

CS 540 Introduction to Artificial Intelligence Statistics & Linear Algebra Review

Yingyu Liang University of Wisconsin-Madison Sept 21, 2021

Based on slides by Fred Sala

Review: Bayesian Inference

• Conditional Prob. & Bayes:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

- *H*: some class we'd like to infer from evidence
 - Need to plug in prior, likelihood, etc.
 - How to estimate?

Samples and Estimation

- Usually, we don't know the distribution (P)
 - Instead, we see a bunch of samples
- Typical statistics problem: estimate parameters from samples
 - Estimate probability P(H)
 - Estimate the mean E[X]
 - Estimate parameters $P_{\theta}(X)$

Samples and Estimation

- Typical statistics problem: estimate parameters from samples
 - Estimate probability P(H)
 - Estimate the mean E[X]
 - Estimate parameters $P_{\theta}(X)$
- Example: Bernoulli with parameter *p*
 - Mean E[X] is p

Examples: Sample Mean

- Bernoulli with parameter *p*
- See samples x_1, x_2, \ldots, x_n
 - Estimate mean with **sample mean**

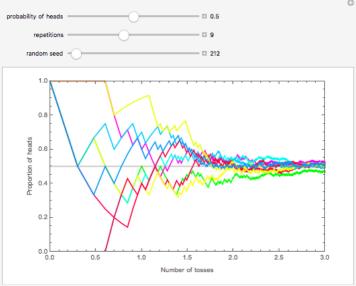
$$\hat{\mathbb{E}}[X] = \frac{1}{n} \sum_{i=1}^{n} x_i$$

No different from counting heads

Estimation Theory

- How do we know that the sample mean is a good estimate of the true mean?
 - Law of large numbers
 - Central limit theorems
 - Concentration inequalities

 $P(|\mathbb{E}[X] - \hat{\mathbb{E}}[X]| \ge t) \le \exp(-2nt^2)$



Wolfram Demo

Linear Algebra: What is it good for?

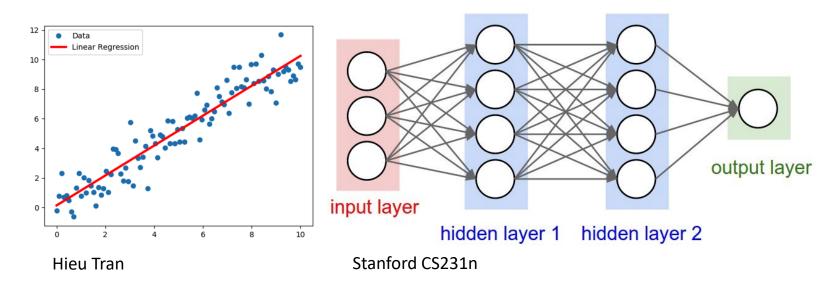
- Everything is a **function**
 - Multiple inputs and outputs

- Linear functions
 - Simple, tractable
- Study of linear functions

In AI/ML Context

Building blocks for all models

- E.g., linear regression; part of neural networks

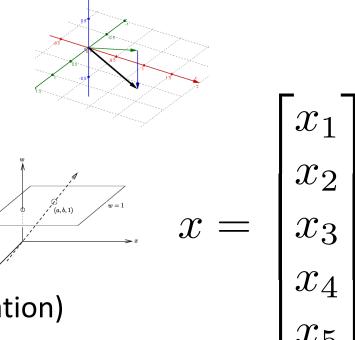


Basics: Vectors

Vectors

- Many interpretations
 - Physics: magnitude + direction

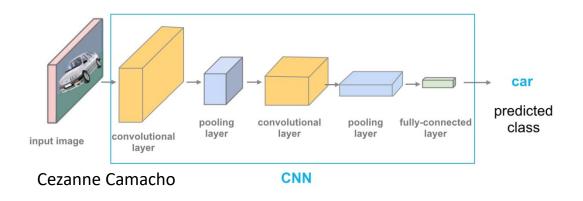
- Point in a space



- List of values (represents information)

Basics: Vectors

- Dimension
 - Number of values $x \in \mathbb{R}^d$
 - Higher dimensions: richer but more complex
- AI/ML: often use **very high dimensions**:
 - Ex: images!



