A_3|A_2,A_1)\dots P(A_n|A_{n-1},\dots,A_1)$

- Note: still big!
 - If some **conditional independence**, can factor!
 - Leads to probabilistic graphical models

Reasoning With Conditional Distributions

- Evaluating probabilities:
 - Wake up with a sore throat.
 - Do I have the flu?
- One approach: $S \to F$
 - Too strong.
- Inference: compute probability given evidence P(F|S)
 - Can be much more complex!

Using Bayes' Rule

- Want: P(F|S)
- **Bayes' Rule:** $P(F|S) = \frac{P(F,S)}{P(S)} = \frac{P(S|F)P(F)}{P(S)}$
- Parts:
 - P(S) = 0.1 Sore throat rate
 - P(F) = 0.01 Flu rate
 - P(S|F) = 0.9 Sore throat rate among flu sufferers

So: P(F|S) = 0.09

Using Bayes' Rule

- Interpretation P(F|S) = 0.09
 - Much higher chance of flu than normal rate (0.01).
 - Very different from P(S|F) = 0.9
 - 90% of folks with flu have a sore throat
 - But, only 9% of folks with a sore throat have flu
- Idea: **update** probabilities from

evidence

wiseGEEK

• Fancy name for what we just did. Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

- *H* is the hypothesis
- *E* is the evidence

• Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} \longleftarrow \text{Prior}$$

• Prior: estimate of the probability without evidence

• Terminology: Likelihood $P(H|E) = \frac{P(E|H)P(H)}{P(E)}$

Likelihood: probability of evidence given a hypothesis.

• Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$
Posterior

• Posterior: probability of hypothesis given evidence.

Two Envelopes Problem

- We have two envelopes:
 - E_1 has two black balls, E_2 has one black, one red
 - The red one is worth \$100. Others, zero
 - Open an envelope, see one ball. Then, can switch (or not).
 - You see a black ball. Switch?

Two Envelopes Solution

• Let's solve it. $P(E_1|\text{Black ball}) = \frac{P(\text{Black ball}|E_1)P(E_1)}{P(D|-1,1,1)}$

• Now plug in:

ack ball) =
$$\frac{1}{P(\text{Black ball})}$$

 $P(E_1|\text{Black ball}) = \frac{1 \times \frac{1}{2}}{P(\text{Black ball})}$
 $P(E_2|\text{Black ball}) = \frac{\frac{1}{2} \times \frac{1}{2}}{P(\text{Black ball})}$

So switch!

