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Recap of Supervised/Unsupervised

Supervised learning:

* Make predictions, classify data, perform regression
* Dataset: (x1,%1), (X2,%2);-- - (Xn,¥n)

Features / Covariates / Input Labels / Outputs

* Goal: find function f : X — Y to predict label on new data
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Recap of Supervised/Unsupervised

Unsupervised learning:
* No labels; generally won’t be making predictions
* Dataset: xy,Xy,....X,

* Goal: find patterns & structures that help better understand
data. TR—
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Recap of Supervised/Unsupervised

Note that there are other kinds of ML:

— Mixtures: semi-supervised learning, self-supervised
* |dea: different types of “signal”

— Reinforcement learning
* Learn how to act in order
to maximize rewards
* Later onin course...

DeepMind




Outline

* Intro to Clustering
— Clustering Types, Centroid-based, k-means review

* Hierarchical Clustering
— Divisive, agglomerative, linkage strategies




Unsupervised Learning & Clustering

* Note that clustering is just one type of unsupervised
learning (UL)
— PCA is another unsupervised algorithm

* Estimating probability distributions also UL (GANSs)
* Clustering is popular & useful!

StyleGAN2 (Kerras et al ‘20)




Clustering Types

» Several types of clustering

Partitional = 5
ST Hierarchical
- Centroid - Agglomerative
- Graph-theoretic gg
- Divisive

- Spectral

Bayesian
- Decision-based

- Nonparametric

k-Means Clusters

Iris Species

Partitional: to get a partition (ie, a set of disjoint clusters whose union is the whole

dataset)

1) centroid: use centers and assign data points to centers to form clusters

2) Graph-theoretical: the input is a graph (instead of a set of numeric vectors), and
would like to partition the nodes into clusters

3) Spectral: an approach for doing graph clustering

Hierarchical: to get a tree on the data points

1) Agglomerative: begin with each point as a singleton cluster, and keep merging
them until all are merged into one cluster

2) Divisive: begin with all points in one cluster, and keep splitting the clusters to
smaller ones until containing only one point (or satisfying some other stopping

criteria)

Bayesian: a family of methods using Bayes’ rule to do clustering. Can produce a
partition or a tree. Not covered in this course.




Center-based Clustering

* k-means is an example of partitional center-based
* Recall steps: 1. Randomly pick k cluster centers
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Center-based Clustering

* 2. Find closest center for each point
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Center-based Clustering

* 3. Update cluster centers by computing centroids
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Center-based Clustering

* Repeat Steps 2 & 3 until convergence

O O

o
° X o
® o

11



Break & Quiz

Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial
clusters

C1={(2,2).(4,4), (6.6)}.C2 = {(0,4), (4,0)}.C3 = {(5.5), 9.9)}

Cluster centroids at the next iteration are?

A.Cy: (4,4), C,: (2,2), C5: (7,7)
B. C,: (6,6), C,: (4,4), Cy: (9,9)
C. C,:(2,2), C,: (0,0), C5: (5,5)
D. C;: (2,6), C,: (0,4), Cs: (5,9)
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Break & Quiz

Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial
clusters

C1={(2,2).(4,4), (6.6)}.C2 = {(0,4), (4,0)}.C3 = {(5.5), 9.9)}

Cluster centroids at the next iteration are?

« A.C;(4,8),C,: (2,2),C: (7,7)
* B.Cy: (6,6), Cy: (4,4), Cs: (9,9)
¢ C.Cy:(2,2),C,:(0,0), Cs: (5,5)
« D.Cy:(2,6), C,: (0,4), Cs: (5,9)

The average of points in C1 is (4,4).
The average of points in C2 is (2,2).
The average of points in C3 is (7,7).
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Break & Quiz

Q 1.2: We are running 3-means again. We have 3 centers, C,
(0,1), C,, (2,1), G5 (-1,2). Which cluster assignment is possible for
the points (1,1) and (-1,1), respectively? Ties are broken
arbitrarily:

(i) Cy, €y (i) Gy, G (i) Cy, G

A. Only (i)

B. Only (ii) and (iii)
C. Only (i) and (iii)
D. All of them
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Break & Quiz

Q 1.2: We are running 3-means again. We have 3 centers, C,
(0,1), C,, (2,1), G5 (-1,2). Which cluster assignment is possible for
the points (1,1) and (-1,1), respectively? Ties are broken
arbitrarily:

(i) Cy, €y (i) Gy, G (i) Cy, G

A. Only (i)

B. Only (ii) and (iii)
C. Only (i) and (iii)
D. All of them

For the point (1,1): square-Euclidean-distanceto Clis1,to C2is1,to C3is5
So it can be assigned to C1 or C2

For the point (-1,1): square-Euclidean-distanceto Clis1,to C2is9,to C3is 1
So it can be assigned to C1 or C3
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Break & Quiz

Q 1.3: If we run K-means clustering twice with random
starting cluster centers, are we guaranteed to get same
clustering results? Does K-means always converge?

A. Yes, Yes
B. No, Yes
C. Yes, No
D. No, No
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Break & Quiz

Q 1.3: If we run K-means clustering twice with random
starting cluster centers, are we guaranteed to get same
clustering results? Does K-means always converge?

A. Yes, Yes
B. No, Yes
C. Yes, No
D. No, No

The clustering from k-means will depend on the initialization. Different initialization
can lead to different outcomes.

K-means will always converge on a finite set of data points:

1. There are finite number of possible partitions of the points

2. The assignment and update steps of each iteration will only decrease the sum of
the distances from points to their corresponding centers.

