
CS 540 Introduction to Artificial Intelligence
Reinforcement Learning II

Yingyu Liang
University of Wisconsin-Madison

Dec 7, 2021
Based on slides by Fred Sala

Announcements (details on Piazza)
• Final Exam information

– On Canvas/Quizzes as midterm; but no one-day window
– Main: Dec 20 2:45-4:45pm
– Makeup: Dec 23 2:45-4:45pm

• Course Evaluation
– Dec 1 to Dec 15
– Explicit incentive: some details about the final exam if the

participation rate reaches 50%/75%/95%

Outline

• Review of reinforcement learning
– MDPs, value functions, Bellman Equation, value iteration

• Q-learning
– Q function, Q-learning, epsilon-greedy, SARSA

Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A
• Information: at time t, observe state st∈ S. Get reward rt
• Agent makes choice at∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A
• State transition model:

– Markov assumption: transition probability only depends on st and at,
and not previous actions or states.

• Reward function: r(st)
• Policy: action to take at a particular state.

Defining the Optimal Policy

For policy p, expected utility over all possible state
sequences from 𝑠! produced by following that policy:

Called the value function (for p, 𝑠!)

𝑉! 𝑠" = %

#$%&$'($#
#)*+),'- .+/0 1!

𝑃 sequence 𝑈(sequence)

Discounting Rewards

One issue: these are infinite series. Convergence?
• Solution

• Discount factor g between 0 and 1
– Set according to how important present is VS future
– Note: has to be less than 1 for convergence

Example

A 10

B 20 C 20

G 100

Deterministic transition. 𝛾 = 0.8, policy shown in red arrow.

Values and Policies

Now that 𝑉" 𝑠! is defined what a should we take?
• First, set V*(s) to be expected utility for optimal policy from s
• What’s the expected utility of an action?
– Specifically, action a in state s?

All the states we
could go to

Transition probability Expected rewards

Obtaining the Optimal Policy

We know the expected utility of an action.
• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards Credit L. Lazbenik

Bellman Equation

Let’s walk over one step for the value function:

Discounted expected
future rewards

Current state
reward

Credit L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• Define state utility 𝑉∗ 𝑠 as the expected sum of
discounted rewards if the agent executes an
optimal policy starting in state s

Image source: L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• What is the expected utility of taking action a in
state s?

2
!"

𝑃(𝑠′|𝑠, 𝑎)𝑉∗ 𝑠′

Image source: L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• What is the recursive expression for 𝑉∗ 𝑠 in terms
of 𝑉∗ 𝑠′ - the utilities of its successors?

𝑉∗ 𝑠 = 𝑟 𝑠 + 𝛾2
!!
𝑃 𝑠" 𝑠, 𝜋∗(𝑠) 𝑉∗(𝑠")

Image source: L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• How do we choose the action?

𝜋∗ 𝑠 = arg max$2
!!
𝑃 𝑠" 𝑠, 𝑎 𝑉∗(𝑠")

Image source: L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• What is the recursive expression for 𝑉∗ 𝑠 in terms
of 𝑉∗ 𝑠′ - the utilities of its successors?

𝑉∗ 𝑠 = 𝑟 𝑠 + 𝛾 max$2
!!
𝑃 𝑠" 𝑠, 𝑎 𝑉∗(𝑠")

Image source: L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• The same reasoning gives the Bellman equation for
a general policy:

𝑉% 𝑠 = 𝑟 𝑠 + 𝛾2
!!
𝑃 𝑠" 𝑠, 𝜋(𝑠) 𝑉%(𝑠")

Image source: L. Lazbenik

Example

A 10

B 20 C 20

G 100

Deterministic transition. 𝛾 = 0.8, policy shown in red arrow.

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)
• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Q-Learning

What if we don’t know transition probability P(s’|s,a)?
• Need a way to learn to act without it
• Q-learning: get an action-utility function Q(s,a) that tells us

the value of doing a in state s (including the reward in s)

• Note: V*(s) = maxa Q(s,a)
• Now, we can just do 𝜋∗ 𝑠 = arg maxG𝑄 𝑠, 𝑎

– But need to estimate Q!

𝑄(𝑠, 𝑎) = 𝑟 𝑠 + 𝛾+
!&
𝑃 𝑠" 𝑠, 𝑎 𝑉∗(𝑠")

Q-Learning Iteration

How do we get Q(s,a)?
• Similar iterative procedure

Idea: combine old value and new estimate of future value.
Note: We are using a policy to take actions; based on the
estimated Q!

Learning rate

Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons:
• Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?
• With some 0<ε<1 probability, take a random action at each

state, or else the action with highest Q(s,a) value.

Q-Learning: SARSA

An alternative:
• Just use the next action, no max over actions:

• Called state–action–reward–state–action (SARSA)
• Can use with epsilon-greedy policy

Learning rate

Q-Learning Details

Note: if we have a terminal state, the process ends
• An episode: a sequence of states ending at a terminal state
• Want to run on many episodes
• Slightly different Q-update for terminal states (see

homework!)

Deep Q-Learning

How do we get Q(s,a)?

Mnih et al, "Human-level control through deep reinforcement learning"

Summary of RL

• Reinforcement learning setup
• Mathematical formulation: MDP
• Value functions & the Bellman equation
• Value iteration
• Q-learning

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik,
Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

