
CS 540 Introduction to Artificial Intelligence
Reinforcement Learning I

Yingyu Liang
University of Wisconsin-Madison

Dec 2, 2021
Based on slides by Fred Sala

1

Outline

• Introduction to reinforcement learning
– Basic concepts, mathematical formulation, MDPs, policies

• Valuing policies
– Value functions, Bellman equation, value iteration

Similar to game playing, we are going to
1. Describe a formal framework to describe the problem
2. Define a value function in the framework, which can allow us to make decisions

2

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility
– Note: data consists of actions & observations

• Compare to unsupervised learning and supervised learning

World

Agent

Actions

Observations

($$$)

General model with one agent interacting with the world:

Interactions happen in multiple rounds. In each round, the agent takes some action. The
action can change the state of the world. Then the agent get some observations about the
world.

We assume that the observation in each round consists of some reward, and the goal of
the agent is to maximize the reward.

Now the key element for learning, the experience or data, is in the form of actions and
observations. This is different from the unsupervised/supervised learning setting. A key
difference is that the data in the previous two settings are typically iid, each data point is
independent of the others. But in in this setting, the actions in previous rounds can affect
the state of the world and affect the actions/observations in later rounds, that is, the data
points from different rounds are dependent.

3

Examples: Gameplay Agents

AlphaZero:

https://deepmind.com/research/alphago/

We have various AI systems for gameplaying.

AlphaGo and its later versions like AlphaZero are famous AI systems that can beat world
champions among human players. This is regarded as a breakthrough in modern AI, since
the game Go is regarded as something complicated and was believed to be very hard to
solve by AI systems.

These systems are built using deep networks and trained by reinforcement learning. After
their success, reinforcement learning using deep networks becomes popular.

4

Examples: Video Game Agents

Pong, Atari

Mnih et al, “Human-level control through deep reinforcement learning”

A. Nielsen

We also have AI systems for playing other games like video games. Here we show an
example where the AI systems learn to play Atari games. At the beginning they don’t know
how to play, but gradually they learn to play the game to get higher scores.

5

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

We also have AI systems for playing more complicated video games in recent years.

In particular, we have multiple-Agent AI systems for multiple player games like starcraft or
dota. These systems can learn to collaborate with each other to play the game together.
This is different from AlphaGo or Atari AI systems that are single-agent.

6

Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning – Lessons We’ve Learned "

Another direction is robotics. The setting can model and help training robots to perform
various tasks, like grasping objects, or more complicated long-time tasks.

7

Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A
• Information: at time t, observe state st S. Get reward rt

• Agent makes choice at A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Now back to our study of the problem.

Recall how we study the sequential games. We first provide a formal mathematical model
of the problem setting, the game tree. And then we consider the goal of maximizing the
score and introduce the notion of game-theoretical values. This is the core notion, because
once we know how to compute the game-theoretical values, we can make the best
decision, which is simply the action going to the child with the best value. Finally, we talk
about how to compute the game-theoretical value using the minimax algorithm and its
variants.

For our current setting, we will again go through these three steps: build the math model,
introduce the notion of value function that enables decision making, and then design
algorithms for computing the value function.

We will begin with building the math model.

Recall that we have an agent interacting with the world. The interaction happens in rounds.
In each round, the agent has some observations and takes some actions. The actions can
change the state of the world, and the observations should consist of rewards for the
agent.

To describe the state of the world, we introduce a state space S. To describe the action, we
introduce an action space A.

8

What about observations? Here we consider the observations consist of the state of the
world and the reward. More precisely, at time t, the agent can observe the state of the world
at that time denoted as s_t, and get a reward at that time denoted as r_t.

In summary, at each iteration t, the agent observes the state s_t and get a reward r_t, and
then takes an action a_t. Then the state of the world changes to s_{t+1}, and we go to the
next iteration.

The goal is then to take actions to maximize the rewards. More precisely, we would like to
have a decision function that takes as input a state and output an action. This is called a
policy, which is a map from states to actions. Of course, we can consider the more general
randomize decision making that takes as input a state and outputs a distribution over the
actions. But for now, let’s only consider a deterministic policy that outputs an action.