3. Ifit run forever without convergence, it will revisit the same partition, which is
contradictory to item 2.
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Hierarchical Clustering

Basic idea: build a “hierarchy”

* Want: arrangements from specific to
general =
* One advantage: no need for k, number —-—
of clusters. |

* Input: points. Output: a hierarchy
— A binary tree

Credit: Wikipedia

Typically, the algorithms build a binary tree (each node only has 2 children).
Sometimes can be a tree with branching factor more than 2.
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Agglomerative vs Divisive

Two ways to go:

* Agglomerative: bottom up.

— Start: each point a cluster. Progressively
merge clusters

* Divisive: top down

— Start: all points in one cluster. Progressively
split clusters

Credit: r2d3.us

Hierarchical: to get a tree on the data points

1) Agglomerative: begin with each point as a singleton cluster, and keep merging
them until all are merged into one cluster

2) Divisive: begin with all points in one cluster, and keep splitting the clusters to

smaller ones until containing only one point (or satisfying some other stopping
criteria)
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Agglomerative Clustering Example
Agglomerative. Start: every point is its own cluster

20



Agglomerative Clustering Example
Get pair of clusters that are closest and merge

AU R
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Agglomerative Clustering Example
Repeat: Get pair of clusters that are closest and merge

AR IR

: A

Keep merging the closest pair of clusters.

We only have a definition of distance between data points. Need a definition of
distance between clusters!
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Agglomerative Clustering Example
Repeat: Get pair of clusters that are closest and merge

%
o RR
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Merging Criteria

Merge: use closest clusters. Define closest?
* Single-linkage
d(A,B)= min d(zy,xs)

l‘le"’l.l‘QEB
* Complete-linkage
d(A,B)= max d(z1,x2)
T1€EA,z,€B
* Average-linkage

d(A,B) = 41 Z d(xy,z2)

|B| r1€A,x2€B

We can have different definitions of distances between clusters, which lead to

different algorithms.

Once we have the definition, we can compute the distances and find the closest pair

of clusters and merge them.

Note: in complete-linkage, we find the closest pair of clusters by

(A*, B*) = argmin_{clusters A B} d(A,B) = = argmin_{clusters A B} max_{x1\in A, x2

\in B} d(x1, x2)

Do not confuse the max over data points with the min over clusters. That is, while we
compute the distance between clusters, we take the maximum over the points; but

we are still looking for the closest pair of clusters, not the farthest pair of clusters.
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Single-linkage Example

We’ll merge using single-linkage
* 1-dimensional vectors.
* [|nitial: all points are clusters

7.25
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Single-linkage Example
We’ll merge using single-linkage

d(Cy, {4}) =d(2,4) =2
d({4},{5}) =d(4,5) =1

1 2 4 5 7.25
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Single-linkage Example

Continue...
d(Cq,C) = d(2,4) =2
d(C2,{7.25}) = d(5,7.25) = 2.25

NN

1 2 4 5 7.25




Single-linkage Example
Continue...

Cs

7.25
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Single-linkage Example

Ca

7.25
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Complete-linkage Example

We’'ll merge using complete-linkage
* 1-dimensional vectors.
* [|nitial: all points are clusters

1 2 4 5 7.25
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Complete-linkage Example
Beginning is the same...

d(C1,C2) =d(1,5) =4
d(Cy, {7.25}) = d(4,7.25) = 3.25

NN,

1 2 4 5 7.25
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Complete-linkage Example

Now we diverge:

7.25

32



Complete-linkage Example

7.25
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When to Stop?

No simple answer:

* Use the binary tree (a
dendogram)

* Cut at different levels (g
different heights/depth:

http://opentreeo_flife.org/

Typical in practice: merge until only one cluster (the root). Then cut at different levels
to get different partitions; number of clusters or the cut level is application-
dependent.
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Break & Quiz

Q 2.1: Let’s do hierarchical clustering for two clusters with
average linkage on the dataset below. What are the clusters?

« A.{1},{2,4,5,7.25}
« B.{1,2},{4,5,7.25)
e C.{1,2,4}, {5, 7.25}
* D.{1,2,4,5}, {7.25}

*—O *—9O O
1 2 4 5 7.25
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Break & Quiz

Q 2.1: Let’s do hierarchical clustering for two clusters with
average linkage on the dataset below. What are the clusters?

« A.{1},{2,4,5,7.25}
. B.{1,2},{4,5, 7.25}
e C.{1,2,4}, {5, 7.25}
* D.{1,2,4,5}, {7.25}

*—O *—9O O
1 2 4 5 7.25

Iteration 1: merge 1 and 2

Iteration 2: merge 4 and 5

Iteration 3: Now we have clusters {1,2}, {4,5}, {7.25}.
distance({1,2}, {4,5})= 3

distance({4,5}, {7.25}) = 2.75

distance({1,2}, {7.25}) is clearly larger than the above two.
So average linkage will merge {4,5} and {7.25}
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Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the
maximum depth of the resulting tree is

A .2

B. logn
C.n/2
D.n-1
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Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the
maximum depth of the resulting tree is

A .2

B. logn
C.n/2
D.n-1

Denote the pointsas x_1,x_2, ..., x_n

Suppose:

in iteration 1, we merge points x_1 and x_2

in iteration 2, we merge {x_1, x_2} with x_3

in iteration t, we merge {x_1, x_2, ..., x_t} with x_{t+1}

in iteration n-1, we merge {x_1, x_{n-1}} with x_n

Then we will get a tree with depth n-1.
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