Basics: Matrices

- Again, many interpretations
 - Represent linear transformations
 - Apply to a vector, get another vector
 - Also, list of vectors

- Not necessarily square
 - Indexing! $A \in \mathbb{R}^{c \times d}$
 - Dimensions: #rows x #columns

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$

Basics: Transposition

- Transposes: flip rows and columns
 - Vector: standard is a column. Transpose: row
 - Matrix: go from *m x n* to *n x m*

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{array}{c} x^T = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$
$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \begin{array}{c} A^T = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \\ A_{13} & A_{23} \end{bmatrix}$$

Vector **Operations**

- Addition, Scalar Multiplication
- Inner product (e.g., dot product)

$$\langle x, y \rangle := x^T y = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3$$

Outer product

$$xy^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & x_{1}y_{3} \\ x_{2}y_{1} & x_{2}y_{2} & x_{2}y_{3} \\ x_{3}y_{1} & x_{3}y_{2} & x_{3}y_{3} \end{bmatrix}$$

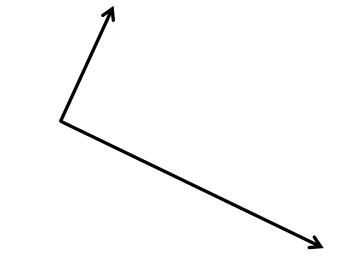
Vector **Operations**

Inner product defines "orthogonality"

$$- \operatorname{If}\langle x, y \rangle = 0$$

• Vector norms: "size"

$$||x||_2 = \sqrt{\sum_{i=1}^{n} x_i^2}$$



Matrix & Vector **Operations**

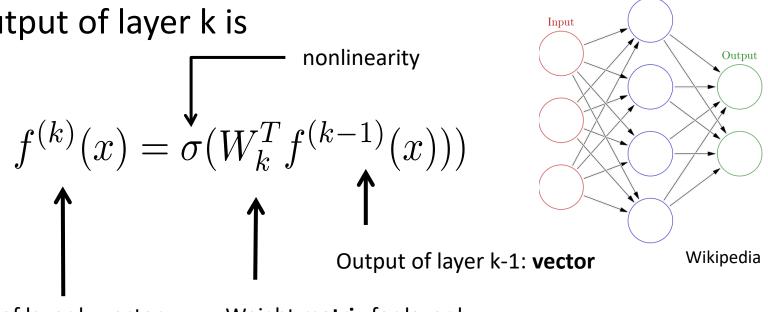
- Addition, scalar multiplication
- Matrix-Vector multiply
 - linear transformation: plug in vector, get another vector
 - Each entry in Ax is the inner product of a row of A with x

$$Ax = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n \\ \vdots \\ A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nn}x_n \end{bmatrix}$$

Matrix & Vector **Operations**

Ex: feedforward neural networks. Input x.

• Output of layer k is



Hidden

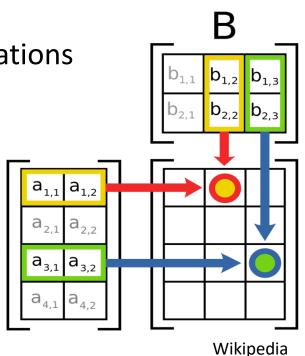
Output of layer k: vector

Weight **matrix** for layer k: Note: linear transformation!

Matrix & Vector **Operations**

- Matrix multiplication
 - "Composition" of linear transformations
 - Not commutative (in general)!

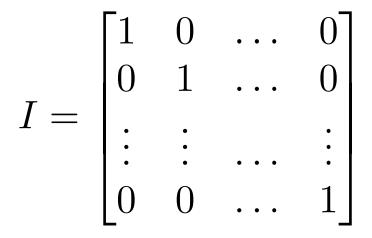
Lots of interpretations



More on Matrices: Identity

- Identity matrix:
 - Like "1"
 - Multiplying by it gets back the same matrix or vector

- Rows & columns are the "standard basis vectors" e_i



More on Matrices: Inverses

- If for A there is a B such that AB = BA = I
 - Then A is invertible/nonsingular, B is its inverse
 - Some matrices are **not** invertible!

