CS 540 Introduction to Artificial Intelligence Statistics \& Linear Algebra Review

Yingyu Liang
University of Wisconsin-Madison Sept 21, 2021

Based on slides by Fred Sala

Review: Bayesian Inference

- Conditional Prob. \& Bayes:

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
$$

- H: some class we'd like to infer from evidence
- Need to plug in prior, likelihood, etc.
- How to estimate?

Samples and Estimation

- Usually, we don't know the distribution (P)
- Instead, we see a bunch of samples
- Typical statistics problem: estimate parameters from samples
- Estimate probability $P(H)$
- Estimate the mean $E[X]$
- Estimate parameters $P_{\theta}(X)$

Samples and Estimation

- Typical statistics problem: estimate parameters from samples
- Estimate probability $P(H)$
- Estimate the mean $E[X]$
- Estimate parameters $P_{\theta}(X)$
- Example: Bernoulli with parameter p
- Mean $E[X]$ is p

Examples: Sample Mean

- Bernoulli with parameter p
- See samples $x_{1}, x_{2}, \ldots, x_{n}$
- Estimate mean with sample mean

$$
\hat{\mathbb{E}}[X]=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- No different from counting heads

Estimation Theory

- How do we know that the sample mean is a good estimate of the true mean?
- Law of large numbers
- Central limit theorems
- Concentration inequalities

$$
P(|\mathbb{E}[X]-\hat{\mathbb{E}}[X]| \geq t) \leq \exp \left(-2 n t^{2}\right)
$$

Linear Algebra: What is it good for?

- Everything is a function
- Multiple inputs and outputs
- Linear functions
- Simple, tractable
- Study of linear functions

In AI/ML Context

Building blocks for all models

- E.g., linear regression; part of neural networks

Hieu Tran

Stanford CS231n

Basics: Vectors

Vectors

- Many interpretations
- Physics: magnitude + direction
- Point in a space

- List of values (represents information)

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]
$$

Basics: Vectors

- Dimension
- Number of values $\quad x \in \mathbb{R}^{d}$
- Higher dimensions: richer but more complex
- $\mathrm{Al} / \mathrm{ML}$: often use very high dimensions:
- Ex: images!

Basics: Matrices

- Again, many interpretations
- Represent linear transformations
- Apply to a vector, get another vector
- Also, list of vectors
- Not necessarily square
- Indexing! $\quad A \in \mathbb{R}^{c \times d}$

$$
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
$$

- Dimensions: \#rows x \#columns

Basics: Transposition

- Transposes: flip rows and columns
- Vector: standard is a column. Transpose: row
- Matrix: go from $m \times n$ to $n \times m$

$$
\begin{array}{r}
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] x^{T}=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right] \\
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right] \quad A^{T}=\left[\begin{array}{ll}
A_{11} & A_{21} \\
A_{12} & A_{22} \\
A_{13} & A_{23}
\end{array}\right]
\end{array}
$$

Vector Operations

- Addition, Scalar Multiplication
- Inner product (e.g., dot product)

$$
<x, y>:=x^{T} y=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

- Outer product

$$
x y^{T}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} \\
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3} \\
x_{3} y_{1} & x_{3} y_{2} & x_{3} y_{3}
\end{array}\right]
$$

Vector Operations

- Inner product defines "orthogonality"
- If $\langle x, y\rangle=0$
- Vector norms: "size"

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

Matrix \& Vector Operations

- Addition, scalar multiplication
- Matrix-Vector multiply
- linear transformation: plug in vector, get another vector
- Each entry in $A x$ is the inner product of a row of A with x

$$
A x=\left[\begin{array}{c}
A_{11} x_{1}+A_{12} x_{2}+\ldots+A_{1 n} x_{n} \\
A_{21} x_{1}+A_{22} x_{2}+\ldots+A_{2 n} x_{n} \\
\vdots \\
A_{n 1} x_{1}+A_{n 2} x_{2}+\ldots+A_{n n} x_{n}
\end{array}\right]
$$

Matrix \& Vector Operations

Ex: feedforward neural networks. Input x.

