CS 540 Introduction to Artificial Intelligence

Reinforcement Learning I

Yingyu Liang
University of Wisconsin-Madison
Dec 2, 2021

Based on slides by Fred Sala
Outline

• Introduction to reinforcement learning
 – Basic concepts, mathematical formulation, MDPs, policies

• Valuing policies
 – Value functions, Bellman equation, value iteration
Back to Our General Model

We have an agent interacting with the world

- Agent receives a reward based on state of the world
 - **Goal**: maximize reward / utility ($$$
 - Note: **data** consists of actions & observations
 - Compare to unsupervised learning and supervised learning
Examples: Gameplay Agents

AlphaZero:

https://deepmind.com/research/alphago/
Examples: Video Game Agents

Pong, Atari

Mnih et al, “Human-level control through deep reinforcement learning”
Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"
Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

Ibarz et al, "How to Train Your Robot with Deep Reinforcement Learning – Lessons We’ve Learned"
Building The Theoretical Model

Basic setup:
- Set of states, S
- Set of actions A
- Information: at time t, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1}, continue

Goal: find a map from **states to actions** maximize rewards.

A “policy”
Markov Decision Process (MDP)

The formal mathematical model:

• **State set** S. Initial state s_0. **Action set** A

• **State transition model**: $P(s_{t+1} \mid s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not previous actions or states.

• **Reward function**: $r(s_t)$

• **Policy**: $\pi(s) : S \rightarrow A$ action to take at a particular state.

\[
\begin{align*}
 s_0 & \xrightarrow{a_0} s_1 & & \xrightarrow{a_1} s_2 & & \xrightarrow{a_2} \ldots \\
\end{align*}
\]
Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein
Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

\[r(s) = -0.04 \text{ for every non-terminal state} \]
Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

\[r(s) = -0.04 \text{ for every non-terminal state} \]
Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

\[r(s) = -0.04 \] for every non-terminal state
The formal mathematical model:

- **State set** S. Initial state s_0. **Action set** A
- **State transition model**: $P(s_{t+1} | s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not previous actions or states.
- **Reward function**: $r(s_t)$
- **Policy**: $\pi(s): S \rightarrow A$ action to take at a particular state.

How do we find the best policy?

$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \ldots$
Defining the Optimal Policy

For policy π, **expected utility** over all possible state sequences from s_0 produced by following that policy:

$$V^\pi(s_0) = \sum_{\text{sequences}} P(\text{sequence})U(\text{sequence})$$

Called the **value function** (for π, s_0)
Discounting Rewards

One issue: these are infinite series. **Convergence?**

- **Solution**

\[U(s_0, s_1 \ldots) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \ldots = \sum_{t \geq 0} \gamma^t r(s_t) \]

- **Discount factor** γ between 0 and 1
 - Set according to how important **present** is VS **future**
 - Note: has to be less than 1 for convergence
From Value to Policy

Now that $V^\pi(s_0)$ is defined what a should we take?

- First, set $V^*(s)$ to be expected utility for \textit{optimal} policy from s
- What’s the expected utility of an action?
 - Specifically, action a in state s?

$$\sum_{s'} P(s'|s, a) V^*(s')$$

All the states we could go to
Transition probability
Expected rewards
Obtaining the Optimal Policy

We know the expected utility of an action.

• So, to get the optimal policy, compute

\[
\pi^*(s) = \arg\max_a \sum_{s'} P(s'|s, a)V^*(s')
\]

All the states we could go to Transition probability Expected rewards

Credit L. Lazbenik
Slight Problem...

Now we can get the optimal policy by doing

$$\pi^*(s) = \arg\max_a \sum_{s'} P(s'|s, a) V^*(s')$$

• So we need to know $V^*(s)$.
 – But it was defined in terms of the optimal policy!
 – So we need some other approach to get $V^*(s)$.
 – Need some other property of the value function!
Bellman Equation

Let’s walk over one step for the value function:

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s,a)V^*(s')$$

- Current state reward
- Discounted expected future rewards

• Bellman: inventor of dynamic programming
Value Iteration

Q: how do we find $V^*(s)$?

• Why do we want it? Can use it to get the best policy
• Know: reward $r(s)$, transition probability $P(s'|s,a)$
• Also know $V^*(s)$ satisfies Bellman equation (recursion above)

A: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s,a)V_i(s')$$
Value Iteration: Demo

Source: POMDPBGallery Julia Package
Summary

• Reinforcement learning setup
• Mathematica formulation: MDP
• Value functions & the Bellman equation
• Value iteration
Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein