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Review: Bayesian Inference

* Conditional Prob. & Bayes:

P(E|H)P(H)

P(H|E) = P(E)

* H:some class we’d like to infer from evidence
— Need to plug in prior, likelihood, etc.
— How to estimate?




Samples and Estimation

* Usually, we don’t know the distribution (P)
— Instead, we see a bunch of samples

* Typical statistics problem: estimate
parameters from samples
— Estimate probability P(H)
— Estimate the mean E[X]
— Estimate parameters PO( X )

Probability theory tells us how to handle probabilities. But the probability terms (like
those on the right hand of Bayes’ rule) are unknown; in practice, we need to estimate

them using data.

This falls in statistics: how to estimate various properties of the distribution given
samples from the distribution.




Samples and Estimation

* Typical statistics problem: estimate
parameters from samples
— Estimate probability P(H)
— Estimate the mean FE[X]
— Estimate parameters [, (X)

e Example: Bernoulli with parameter p
— Mean E[X]isp




Examples: Sample Mean

e Bernoulli with parameter p

* Seesamples T1,%2,...,Ty
— Estimate mean with sample mean

R 1 mn
EX]=-Y z
[X] n;:v

— No different from counting heads




Estimation Theory

How do we know that the sample mean is a good
estimate of the true mean?
— Law of large numbers

— Central limit theorems

— Concentration inequalities

P(E[X] - EX|| > t) Sexp(-202) ||\t

Wolfram Demo

Theory about how close the estimate is to the truth:

1.

Law of large numbers: the sample mean tends to the true mean in the infinity
limit

CLT: the average of independent random variables looks like the normal
distribution in the infinity limit

Concentration inequalities: quantitative analysis of the error for finite samples
(instead of the infinity limit)




Break & Quiz

Q 2.1: You see samples of X given by
[0,1,1,2,2,0,1,2]. Empirically estimate E[X?]

A. 9/8

B. 15/8

G 15

D. There aren’t enough samples to estimate E[X?]




Break & Quiz

Q 2.1: You see samples of X given by
[0,1,1,2,2,0,1,2]. Empirically estimate E[X?]

A. 9/8

B. 15/8

G 15

D. There aren’t enough samples to estimate E[X?]

(0+1+1+4+4+0+1+4)/8 = 15/8




Break & Quiz

Q 2.2: You are empirically estimating P(X) for some random
variable X that takes on 100 values. You see 50 samples. How
many of your P(X=a) estimates might be 0?

None.

Between 5 and 50, exclusive.
Between 50 and 100, inclusive.
Between 50 and 99, inclusive.

0N wp




Break & Quiz

Q 2.2: You are empirically estimating P(X) for some random
variable X that takes on 100 values. You see 50 samples. How
many of your P(X=a) estimates might be 0?

None.

Between 5 and 50, exclusive.
Between 50 and 100, inclusive.
. Between 50 and 99, inclusive.

o0 wp

In one extreme, all samples have the same value. Then the estimated probability for
all the other 99 values will be 0.

In the other extreme, all samples have different values. Then the estimated
probability for the other 50 values will be 0.
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Linear Algebra: What is it good for?

* Everything is a function
— Multiple inputs and outputs

* Linear functions
— Simple, tractable

* Study of linear functions
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In Al/ML Context

Building blocks for all models
- E.g., linear regression; part of neural networks
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Basics: Vectors

Vectors
* Many interpretations \j[ )
— Physics: magnitude + direction 1
X2
— Point in a space = |x3
: : " L4
— List of values (represents information)
L5
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Basics: Vectors

* Dimension ]
— Number of values 0 & R

— Higher dimensions: richer but more complex
* Al/ML: often use very high dimensions:
— Ex: images!

2 .
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ayer layer laye class

layer

Cezanne Camacho CNN
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Basics: Matrices

* Again, many interpretations
— Represent linear transformations
— Apply to a vector, get another vector

— Also, list of vectors B
All
* Not necessarily square = | Az
— Indexing! A € Rexd _A31

— Dimensions: #rows x #columns
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Basics: Transposition

* Transposes: flip rows and columns

— Vector: standard is a column. Transpose: row
— Matrix: gofrommxntonxm

T
ry1| r = [1’1 L9 l‘g}
r = |T2 A
, 11
I3
e A A Azl AT = |Ap
Agp Agp  Apz Az

Asy
Ago
Ass

A vector is usually regarded as a column vector (ie, a matrix of dimension d by 1).
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Vector Operations

— Addition, Scalar Multiplication
— Inner product (e.g., dot product)

751
T . e s -
<T,Yy>=Tr Y= [1‘1 T2 I3] Y2 | = T1y1 + T2Yy2 + T3Y3
Y3
— Outer product
I I1yr T1Y2 T1Y3
T
zy’ = |z2| (11 2 ys] = [z2yn w2y m2ys
L3 r3Yy1 T3Yy2 T3Y3
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Vector Operations

* Inner product defines “orthogonality”
— If{z,y) =0

* Vector norms: “size”

If two vectors have 0 inner product then we say they are orthogonal.

Note that the slide shows the I2 norm (Euclidean norm) of the vector. There exists
other norms.
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Matrix & Vector Operations

* Addition, scalar multiplication

* Matrix-Vector multiply
— linear transformation: plug in vector, get another vector
— Each entry in Ax is the inner product of a row of A with x
[ A1+ Apxe + ...+ Ajpzy, |

i A2171 + AT + ... + A2nTy
= :

_A-n 1L1 + An2 Zr2 sk A-n.-n.il?n_
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Matrix & Vector Operations

Ex: feedforward neural networks. Input x.

* QOutput of layer k is i A
nonlinearity \ . ¢
(&) (N _ YT p(k—1) (LA
fH(x)=o(W f T(ﬂv))) X
T Output of layer k-1: vector
Output of layer k: vector Weight matrix for layer k:

Note: linear transformation!

Wikipedia

See more details in the lectures on neural networks.
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Matrix & Vector Operations

* Matrix multiplication

o

— “Composition” of linear transformations

— Not commutative (in general)!

o
~N
._0'
w

o
N

=2
N
w

— Lots of interpretations

O
| |

Wikipedia

Matrix C=AB, then the entry of C at row i and column j is the inner product of the row

i of A and the column j of B.
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More on Matrices: Identity

* |dentity matrix:
— Like “1” 10

— Multiplying by it gets back the 0 1
same matrix or vector I=.

— Rows & columns are the =
“standard basis vectors” ¢;

For any matrix A that can be multiplied with | (ie, of the same dimension as ), we
have A = Al = |A.
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More on Matrices: Inverses

e IfforAthereisaBsuchthat AB=BA=1T

— Then A is invertible/nonsingular, B is its inverse
— Some matrices are not invertible!

— Usual notation: A1
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Eigenvalues & Eigenvectors

* For a square matrix A, solutions to AU — )\U

— v (nonzero) is a vector: eigenvector
— )\ is a scalar: eigenvalue

— Intuition: A'is a linear transformation;
— Can stretch/rotate vectors;
— E-vectors: only stretched (by e-vals)

Y
Ay

y

0 Wikipedia

X

Eigenvectors are those directions along which A only stretch (by a scaling factor =

eigenvalue) but not rotate.

24



Dimensionality Reduction

* Vectors used to store features
— Lots of data -> lots of features!

* Document classification

— Each doc: thousands of words, etc.
* Netflix surveys: 480189 users x 17770 movies

movie | | movie 2 | movie 3 | movie 4 | movie H | movie 6

Tom 5 ? 7 1 3 ?
George ? 3 1 2 5
Susan 4 | . 1 i o |
Beth Rl 3 ? 2 -4 2

25



Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points
x 20 objects .

* Oranyimage B ,“-,]

= =S
SEE==EE

= Sl

~ II—‘,W. e e
Tﬂi
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Dimensionality Reduction

Reduce dimensions
* Why?

— Lots of features redundant
— Storage & computation costs

e Goal: take a:EIRd—mERT for 7 <<d

— But, minimize information loss

bojgaaizeasd

Dimensionality Reduction: take the original data point, map it to a point in a lower
dimension.

