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Final exam: you only need to choose one of the main and makeup session. \

Course evaluation: please help with the end-of-semester course evaluation! We 
provide explicit incentives: if the participation rate reaches 50% we will provide some 
details about the final exam; if it reaches 75% or even 95%, we will provide more. 
Please fill in the evaluation which can take just a few minutes. Please also help 
convince more people to do the evaluation. 
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Recall that we have an agent interacting with the world. The interaction happens in 
rounds. In each round, the agent has some observations and takes some actions. The 
actions can change the state of the world, and the observations should consist of 
rewards for the agent.

To describe the state of the world, we introduce a state space S. To describe the 
action, we introduce an action space A. 
What about observations? Here we consider the observations consist of the state of 
the world and the reward. More precisely, at time t, the agent can observe the state 
of the world at that time denoted as s_t, and get a reward at that time denoted as 
r_t. 

In summary, at each iteration t, the agent observes the state s_t and get a reward r_t, 
and then takes an action a_t. Then the state of the world changes to s_{t+1}, and we 
go to the next iteration.

The goal is then to take actions to maximize the rewards. More precisely, we would 
like to have a decision function that takes as input a state and output an action. This 
is called a policy, which is a map from states to actions. 

We still need to formalize three things on this slide:

4



1. State transition
2. Reward function r_t
3. What’s “a policy maximizing the reward”? 
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Use Markov assumption for these two things (and get the MDP framework):
1. State transition
2. Reward function r_t
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What do we mean by “a policy maximizing the reward”? The reward function r(s) is 
only for a state. We need to specify the reward of a policy.

We thus introduce the value function of a policy from an initial state: the expected 
reward collected by the agent following the policy starting from the initial state. 

Two issues: 
1. Randomness in the state sequence: use expectation to address this issue
2. Need to define the reward collected on a state sequence: use sum of discounted 

rewards (discounting is used to ensure convergence). Details on the next slide. 
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Recall the definition of the value function: the expected reward collected by the 
agent following the policy starting from the initial state. 

Value of the policy on G: 100 + 100 * \gamma + 100 * \gamma^2 + …. = 100/(1-
\gamma) = 100/0.2 = 500

Value of the policy on A: 10 + 100 * \gamma + 100 * \gamma^2 + …. = 10 + 
100\gamma/(1-\gamma) = 10 + 100*0.8/0.2 = 410

Value of the policy on B: 20 + 10*\gamma + 100 * \gamma^2 + 100 * \gamma^3 + …. 
= 20 + 10*0.8+ 100\gamma^2/(1-\gamma) = 28 + 100*0.64/0.2 = 348

Value of the policy on C: 20 + 100 * \gamma + 100 * \gamma^2 + …. = 20 + 
100\gamma/(1-\gamma) = 20 + 100*0.8/0.2 = 420
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Introduce the optimal policy \pi* and its value function V*. If we know V*, then we 
can know how to make the best action (ie get \pi*). 

Now we show that if we know V*, then we can make the best decision. 
The idea is similar to decision making on game trees: check the values of the children 
and choose the action that leads to the best value.

What’s the “value” that an action leads to? It’s the expected utility we can collect 
assuming we first take the action and afterwards follow the optimal policy. By 
definition of V*, if the action leads to a next state s’,  then the utility will be V*(s’). We 
have a distribution over s’, so we take  the expectation of V*(s’) over the distribution 
P(s’|s, a). This is the “value” (or the expected utility) of  the action from the current 
state s.
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The optimal action (i.e., the action by the optimal policy) must be the action a* that 
maximizes this expected utility.

Note: Assume for contradiction the optimal policy \pi* chooses another action a 
which doesn’t maximize the expected utility. Then one can obtain  a new policy by 
letting it take the a* action instead of a on the state s. This new policy has a better 
value, a contradiction!  

In summary, if we know V*, then we know the best action: just take the action 
maximizing the expected utility. Now it is sufficient to consider how to compute V*.  
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How to compute V*? Need the property of Bellman equation. Below we show how to 
derive the Bellman’s equation from the definition of the value function and walking 
one step. 
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Recall the definition of the value function. 

To explain better, we consider the tree description of the interaction, similar to what 
we have done for sequential games. 

Current state: s
Different actions lead to different children specified by (s, a) pairs. 
The (s,a) pair then leads to a distribution over the next state s’ according to the state 
transition distribution. 
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Suppose the agent takes an action a and then follows the optimal policy, what’s the 
expected utility (collected reward after taking the action)? 

We can use recursion: assume that we already know the values of the next states s’, 
and use them to compute the expected utility. Then by definition, the collected 
reward following the optimal policy from s’ is just V*(s’). Then the expected utility is 
just the expectation of V*(s’) over the distribution of the next state s’. 
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Therefore, we have 
V*(s) = r(s) + \gamma * \sum_{s’}  P(s’|s, \pi*(s) )   V*(s’)

This depends on the action \pi*(s). 
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What is the best action \pi*(s)? It must be the action that maximizes the expected 
utility \sum_s’ P(s’|s, a) V*(s’), which is the expected collected reward obtained after 
taking the action and then follow the optimal policy. 
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Given what we have from the previous two slides:
V*(s) = r(s) + \gamma * \sum_{s’}  P(s’|s, \pi*(s) )   V*(s’)

and 
\pi*(s) is the maximizer action of \sum_s’ P(s’|s, a) V*(s’),

we know 
V*(s) = r(s) + \gamma * \max_a \sum_{s’}  P(s’|s, a) )   V*(s’)

This is the Bellman equation for the optimal policy. 
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The previous slides are for the Bellman equation for the optimal policy. 

