

Recap of Supervised/Unsupervised

Supervised learning:

- Make predictions, classify data, perform regression
- Dataset: $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$

- Goal: find function $f: X \rightarrow Y$ to predict label on new data

indoor
outfoor

Recap of Supervised/Unsupervised

Unsupervised learning:

- No labels; generally won't be making predictions
- Dataset: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n}$
- Goal: find patterns \& structures that help better understand data.

Recap of Supervised/Unsupervised

Note that there are other kinds of ML:

- Mixtures: semi-supervised learning, self-supervised
- Idea: different types of "signal"
- Reinforcement learning
- Learn how to act in order to maximize rewards
- Later on in course...

DeepMind

Outline

- Intro to Clustering
- Clustering Types, Centroid-based, k-means review
- Hierarchical Clustering
- Divisive, agglomerative, linkage strategies

Unsupervised Learning \& Clustering

- Note that clustering is just one type of unsupervised learning (UL)
- PCA is another unsupervised algorithm
- Estimating probability distributions also UL (GANs)
- Clustering is popular \& useful!

StyleGAN2 (Kerras et al'20)

Clustering Types

- Several types of clustering

Partitional: to get a partition (ie, a set of disjoint clusters whose union is the whole dataset)

1) centroid: use centers and assign data points to centers to form clusters
2) Graph-theoretical: the input is a graph (instead of a set of numeric vectors), and would like to partition the nodes into clusters
3) Spectral: an approach for doing graph clustering

Hierarchical: to get a tree on the data points

1) Agglomerative: begin with each point as a singleton cluster, and keep merging them until all are merged into one cluster
2) Divisive: begin with all points in one cluster, and keep splitting the clusters to smaller ones until containing only one point (or satisfying some other stopping criteria)

Bayesian: a family of methods using Bayes' rule to do clustering. Can produce a partition or a tree. Not covered in this course.

Center-based Clustering

- k-means is an example of partitional center-based
- Recall steps: 1. Randomly pick k cluster centers

Center-based Clustering

- 2. Find closest center for each point

Center-based Clustering

- 3. Update cluster centers by computing centroids

Center-based Clustering

- Repeat Steps 2 \& 3 until convergence

Break \& Quiz

Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial clusters

$$
C_{1}=\{(2,2),(4,4),(6,6)\}, C_{2}=\{(0,4),(4,0)\}, C_{3}=\{(5,5),(9,9)\}
$$

Cluster centroids at the next iteration are?

- A. $C_{1}:(4,4), C_{2}:(2,2), C_{3}:(7,7)$
- B. $C_{1}:(6,6), C_{2}:(4,4), C_{3}:(9,9)$
- C. $\mathrm{C}_{1}:(2,2), \mathrm{C}_{2}:(0,0), \mathrm{C}_{3}:(5,5)$
- D. $C_{1}:(2,6), C_{2}:(0,4), C_{3}:(5,9)$

Break \& Quiz

Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial clusters

$$
C_{1}=\{(2,2),(4,4),(6,6)\}, C_{2}=\{(0,4),(4,0)\}, C_{3}=\{(5,5),(9,9)\}
$$

Cluster centroids at the next iteration are?

- A. $\mathrm{C}_{1}:(4,4), \mathrm{C}_{2}:(2,2), \mathrm{C}_{3}:(7,7)$
- B. $C_{1}:(6,6), C_{2}:(4,4), C_{3}:(9,9)$
- C. $\mathrm{C}_{1}:(2,2), \mathrm{C}_{2}:(0,0), \mathrm{C}_{3}:(5,5)$
- D. $\mathrm{C}_{1}:(2,6), \mathrm{C}_{2}:(0,4), \mathrm{C}_{3}:(5,9)$

The average of points in C1 is $(4,4)$.
The average of points in C2 is $(2,2)$.
The average of points in C3 is $(7,7)$.