Would like to minimize information loss. The “information loss” can vary, and
different definitions of information loss lead to different reduction techniques.
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Examples: 3D to 2D

Andrew Ng

Compression
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Break & Quiz

Q 2.1: What is the inverse of 0 2
A=
3 0
A. : =, -3 0
8= [0 —2]
B. : P [0 L:|
Al=|] 3
% 0

C. Undefined / A is not invertible
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Break & Quiz

Q 2.1: What is the inverse of 0 2
A=
3 0
A. : =, -3 0
Al = [0 _2]
B. : ; _1_[0 L:|
Al=|] 3
5 0

C. Undefined / A is not invertible
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Break & Quiz

Q 2.2: What are the eigenvalues of A =

-1,2,4
0:5, 0.2,1.0
0,25
29y 1

o0 wp

O O N
o v O
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Break & Quiz

2 0 0
Q 2.2: What are the eigenvaluesof A= [0 5 0
0 0 1
A -1,2,4
B.. 0.5, 02,1.0
C. 0,25
D. 2,9, 1

Let e_i denote the basis vectors.

Clearly:

Ae 1=2e_1

Ae 2=5e 2

Ae 3=1e_1

So the eigenvalues are 2 5 1, and the corresponding eigenvectors aree_1e_2 and
e_3.




Break & Quiz

Q 2.3: Suppose we are given a dataset with n=10000
samples with 100-dimensional binary feature vectors. Our
storage device has a capacity of 50000 bits. What’s the
lower compression ratio we can use?

A.

B.
C.
D.: X

20X
100X
5X
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Break & Quiz

Q 2.3: Suppose we are given a dataset with n=10000
samples with 100-dimensional binary feature vectors. Our
storage device has a capacity of 50000 bits. What’s the
lower compression ratio we can use?

A. 20X
B. 100X
C. 5X

D. 1X

If we use 5X or 1X, then we need 200,000 or 1000,000 bits.
If we use 20X, then we need 50,000 bits.
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Principal Components Analysis (PCA)

* Atype of dimensionality reduction approach
— For when data is approximately lower dimensional

PCA is a classic dimensionality reduction method. It’s good for the case when the
data points are close to a low dimensional subspace.
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Principal Components Analysis (PCA)

* Goal: find axes of a subspace
— Will project to this subspace; want to preserve data

Suppose the ideal case when the data points are in dim D, but close to a low
dimensional subspace with dim d. PCA is going to find the d axes of that subspace,
then project to that subspace to get a lower dimensional representation (ie,
represent the projection using the axes of the subspace and thus get a representation
of dim d).
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Principal Components Analysis (PCA)

* From 2D to 1D:
— Finda v; € R?  so that we maximize “variability”
— |E,

— New representations are along this vector (1D!)

How to find the axes in the general case? We need to define a metric measuring the
quality of the axes.

Consider the case mapping to 1 dimension, ie, would like to find one axis. Then
intuitively, we would like the projected data on that axis to be spread out.
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Principal Components Analysis (PCA)

* From d dimensions to r dimensions-
— Sequentially get vy, vs, ..., v, € RY
— Orthogonal! Also, of unit length
— Still maximize “variability”
— The vectors are the principal compon

Victor Powell

Consider the case mapping to r dimension, ie, would like to find r axes. Then we can

define them sequentially, still wanting to maximize the variance of the projected data.

We further need them to be orthogonal to each other (so that they form the axes of a
subspace). Usually, we also require them to be of unit length (ie, the Euclidean norm
= 1), so that they are directions (unit length vectors).
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PCA Setup

* Inputs
— Data: 1,22, .., Tn, T; € R
— Can arrange into X e R™Xd
1 n
— Centered! -y ;=0 '
n i1 A\
¢ OUtPUts ' Victor Powell

— Principal components vy, vy, ...,v, € RY
— Orthogonal! Also, of unit length

Formal definition.

We assume the data are centered (ie, average=0). This is to simplify the computation
later on.

If not centered, we can compute the average of the data, and subtract that from all
the data points. Then we can get a centered dataset.

We can stack the data points as rows in a matrix, then we get a matrix X. In other
words, the i-th row of X is the point x_i.
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PCA Goals

* Want directions/components (unit vectors) so that

— Projecting data maximizes variance .

— What'’s variance of the projections? Z(«’L‘-i- ,U>2: ol

=1
* Do this recursively
— Get orthogonal directions vy, v9,..., 0, € R?

Formal definition continued.

The quality or score of the directions are defined as the variance of the projections.
How to compute the variance?

1. Let v be a direction (ie, a unit-length vector). Then the length of the projection of a
point x_i on v is just the inner product <x_i, v>. This is also the representation of x_i’s
projection using the axis v.

2. The mean of the projections are \sum_i <x_i, v> =<\sum_ix_i, v> =<0, v>=0.
Note that this is where we use the assumption that the data are centered, and this
simplifies the computation.