- Output of layer k is

Matrix \& Vector Operations

- Matrix multiplication
- "Composition" of linear transformations
- Not commutative (in general)!
- Lots of interpretations

More on Matrices: Identity

- Identity matrix:
- Like "1"
- Multiplying by it gets back the same matrix or vector
- Rows \& columns are the

$$
I=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$ "standard basis vectors" e_{i}

More on Matrices: Inverses

- If for A there is a B such that $A B=B A=I$
- Then A is invertible/nonsingular, B is its inverse
- Some matrices are not invertible!
- Usual notation: A^{-1}

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \times\left[\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right]=I
$$

Eigenvalues \& Eigenvectors

- For a square matrix A, solutions to $A v=\lambda v$
$-v$ (nonzero) is a vector: eigenvector
$-\lambda$ is a scalar: eigenvalue
- Intuition: A is a linear transformation;
- Can stretch/rotate vectors;
- E-vectors: only stretched (by e-vals)

Dimensionality Reduction

- Vectors used to store features
- Lots of data -> lots of features!
- Document classification
- Each doc: thousands of words, etc.
- Netflix surveys: 480189 users x 17770 movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	$?$	$?$	1	3	$?$
George	$?$	$?$	3	1	2	5
Susan	4	3	1	$?$	5	1
Beth	4	3	$?$	2	4	2

Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points x 20 objects

- Or any image

Dimensionality Reduction

Reduce dimensions

- Why?
- Lots of features redundant
- Storage \& computation costs
- Goal: take $x \in \mathbb{R}^{d} \rightarrow x \in \mathbb{R}^{r}$ for $r \ll d$
- But, minimize information loss

Compression

Examples: 3D to 2D

Andrew Ng

Principal Components Analysis (PCA)

- A type of dimensionality reduction approach
- For when data is approximately lower dimensional

Principal Components Analysis (PCA)

- Goal: find axes of a subspace
- Will project to this subspace; want to preserve data

Principal Components Analysis (PCA)

- From 2D to 1D:
- Find a $v_{1} \in \mathbb{R}^{d}$ so that we maximize "variability"
- IE,

- New representations are along this vector (1D!)

Principal Components Analysis (PCA)

- From d dimensions to r dimensions
- Sequentially get $v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{R}^{d}$
- Orthogonal!
- Still maximize "variability"
- The vectors are the principal compon

Victor Powell

PCA Setup

- Inputs

- Data: $\quad x_{1}, x_{2}, \ldots, x_{n}, x_{i} \in \mathbb{R}^{d}$
- Can arrange into
- Centered!
- Outputs

$$
\begin{gathered}
X \in \mathbb{R}^{n \times d} \\
\frac{1}{n} \sum_{i=1}^{n} x_{i}=0
\end{gathered}
$$

Victor Powell

- Principal components $v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{R}^{d}$
- Orthogonal!

PCA Goals

- Want directions/components (unit vectors) so that
- Projecting data maximizes variance
- What's variance of the projections? $\sum_{i=1}^{n}\left\langle x_{i}, v\right\rangle^{2}=\|X v\|^{2}$
- Do this recursively
- Get orthogonal directions $v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{R}^{d}$

PCA First Step

- First component,

$$
v_{1}=\arg \max _{\|v\|=1} \sum_{i=1}^{n}\left\langle v, x_{i}\right\rangle^{2}
$$

- Same as getting

$$
v_{1}=\arg \max _{\|v\|=1}\|X v\|^{2}
$$

PCA Recursion

- Once we have k - 1 components, next?

$$
\hat{X}_{k}=X-\sum_{i=1}^{k-1} X v_{i} v_{i}^{T}
$$

- Then do the same thing

Deflation

$$
v_{k}=\arg \max _{\|v\|=1}\left\|\hat{X}_{k} v\right\|^{2}
$$

PCA Interpretations

- The v's are eigenvectors of $X^{\top} X$ (Gram matrix)
- Show via Rayleigh quotient
- $X^{\top} X$ (proportional to) sample covariance matrix
- When data is 0 mean!
- I.e., PCA is eigendecomposition of sample covariance
- Nested subspaces span(v1), span(v1,v2),...,

Lots of Variations

- PCA, Kernel PCA, ICA, CCA
- Unsupervised techniques to extract structure from high dimensional dataset
- Uses:
- Visualization
- Efficiency
- Noise removal
- Downstream machine learning use

Application: Image Compression

- Start with image; divide into 12×12 patches
- I.E., 144-D vector
- Original image:

Application: Image Compression

- 6 most important components (as an image)

Application: Image Compression

- Project to 6D,

Compressed

Original

