
1

2

3

4

5

6

Partitional: to get a partition (ie, a set of disjoint clusters whose union is the whole
dataset)
1) centroid: use centers and assign data points to centers to form clusters
2) Graph-theoretical: the input is a graph (instead of a set of numeric vectors), and

would like to partition the nodes into clusters
3) Spectral: an approach for doing graph clustering

Hierarchical: to get a tree on the data points
1) Agglomerative: begin with each point as a singleton cluster, and keep merging

them until all are merged into one cluster
2) Divisive: begin with all points in one cluster, and keep splitting the clusters to

smaller ones until containing only one point (or satisfying some other stopping
criteria)

Bayesian: a family of methods using Bayes’ rule to do clustering. Can produce a
partition or a tree. Not covered in this course.

7

8

9

10

11

12

The average of points in C1 is (4,4).
The average of points in C2 is (2,2).
The average of points in C3 is (7,7).

13

14

For the point (1,1): square-Euclidean-distance to C1 is 1, to C2 is 1, to C3 is 5
So it can be assigned to C1 or C2

For the point (-1,1): square-Euclidean-distance to C1 is 1, to C2 is 9, to C3 is 1
So it can be assigned to C1 or C3

15

16

The clustering from k-means will depend on the initialization. Different initialization
can lead to different outcomes.

K-means will always converge on a finite set of data points:
1. There are finite number of possible partitions of the points
2. The assignment and update steps of each iteration will only decrease the sum of

the distances from points to their corresponding centers.
3. If it run forever without convergence, it will revisit the same partition, which is

contradictory to item 2.

17

Typically, the algorithms build a binary tree (each node only has 2 children).
Sometimes can be a tree with branching factor more than 2.

18

Hierarchical: to get a tree on the data points
1) Agglomerative: begin with each point as a singleton cluster, and keep merging

them until all are merged into one cluster
2) Divisive: begin with all points in one cluster, and keep splitting the clusters to

smaller ones until containing only one point (or satisfying some other stopping
criteria)

19

20

21

Keep merging the closest pair of clusters.

We only have a definition of distance between data points. Need a definition of
distance between clusters!

22

23

We can have different definitions of distances between clusters, which lead to
different algorithms.

Once we have the definition, we can compute the distances and find the closest pair
of clusters and merge them.

Note: in complete-linkage, we find the closest pair of clusters by
(A*, B*) = argmin_{clusters A B} d(A,B) = = argmin_{clusters A B} max_{x1 \in A, x2

\in B} d(x1, x2)
Do not confuse the max over data points with the min over clusters. That is, while we
compute the distance between clusters, we take the maximum over the points; but
we are still looking for the closest pair of clusters, not the farthest pair of clusters.

24

25

26

27

28

29

30

31

32

33

Typical in practice: merge until only one cluster (the root). Then cut at different levels
to get different partitions; number of clusters or the cut level is application-
dependent.

34

35

Iteration 1: merge 1 and 2
Iteration 2: merge 4 and 5
Iteration 3: Now we have clusters {1,2}, {4,5}, {7.25}.
distance({1,2}, {4,5})= 3
distance({4,5}, {7.25}) = 2.75
distance({1,2}, {7.25}) is clearly larger than the above two.
So average linkage will merge {4,5} and {7.25}

36

37

Denote the points as x_1, x_2, …, x_n

Suppose:
in iteration 1, we merge points x_1 and x_2
in iteration 2, we merge {x_1, x_2} with x_3
…
in iteration t, we merge {x_1, x_2, …, x_t} with x_{t+1}
…
in iteration n-1, we merge {x_1, x_{n-1}} with x_n

Then we will get a tree with depth n-1.

38