In fact, the same reasoning as Slide 14 gives the Bellman equation for a general 
policy. That for the optimal policy is just a special case. 
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Recall the example and this time use the Bellman equation to compute the value
function when we know the policy.

Consider G. After one step of the policy we get to the next state G deterministically. 
Then by Bellman equation: 

Value of the policy on G = r(G) + \gamma * Value of the policy on G
Then 

Value of the policy on G = r(G) / (1-\gamma) = 100/(1-0.8) = 500

Consider A:
value on A = r(A) + \gamma * value on G = 10 + 0.8 * 500 = 410

Consider B:
value of B = r(B) + \gamma * value on A = 20 + 0.8 * 410 = 348

Consider C:
value of C = r(C) + \gamma * value on G = 20 + 0.8 * 500 = 420

We can see that when we know the policy, it is simpler to use the Bellman equation 
to compute the value function of the policy than to use the definition to compute the 
value function.  
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Back to our original goal of compute V* and then use V* to get \pi*. This time we 
don’t know the policy so cannot do the same as for the example on the previous 
slide. However, we can still use the Bellman equation to do the iterative approach. 
We call this approach value iteration.

However, this approach needs to know the transition model, which is often not clear 
in practice. 
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Note that definition of Q slightly different from the the expected utility of an action 
we talked about in the previous slide: Q includes the reward in s.

From Bellman equation we can introduce Q function. Then V* and \pi* has a simple 
form.

Definition of value function -> Bellman equation -> value iteration; and also Q 
function and Q-learning
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Suppose during training, we observe that: at time t, the agent is in the state s_t and 
gets reward r(s_t), and then takes an action a_t and goes to the next state s_{t+1}. 
Then we can use these observations to update the Q function. 

The update rule RHS can be rewritten as: 
(1-\alpha) Q(s_t, a_t)  + \alpha [ r(s_t) + \gamma \max_a Q(s_{t+1}, a) ]

It’s a weighted sum of two terms: the old value Q(s_t, a_t) and a new estimate r(s_t) 
+ \gamma \max_a Q(s_{t+1}, a). 

Why is r(s_t) + \gamma \max_a Q(s_{t+1}, a)   a good estimate of Q(s_t, a_t)? 
By definition: 

Q(s_t, a_t) = r(s_t) + \gamma E_{s'} V*(s’). 
In training we don’t know the distribution of s’. We only have one sample s_{t+1}, so 
we use this sample to estimate the expectation E_{s’} V*(s’): 

new estimate of Q(s_t, a_t) = r(s_t) + \gamma V*(s_{t+1}).
But we also don’t know V*(s_{t+1}). We can use the current estimation of Q function 
to estimate V*(s_{t+1}) = \max_{a} Q(s_{t+1},a). So we have 

new estimate of Q(s_t, a_t) = r(s_t) + \gamma = \max_{a} Q(s_{t+1},a). 
This then leads to the new estimate in the update rule.

When alpha = 1, we use the new estimate to completely replace the old value. This is 
similar to value iteration. But we use a learning rate 0< alpha <1 to balance the old 
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and new, so that the learning is more stable. 

One thing still needs to be specified: How to choose the action a_t.
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There are two general ways to choose the action a_t. 

1. Choose the action without using the current estimate/information: usually 
choose the action randomly. This is exploration. 

2. Choose the best action based on the current estimate: This is exploitation. 
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A simple but effective method to choose the action to tradeoff exploration and 
exploitation: with a small probability eps (eps is a parameter), the agent choose a 
random action; otherwise choose the best action according to the current estimate 
of Q. 

In summary, in Q-learning
1. First use some method (like epsilon-greedy) to choose an action, get the 

observation s_t, r(s_t), a_t, s_{t+1}. 
2. Use the observations in the update rule (like the one on the previous slide) to 

update the Q value for (s_t, a_t)
3. Repeat 

We can have other action-choosing methods other than epsilon-greedy. We can also 
have other update rules. 
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Another popular update rule is SARSA, which replace the max over actions with 
simply the next action. This is more efficient especially when there are many actions. 

The name comes from the observations used for the update: state s_t, action a_t, 
reward r(s_t), state s_{t+1}, action a_{t+1}. 
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The derivation of the value/Q-learning is based on the discounting model with infinite 
time steps. In practice we often have terminal states where the interactive process 
ends. So need to change the update rule for the terminal states sightly (one example 
to do so for Q-learning is in the homework). 
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In our previous slides, we have thought of Q(s,a) as a table/matrix. Then we update 
the entries of the table and fetch the values for state-action pairs from the table 
when needed.

But we can also use a deep neural network to represent the Q function. This leads to 
Deep Q-Learning. In general, we can use a machine learning model (like deep 
networks) instead of a table to represent the Q function, which is especially useful 
when the table is very large or the state is continuous. 

The input of the network is the state s (or a feature vector of the state). The output is 
a vector, and each output dimension corresponds to the Q value of one action a. 
Then the output number in the dimension for action a is regarded as the value Q(s, 
a).  In this way we can also update the entries of the table (by training the network 
parameters to fit the desired output) and fetch the values for state-action pairs from 
the table when needed (by feeding the state s into the network and picking the 
output entry for action a).
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If we don’t visit every state and try every action, there will be some unvisited (state, 
action) pair. The Q value for this pair won’t be updated and will still be the initial 
value which doesn’t converge to the true value. 
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