8

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A
• State transition model:

– Markov assumption: transition probability only depends on st and at,
and not previous actions or states

• Reward function: r(st)
• Policy: action to take at a particular state

We still need to formalize how the state of the world changes, and how the reward is
defined.

Here we introduce the Markov assumption for the state transition and the reward function.
This then leads to the Markov decision process framework for the setting, which is the
most popular framework for the problem setting.
We assume that we have a probability distribution over the next state, and the probability
only depend on the current state and action. In particular, it doesn’t depend on the
previous states and actions.
Similarly, the reward function only depends on the current state. Of course, we can also
assume a random reward function, but here let’s focus on the case of a deterministic
reward function.

Finally, we let \pi denote the policy, which maps an input state to an action. Then we will
have a chain of states and actions.

9

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein

We will use the grid world as a running example of our setting.

The robot; the start state; the state space, action space; the reward

On the right hand side we show an example policy.

10

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

for every
non-terminal state

For this example, we note two things.

1. The robot is unreliable
Even if the policy says going up, the robot will go up with a large probability, but with a
small probability it can go to some other directions. This is captured by the probability
distribution of the next state: even if the current state and the action are deterministic, the
next state can be randomized.

2. We want the robot to reach the target fast.
We then apply a small penalty for every non-terminal state.

11

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

for every
non-terminal state

Let’s abstract away the details.

12

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

for every
non-terminal state

Here we show the optimal policy for the grid world example.

13

Back to MDP Setup

The formal mathematical model:
• State set S. Initial state s0. Action set A
• State transition model:

– Markov assumption: transition probability only depends on st and at,
and not previous actions or states.

• Reward function: r(st)
• Policy: action to take at a particular state.

How do we find
the best policy?

But how to define and compute the optimal policy? We will talk about these soon.

14

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value
• B. The policy maps states to actions
• C. The probability of next state can depend on current and

previous states
• D. The solution of MDP is to find a policy that maximizes the

cumulative rewards

15

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value
• B. The policy maps states to actions
• C. The probability of next state can depend on current and

previous states
• D. The solution of MDP is to find a policy that maximizes the

cumulative rewards

16

Break & Quiz
Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value (True: need to be
able to compare)

• B. The policy maps states to actions (True: a policy tells you what
action to take for each state).

• C. The probability of next state can depend on current and
previous states (False: Markov assumption).

• D. The solution of MDP is to find a policy that maximizes the
cumulative rewards (True: want to maximize rewards overall).

17

Defining the Optimal Policy

For policy , expected utility over all possible state
sequences from ଴ produced by following that policy:

Called the value function (for , ଴)

గ
଴

ୱୣ୯୳ୣ୬ୡୣୱ

ୱ୲ୟ୰୲୧୬୥ ୤୰୭୫ ௦బ

Recall our goal: maximize rewards.

Two issues:
1. Reward depends on states, while the state sequence is random: expectation over the

state sequence
2. Need to define the reward for a sequence

18

Discounting Rewards

One issue: these are infinite series. Convergence?
• Solution

• Discount factor  between 0 and 1
– Set according to how important present is VS future
– Note: has to be less than 1 for convergence

If simply sum the rewards over different time steps, then it may not converge.

Two ways to address the convergence issue of the accumulated reward:
1. Set a time limit T and only run the game to at most time T: this leads to the so-called

horizon model
2. Consider a discounted factor (convenience for math reasoning)

Then we have a formal definition of the value function of a policy starting from s_0.

19

From Value to Policy

Now that గ
଴ is defined what should we take?

• First, let ∗ be the optimal policy for గ
଴ and ∗ its

expected utility
• What’s the expected utility of an action?

– Specifically, action in state ?

All the states we
could go to

Transition probability Expected rewards

With the definition of value function, we can define the optimal policy \pi^* to be the one
maximizing the value function among all the policies. Let V* be its value function.

Now we show that if we know V*, then we can make the best decision.
The idea is similar to decision making on game trees: check the values of the children and
choose the action that leads to the best value.

What’s the “value” that an action leads to? It’s the expected utility we can collect assuming
we first take the action and afterwards follow the optimal policy. By definition of V*, if the
action leads to a next state s’, then the utility will be V*(s’). We have a distribution over s’,
so we take the expectation of V*(s’) over the distribution P(s’|s, a). This is the “value” (or
the expected utility) of the action from the current state s.

20

Obtaining the Optimal Policy

We know the expected utility of an action
• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards Credit L. Lazbenik

The optimal action (i.e., the action by the optimal policy) must be the action a* that
maximizes this expected utility.

Note: Assume for contradiction the optimal policy \pi* chooses another action a which
doesn’t maximize the expected utility. Then one can obtain a new policy by letting it take
the a* action instead of a on the state s. This new policy has a better value, a contradiction!

In summary, if we know V*, then we know the best action: just take the action maximizing
the expected utility. Now it is sufficient to consider how to compute V*.

21

Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s).
– But it was defined in terms of the optimal policy!
– So we need some other approach to get V*(s).
– Need some other property of the value function!

We don’t know the optimal policy so we cannot use the definition of V* to compute V*
(since that depends on the optimal policy).

We need some other properties to compute V*.

22

Bellman Equation

Let’s walk over one step for the value function:

• Bellman: inventor of dynamic programming

Discounted expected
future rewards

Current state
reward

Bellman Equation is such a property. It is directly from the definition of value functions, and
it’s the core concept for reinforcement learning.

Recall the definition of the value function of a policy \pi from a state s: it’s the expected
utility accumulated starting from s and following the policy \pi. Break the accumulation of
rewards into two parts: the first step and future steps.
1. In the first step we get the reward r(s) at the state s.
2. Suppose then the next state is s’. Then in the future steps, we will get utility
accumulated starting from s’ and following the policy \pi. This is exactly the definition of
the value of a policy \pi from a state s’! Considering the distribution of s’ and the
discounted factor, the utility collected in future steps is the expectation of V^{\pi}(s’) over
the distribution P(s’| s, \pi(s)).
In summary, we have

V^{\pi}(s) = r(s)+\gamma*E_{s’} V^{\pi}(s’)
= r(s)+\gamma*\sum_{s’} P(s’|s, \pi(s)) V^{\pi}(s’)

This is the Bellman Equation for a general policy.

Back to the optimal policy \pi*. The Bellman Equation for the optimal policy is:
V*(s) = r(s) + \gamma * \sum_{s’} P(s’|s, \pi*(s)) V*(s’)

Where
\pi*(s) = a* = \argmax_a \sum_{s’} P(s’|s, a) V*(s’).

Then we have
V*(s) = r(s) + \gamma * max_a \sum_{s’} P(s’|s, a) V*(s’)

23

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)
• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

If we know r(s) and P(s’|s,a) then Bellman equation gives a set of equation constraints on
V*. This can be used to compute V*.

One way to compute V* is the iterative approach:
1. Initialize the values of all states to all 0’s.
2. Repeatedly apply the Bellman Equation to update the values.

24

Value Iteration: Demo

Source: POMDPBGallery Julia Package

25

Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0
• B. 1 / (1 -)
• C. 1 / (1 - 2)
• D. 1

26

Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0
• B. 1/(1-)
• C. 1/(1- 2)
• D. 1

27

Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0
• B. 1/(1-)
• C. 1/(1- 2) (States: A,B,A,B,… rewards 1,0, 2,0, 4,0, …)
• D. 1

Can also be computed by Bellman’s equation for the general policy:
V(A) = 1 + \gamma * V(B)
V(B) = 0 + \gamma * V(A)

Then we have:
V(A) = 1 + \gamma^2 V(A)

which gives
V(A) = 1/(1-\gamma^2)

28

Summary

• Reinforcement learning setup
• Mathematica formulation: MDP
• Value functions & the Bellman equation
• Value iteration

29

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik,
Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

30