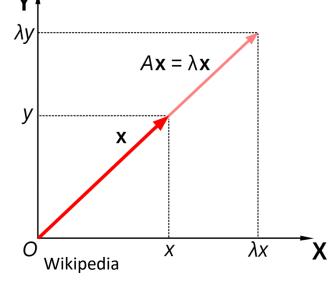
– Usual notation: A^{-1}

$$\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} = I$$

Eigenvalues & Eigenvectors

- For a square matrix A, solutions to $Av=\lambda v$
 - v (nonzero) is a vector: eigenvector
 - $-\lambda$ is a scalar: **eigenvalue**

- Intuition: A is a linear transformation;
- Can stretch/rotate vectors;
- E-vectors: only stretched (by e-vals)



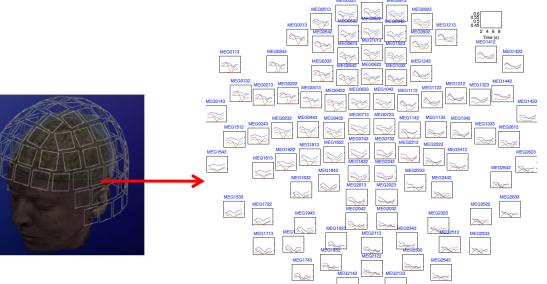
Dimensionality Reduction

- Vectors used to store features
 - Lots of data -> lots of features!
- Document classification
 - Each doc: thousands of words, etc.
- Netflix surveys: 480189 users x 17770 movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	?	?	1	3	?
George	?	?	3	1	2	5
Susan	4	3	1	?	5	1
Beth	4	3	?	2	4	2

Dimensionality Reduction

- Ex: MEG Brain Imaging: 120 locations x 500 time points x 20 objects
- Or any image



Dimensionality Reduction

Reduce dimensions

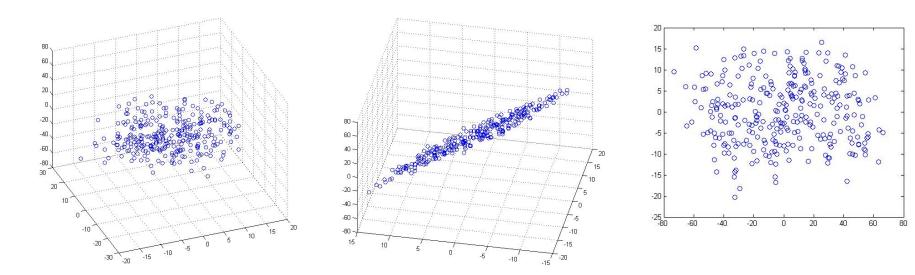
- Why?
 - Lots of features redundant
 - Storage & computation costs

• Goal: take
$$x \in \mathbb{R}^d \to x \in \mathbb{R}^r$$
 for $r << d$

- But, minimize information loss

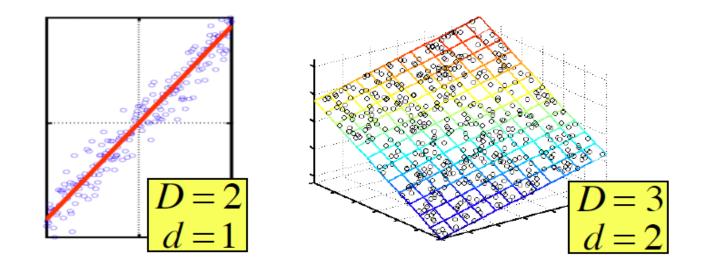
Compression

Examples: 3D to 2D

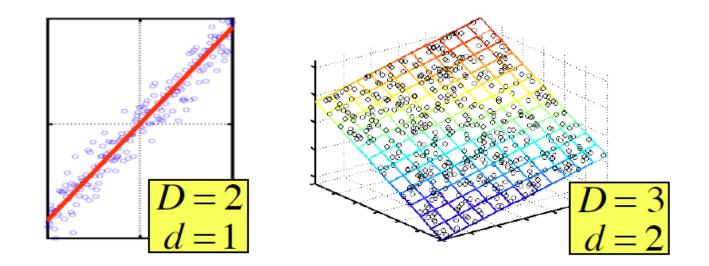


Andrew Ng

- A type of dimensionality reduction approach
 - For when data is approximately lower dimensional

