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Probability theory tells us how to handle probabilities. But the probability terms (like 
those on the right hand of Bayes’ rule) are unknown; in practice, we need to estimate 
them using data. 

This falls in statistics: how to estimate various properties of the distribution given 
samples from the distribution. 
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Theory about how close the estimate is to the truth:
1. Law of large numbers: the sample mean tends to the true mean in the infinity 

limit
2. CLT: the average of independent random variables looks like the normal 

distribution in the infinity limit
3. Concentration inequalities: quantitative analysis of the error for finite samples 

(instead of the infinity limit)
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(0+1+1+4+4+0+1+4)/8 = 15/8
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In one extreme, all samples have the same value. Then the estimated probability for 
all the other 99 values will be 0.

In the other extreme, all samples have different values. Then the estimated 
probability for the other 50 values will be 0.
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A vector is usually regarded as a column vector (ie, a matrix of dimension d by 1). 
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If two vectors have 0 inner product then we say they are orthogonal.

Note that the slide shows the l2 norm (Euclidean norm) of the vector. There exists 
other norms. 
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See more details in the lectures on neural networks. 
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Matrix C=AB, then the entry of C at row i and column j is the inner product of the row 
i of A and the column j of B. 
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For any matrix A that can be multiplied with I (ie, of the same dimension as I), we 
have A = AI = IA. 
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Eigenvectors are those directions along which A only stretch (by a scaling factor = 
eigenvalue) but not rotate.
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Dimensionality Reduction: take the original data point, map it to a point in a lower 
dimension. 

Would like to minimize information loss. The “information loss” can vary, and 
different definitions of information loss lead to different reduction techniques. 
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Let e_i denote the basis vectors. 

Clearly:
A e_1 = 2 e_1
A e_2 = 5 e_2
A e_3 = 1 e_1
So the eigenvalues are 2 5 1, and the corresponding eigenvectors are e_1 e_2 and 
e_3. 
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If we use 5X or 1X, then we need 200,000 or 1000,000 bits. 
If we use 20X, then we need 50,000 bits.
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PCA is a classic dimensionality reduction method. It’s good for the case when the 
data points are close to a low dimensional subspace. 
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Suppose the ideal case when the data points are in dim D, but close to a low 
dimensional subspace with dim d. PCA is going to find the d axes of that subspace, 
then project to that subspace to get a lower dimensional representation (ie, 
represent the projection using the axes of the subspace and thus get a representation 
of dim d).
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How to find the axes in the general case? We need to define a metric measuring the 
quality of the axes. 

Consider the case mapping to 1 dimension, ie, would like to find one axis. Then 
intuitively, we would like the projected data on that axis to be spread out.
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Consider the case mapping to r dimension, ie, would like to find r axes. Then we can 
define them sequentially, still wanting to maximize the variance of the projected data. 
We further need them to be orthogonal to each other (so that they form the axes of a 
subspace). Usually, we also require them to be of unit length (ie, the Euclidean norm 
= 1), so that they are directions (unit length vectors).
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Formal definition. 

We assume the data are centered (ie, average=0). This is to simplify the computation 
later on.
If not centered, we can compute the average of the data, and subtract that from all 
the data points. Then we can get a centered dataset.

We can stack the data points as rows in a matrix, then we get a matrix X. In other 
words, the i-th row of X is the point x_i. 
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Formal definition continued. 

The quality or score of the directions are defined as the variance of the projections. 
How to compute the variance? 
1. Let v be a direction (ie, a unit-length vector). Then the length of the projection of a 
point x_i on v is just the inner product <x_i, v>. This is also the representation of x_i’s
projection using the axis v. 
2. The mean of the projections are \sum_i <x_i, v>  = <\sum_i x_i,  v> = <0, v> = 0. 
Note that this is where we use the assumption that the data are centered, and this 
simplifies the computation.
3. Then the variance is   \sum_i (<x_i, v>  - mean of projections)^2  = \sum_i <x_i, 
v>^2.  This is exactly the squared Euclidean norm of Xv, where X is a matrix obtained 
by stacking x_i as the i-th row. 

Given the math expression of the variance of the projections, we can then compute 
the principle components recursively. 
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Formal definition continued. 

The first component is just the direction (unit-length vector) that maximizes the 
variance of the projection, among all directions. 
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Formal definition continued. 

The second component is just the direction that maximizes the variance of the 
projection, among all directions orthogonal to the already found first component.
The third component is just the direction that maximizes the variance of the 
projection, among all directions orthogonal to the already found first and second 
components.
…
This defines the principal components. 

To compute the k-th component given the first (k-1) components, we can remove the 
part of the data along the already found components. 
That is, from each point x_j, subtract its projection on the first (k-1) components. 
1. Recall that the length of the projection on v_i is <x_j, v_i> = x_i^T v_i, so the 

vector form of the projection is <x_j, v_i> v_i = x_j^T v_i v_i^T
2. Then we compute x_j^T – \sum_{i=1}^k  x_j^T v_i v_i^T
3. In matrix form, it’s just  X - \sum_{i=1}^k Xv_i v_i^T. This is called deflation. 
Then (the direction that maximizes the variance of the projection of the deflated 
data) will be (the direction that maximizes the variance of the projection of the 
original data among all directions orthogonal to the already found k-1 components). 
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This thus gives a recursive method to compute the principal components. 
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It can be proved that the first k principal components are just the top k eigenvectors 
of the Gram matrix with the largest eigenvalues. (This course doesn’t require 
understanding this.)
When the data are centered, the Gram matrix is just (proportional to) the sample 
covariance matrix. 

This gives a method to compute the principal components:
1. Center the data
2. Compute the Gram matrix
3. Find the top k eigenvectors of the Gram matrix 
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We divide the images into 12x12 patches, and flatten the patches into 144-dim 
vectors. These vectors are our dataset. 
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We compute the principal components (which are 144-dim vectors). We convert 
them back to 12x12 patches and visualize them. 
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We can compute the projection of the original patches to the found 6 principal 
components, ie,  <x_i, v_i> v_i^T. 
This is the compressed image. 
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Compute <[1,2], [0,1]> [0, 1] = [0, 2] 
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The number of principal components is smaller or equal to the original dimension. 
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