Break \& Quiz

Q 1.2: We are running 3-means again. We have 3 centers, C_{1} $(0,1), C_{2},(2,1), C_{3}(-1,2)$. Which cluster assignment is possible for the points $(1,1)$ and $(-1,1)$, respectively? Ties are broken arbitrarily:

$$
\text { (i) } \mathrm{C}_{1}, \mathrm{C}_{1} \text { (ii) } \mathrm{C}_{2}, \mathrm{C}_{3} \text { (iii) } \mathrm{C}_{1}, \mathrm{C}_{3}
$$

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (iii)
- D. All of them

Break \& Quiz

Q 1.2: We are running 3-means again. We have 3 centers, C_{1} $(0,1), C_{2},(2,1), C_{3}(-1,2)$. Which cluster assignment is possible for the points $(1,1)$ and $(-1,1)$, respectively? Ties are broken arbitrarily:
(i) $\mathrm{C}_{1}, \mathrm{C}_{1}$ (ii) $\mathrm{C}_{2}, \mathrm{C}_{3}$ (iii) $\mathrm{C}_{1}, \mathrm{C}_{3}$

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (iii)
- D. All of them

For the point (1,1): square-Euclidean-distance to C 1 is 1 , to C 2 is 1 , to C 3 is 5 So it can be assigned to C1 or C2

For the point ($-1,1$): square-Euclidean-distance to C 1 is 1 , to C 2 is 9 , to C 3 is 1 So it can be assigned to C1 or C3

Break \& Quiz

Q 1.3: If we run K -means clustering twice with random starting cluster centers, are we guaranteed to get same clustering results? Does K-means always converge?

- A. Yes, Yes
- B. No, Yes
- C. Yes, No
- D. No, No

Break \& Quiz

Q 1.3: If we run K -means clustering twice with random starting cluster centers, are we guaranteed to get same clustering results? Does K-means always converge?

- A. Yes, Yes
- B. No, Yes
- C. Yes, No
- D. No, No

The clustering from k -means will depend on the initialization. Different initialization can lead to different outcomes.

K-means will always converge on a finite set of data points:

1. There are finite number of possible partitions of the points
2. The assignment and update steps of each iteration will only decrease the sum of the distances from points to their corresponding centers.
3. If it run forever without convergence, it will revisit the same partition, which is contradictory to item 2.

Hierarchical Clustering

Basic idea: build a "hierarchy"

- Want: arrangements from specific to general
- One advantage: no need for k, number of clusters.
- Input: points. Output: a hierarchy
- A binary tree

Typically, the algorithms build a binary tree (each node only has 2 children).
Sometimes can be a tree with branching factor more than 2.

Agglomerative vs Divisive

Two ways to go:

- Agglomerative: bottom up.
- Start: each point a cluster. Progressively merge clusters
- Divisive: top down

- Start: all points in one cluster. Progressively split clusters

Hierarchical: to get a tree on the data points

1) Agglomerative: begin with each point as a singleton cluster, and keep merging them until all are merged into one cluster
2) Divisive: begin with all points in one cluster, and keep splitting the clusters to smaller ones until containing only one point (or satisfying some other stopping criteria)

Agglomerative Clustering Example

Agglomerative. Start: every point is its own cluster

Agglomerative Clustering Example

Get pair of clusters that are closest and merge

Agglomerative Clustering Example

Repeat: Get pair of clusters that are closest and merge

Keep merging the closest pair of clusters.

We only have a definition of distance between data points. Need a definition of distance between clusters!

Agglomerative Clustering Example

 Repeat: Get pair of clusters that are closest and merge

Merging Criteria

Merge: use closest clusters. Define closest?

- Single-linkage

$$
d(A, B)=\min _{x_{1} \in A, x_{2} \in B} d\left(x_{1}, x_{2}\right)
$$

- Complete-linkage

$$
d(A, B)=\max _{x_{1} \in A, x_{2} \in B} d\left(x_{1}, x_{2}\right)
$$

- Average-linkage

$$
d(A, B)=\frac{1}{|A||B|} \sum_{x_{1} \in A, x_{2} \in B} d\left(x_{1}, x_{2}\right)
$$

We can have different definitions of distances between clusters, which lead to different algorithms.

Once we have the definition, we can compute the distances and find the closest pair of clusters and merge them.