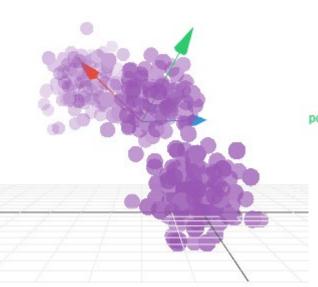


- Goal: find axes of a subspace
 - Will project to this subspace; want to preserve data



- From 2D to 1D: – Find a $v_1 \in \mathbb{R}^d$ so that we maximize "variability" – IE,
 - New representations are along this vector (1D!)

- From *d* dimensions to *r* dimensions
 - Sequentially get $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
 - Orthogonal!
 - Still maximize "variability"
 - The vectors are the principal compon



Victor Powell

PCA Setup

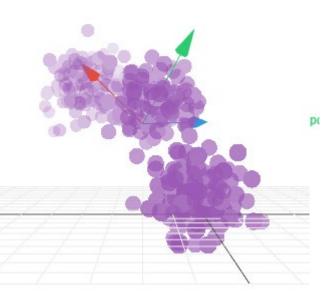
- Inputs
 - Data: $x_1, x_2, \ldots, x_n, x_i \in \mathbb{R}^d$
 - Can arrange into
 - Centered!

$$\frac{1}{n}\sum_{i=1}^{n}x_i = 0$$

 $X \in \mathbb{R}^{n \times d}$

• Outputs

- Victor Powell
- Principal components $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
- Orthogonal!



PCA Goals

- Want directions/components (unit vectors) so that
 - Projecting data maximizes variance
 - What's variance of the projections?

$$\sum_{i=1}^{n} \langle x_i, v \rangle^2 = \|Xv\|^2$$

 \boldsymbol{n}

• Do this **recursively**

- Get orthogonal directions $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$

PCA First Step

• First component,

$$v_1 = \arg \max_{\|v\|=1} \sum_{i=1}^n \langle v, x_i \rangle^2$$

• Same as getting

$$v_1 = \arg \max_{\|v\|=1} \|Xv\|^2$$

PCA Recursion

• Once we have *k*-1 components, next?

$$\hat{X}_k = X - \sum_{i=1}^{k-1} X v_i v_i^T$$

• Then do the same thing

Deflation

$$v_k = \arg \max_{\|v\|=1} \|\hat{X}_k v\|^2$$

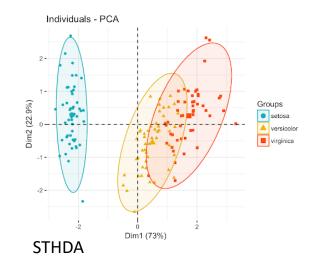
PCA Interpretations

- The v's are eigenvectors of X^TX (Gram matrix)
 - Show via Rayleigh quotient
- $X^T X$ (proportional to) sample covariance matrix
 - When data is 0 mean!
 - I.e., PCA is eigendecomposition of sample covariance

Nested subspaces span(v1), span(v1,v2),...,

Lots of Variations

- PCA, Kernel PCA, ICA, CCA
 - Unsupervised techniques to extract structure from high dimensional dataset
- Uses:
 - Visualization
 - Efficiency
 - Noise removal
 - Downstream machine learning use



Application: Image Compression

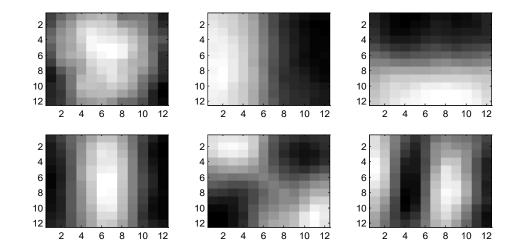
• Start with image; divide into 12x12 patches

- I.E., 144-D vector

- Original image:

Application: Image Compression

• 6 most important components (as an image)



Application: Image Compression

• Project to 6D,

Compressed

Original