3. Then the variance is \sum_i (<x_i, v> - mean of projections)*2 =\sum_i<x_i,
v>"2. This is exactly the squared Euclidean norm of Xv, where X is a matrix obtained
by stacking x_i as the i-th row.

Given the math expression of the variance of the projections, we can then compute
the principle components recursively.
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PCA First Step

* First component,
n

v; = arg max Y (v,x;)?

* Same as getting

v1 = arg max || Xv|?
lvfl=1

Formal definition continued.

The first component is just the direction (unit-length vector) that maximizes the

variance of the projection, among all directions.
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PCA Recursion

* Once we have k-1 components, next?

k—1
X=X - Z X!
* Then do the same thing Deflation

Vp = arg max H)A(kaQ
|v]|=1

Formal definition continued.

The second component is just the direction that maximizes the variance of the
projection, among all directions orthogonal to the already found first component.
The third component is just the direction that maximizes the variance of the
projection, among all directions orthogonal to the already found first and second
components.

This defines the principal components.

To compute the k-th component given the first (k-1) components, we can remove the

part of the data along the already found components.

That is, from each point x_j, subtract its projection on the first (k-1) components.

1. Recall that the length of the projection on v_iis <x_j, v_i>=x_i*T v_i, so the
vector form of the projection is <x_j, v_i>v_i=x_jATv_iv_i*"T

2. Then we compute x_jAT —\sum_{i=1}*k x_jAT v_iv_irT

3. In matrix form, it’s just X - \sum_{i=1}*k Xv_i v_i*T. This is called deflation.

Then (the direction that maximizes the variance of the projection of the deflated

data) will be (the direction that maximizes the variance of the projection of the

original data among all directions orthogonal to the already found k-1 components).
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This thus gives a recursive method to compute the principal components.
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PCA Interpretations

* The V’s are eigenvectors of X’X (Gram matrix)
— Show via Rayleigh quotient

* X'X (proportional to) sample covariance matrix
— When data is 0 mean!
— l.e., PCA is eigendecomposition of sample covariance

* Nested subspaces span(v1), span(v,v2),...,figee

It can be proved that the first k principal components are just the top k eigenvectors
of the Gram matrix with the largest eigenvalues. (This course doesn’t require
understanding this.)

When the data are centered, the Gram matrix is just (proportional to) the sample
covariance matrix.

This gives a method to compute the principal components:
1. Center the data

2. Compute the Gram matrix

3. Find the top k eigenvectors of the Gram matrix
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Lots of Variations

* PCA, Kernel PCA, ICA, CCA

— Unsupervised techniques to extract structure from high
dimensional dataset

Uses:

— Visualization
— Efficiency

— Noise removal

— Downstream machine learning use

STHDA
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Application: Image Compression

 Start with image; divide into 12x12 patches
— |.E., 144-D vector

— Original image:

We divide the images into 12x12 patches, and flatten the patches into 144-dim
vectors. These vectors are our dataset.
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Application: Image Compression

* 6 most important components (as an image)

2 4 6 8 10 12

2 4 & 8 10 12 2 4 6 8 10 12

2 4 6 8 0 112 2 4 86 8 10 12

We compute the principal components (which are 144-dim vectors). We convert
them back to 12x12 patches and visualize them.
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Application: Image Compression

* Project to 6D,

Compressed

We can compute the projection of the original patches to the found 6 principal
components, ie, <x_i, v_i>Vv_i*T.
This is the compressed image.
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Q 3.1: What is the projection of [1 2]"onto [0 1]7 ?

e A.[12]
« B.[-11]
« C.[00]
« D.[02]

Break & Quiz
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Q 3.1: What is the projection of [1 2]"onto [0 1]7 ?

e A.[12]
« B.[-11]
« C.[00]
e D.[02]

Break & Quiz

Compute <[1,2], [0,1]> [0, 1]

=10, 2]

49



Break & Quiz

Q 3.2: We wish to run PCA on 10-dimensional data in order
to produce r-dimensional representations. Which is the
most accurate?

A.r<3

B.r<10
C.r<10
D.r<20
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Break & Quiz

Q 3.2: We wish to run PCA on 10-dimensional data in order
to produce r-dimensional representations. Which is the
most accurate?

A.r<3

B.r<10
C.r<10
D.r<20

The number of principal components is smaller or equal to the original dimension.
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