Note: in complete-linkage, we find the closest pair of clusters by $\left(A^{*}, B^{*}\right)=\operatorname{argmin} _\{c l u s t e r s A B\} d(A, B)==\operatorname{argmin} _\{c l u s t e r s A B\} \max _\{x 1 \text { in } A, x 2$ \in B\} d(x1, x2)
Do not confuse the max over data points with the min over clusters. That is, while we compute the distance between clusters, we take the maximum over the points; but we are still looking for the closest pair of clusters, not the farthest pair of clusters.

Single-linkage Example

We'll merge using single-linkage

- 1-dimensional vectors.
- Initial: all points are clusters

Single-linkage Example

We'll merge using single-linkage

$$
\begin{aligned}
& d\left(C_{1},\{4\}\right)=d(2,4)=2 \\
& d(\{4\},\{5\})=d(4,5)=1
\end{aligned}
$$

4
5
7.25

Single-linkage Example

Continue...

$$
\begin{gathered}
d\left(C_{1}, C_{2}\right)=d(2,4)=2 \\
d\left(C_{2},\{7.25\}\right)=d(5,7.25)=2.25
\end{gathered}
$$

Single-linkage Example

Continue...

Complete-linkage Example

We'll merge using complete-linkage

- 1-dimensional vectors.
- Initial: all points are clusters

Complete-linkage Example

Beginning is the same...

$$
\begin{gathered}
d\left(C_{1}, C_{2}\right)=d(1,5)=4 \\
d\left(C_{2},\{7.25\}\right)=d(4,7.25)=3.25
\end{gathered}
$$

Complete-linkage Example

Now we diverge:

When to Stop?

No simple answer:

- Use the binary tree (a dendogram)
- Cut at different levels (g different heights/depth:

Typical in practice: merge until only one cluster (the root). Then cut at different levels to get different partitions; number of clusters or the cut level is applicationdependent.

Break \& Quiz

Q 2.1: Let's do hierarchical clustering for two clusters with average linkage on the dataset below. What are the clusters?

- A. $\{1\},\{2,4,5,7.25\}$
- B. $\{1,2\},\{4,5,7.25\}$
- C. $\{1,2,4\},\{5,7.25\}$
- D. $\{1,2,4,5\},\{7.25\}$

Break \& Quiz

Q 2.1: Let's do hierarchical clustering for two clusters with average linkage on the dataset below. What are the clusters?

- A. $\{1\},\{2,4,5,7.25\}$
- B. $\{1,2\},\{4,5,7.25\}$
- C. $\{1,2,4\},\{5,7.25\}$
- D. $\{1,2,4,5\},\{7.25\}$

Iteration 1: merge 1 and 2
Iteration 2: merge 4 and 5
Iteration 3: Now we have clusters $\{1,2\},\{4,5\},\{7.25\}$.
distance $(\{1,2\},\{4,5\})=3$
distance $(\{4,5\},\{7.25\})=2.75$
distance($\{1,2\},\{7.25\}$) is clearly larger than the above two.
So average linkage will merge $\{4,5\}$ and $\{7.25\}$

Break \& Quiz

Q 2.2: If we do hierarchical clustering on n points, the maximum depth of the resulting tree is

- A. 2
- B. $\log n$
- C. $n / 2$
- D. $n-1$

Break \& Quiz

Q 2.2: If we do hierarchical clustering on n points, the maximum depth of the resulting tree is

- A. 2
- B. $\log n$
- C. $n / 2$
- D. $n-1$

Denote the points as $x _1, x_{-} 2, \ldots, x _n$

Suppose:

in iteration 1, we merge points $x _1$ and $x _2$
in iteration 2 , we merge $\left\{x _1, x _2\right\}$ with x_3
in iteration t, we merge $\left\{x_{-} 1, x_{-} 2, \ldots, x_{-} t\right\}$ with $x_{-}\{t+1\}$
...
in iteration $n-1$, we merge $\left\{x _1, x_{-}\{n-1\}\right\}$ with $x _n$
Then we will get a tree with depth $\mathrm{n}-1$.

