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Outline

* Other Types of Clustering
— Graph-based, cuts, spectral clustering

* Unsupervised Learning: Dim Reduction/Visualization
— t-SNE, algorithm, example, vs. PCA

* Unsupervised Learning: Density Estimation
— Kernel density estimation: high-level intro




Graph-Based Clustering

Graph-based/proximity-based

* Recall: Graph G = (V,E) has vertex set V, edge set E.
— Edges can be weighted or unweighted

— Encode similarity O'O

* Don’t need vectors here © °v°
— Just edges (and maybe weights)
e

The weights on the edges are supposed to encode similarities, ie, larger weights
mean more similarity between the two end points.




Graph-Based Clustering

Want: partition Vinto V, and V,
* Implies a graph “cut”

* One idea: minimize the weight of
the cut
— Downside: might just cut of one node
— Need: “balanced” cut

Consider 2-clustering: partition the vertices/nodes into two clusters.

The naive idea of minimizing the weight of the cut (i.e., the sum of all the edges
across the two clusters) has a drawback: unbalanced clusters. Typically, one cluster is

very small (like only one node).




Partition-Based Clustering

Want: partition Vinto V, and V,
* Just minimizing weight isn’t good... want balance!

* Approaches:

Cut(Vy, Va)  Cut(Vi, V3)
Vi Va

Cut(Vq, V2) N Cut(V1, Vo)
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Normalize the weight of the cut Cut(V1,V2):

1. In\bar{Cut}, we normalize it by the number of nodes in each cluster.

2. In NCut, we normalize it by the sum of the degrees of the nodes in each cluster. (If
the edges are weighted, then normalize it by the sum of the edge weights of the
nodes in each cluster, i.e., d_i is the sum of the weights of the edges connecting

to node i)



Partition-Based Clustering

How do we compute these?

* Hard problem - heuristics
— Greedy algorithm

— “Spectral” approaches

* Spectral clustering approach:
— Adjacency matrix A=
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Those objectives are hard to optimize. Some greedy algorithms for those objectives
eventually lead to the spectral approach. (We don’t require to know how to derive
the spectral approach.)




Partition-Based Clustering

* Spectral clustering approach:
— Adjacency matrix

— Degree matrix

20000 000 1 1
02000 00 1 10
D=]0 01 00 A=|0 10 0 0
000 30 1 100 1
000 0 2 100 1 0

Spectral clustering:

The adjacency matrix: a matrix where the (i,j)-th entry is 1 iff node i is connected to
node j. (If edges have weights, then the entry is the weight of that edge.)

The degree matrix: a diagonal matrix where the i-th diagonal entry is the degree of
the node i. (If edges have weights, then the entry is the sum of the weights of the
edges connected to node i.)




* Spectral clustering approach:
— 1. Compute LaplacianL=D-A O
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Spectral Clustering

* Spectral clustering approach:
— 1. Compute LaplacianL=D-A

— 2. Compute k smallest eigenvectors

— 3. Set U to be the n x k matrix with u,, ..., u, as
columns. Take the n rows formed as points

— 4. Run k-means on the representations

Instep 3: u_1 ... u_k denote the k smallest eigenvectors of the Laplacian. The n rows
are sometimes called the spectral embeddings of the nodes.




Spectral Clustering

e Compare/contrast to PCA:

— Use an eigendecomposition / dimensionality

reduction

* But, run on Laplacian (not covariance); use smallest eigenvectors,
not largest

* |ntuition: Laplacian encodes structure information
— “Lower” eigenvectors give partitioning information

Intuition: The Laplacian encodes the structure of the graph. In particular, the lower
eigenvector can be viewed as a vector whose dimensions correspond to the nodes,
and it will have similar values for similar nodes.

Extreme case: suppose the graph has two disconnected components, and each

component is a complete graph (each node in the component is connected to all

other nodes in the component). Then we have two lower eigenvectors:

1. One is proportional to the indicator vector of the first component, i.e., a vector
with value 1 on the dimensions corresponding to nodes in the first component

and value 0 on the other dimensions.
2. The other is proportional to the indicator vector of the second component.

Then the spectral embeddings are indicator vectors of the components: all nodes in
the first component correspond to a point [1, 0], and all nodes in the second
component correspond to a point [0, 1]. Then 2-means on these n points leads to the

desired clustering.
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Q: Why do this?

Spectral Clustering

— 1. No need for points or distances as input
— 2. Can handle intuitive separation (k-means can’t!)

e

. .“ﬂ o.:"“o.;...;{

PR ..“’ e
L™ Srey
R . . %
[N A ° .'.

&. - LY - '\g

Lk L,
Credit: Willialln Flesr'mman .

K-Means Circles

Spectral Circles
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Break & Quiz

Q 1.1: We have two datasets: a social network dataset S; which shows
which individuals are friends with each other along with image dataset
S,.

What kind of clustering can we do? Assume we do not make additional
data transformations.

A. k-means on both S; and S,

B. graph-based on S; and k-means on S,
C. k-means on S, and graph-based on S,

D. hierarchical on S, and graph-based on S,
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Break & Quiz

Q 1.1: We have two datasets: a social network dataset S; which shows
which individuals are friends with each other along with image dataset
S,.

What kind of clustering can we do? Assume we do not make additional
data transformations.

A. k-means on both S, and S, (No: can’t do k-means on graph)

B. graph-based on S, and k-means on S,
C. k-means on S, and graph-based on S (Same as A)

D. hierarchical on S; and graph-based on S, (No: S, is not a graph)

14



Break & Quiz

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled
with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

A. Only (i)

B. Only (ii) and (iii)
C. Only (i) and (ii)
D. All of them
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Break & Quiz

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled
with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

(i) Yes: train an image classifier; have labels)

(ii) Yes: run PCA on image vectors to reduce
dimensionality

(iii) Yes: can cluster image vectors with k-means
D. All of them
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Data analysis, dimensionality
reduction, etc

Unsupervised Learning Beyond Clustering

Already talked about PCA

Note: PCA can be used for
visualization, but not specifically
designed for it

Some algorithms specifically for |
visualization Philip Slingerland

We can use PCA to get 2-dim representation and then visualize them
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Dimensionality Reduction & Visualization

Typical dataset: MNIST

* Handwritten digits 0-9
— 60,000 images (small by ML standards)

— 28x28 pixel (784 dimensions) 0 060 ¢t 06 Coer0 002
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Visualization: T-SNE

Typical dataset: MNIST

* T-SNE: project data into just 2 dimensions
* Try to maintain structure

* MNIST Example
* Input: x,, X,, ..., X,
* Output: 2D/3D Yy, Yy ooy ¥y

T-SNE stands for t-Distributed Stochastic Neighbor Embedding

It’s designed for visualizing high dimensional data while preserving neighboring
information




T-SNE Algorithm: Step 1

How does it work? Two steps %
. - . X1 &
e 1. Turn vectors into probability pairs é o
* 2. Turn pairs back into (lower-dim) vectors
’X3
Step 1:

S I )
v l . « J
M em ep(llwi — ] /207)

1
Pij = 2_-n(pj""’ + pilj)

Intuition: probability that x; would pick x; as its neighbor under
a Gaussian probability

High level intuition: get low-dim vectors whose neighboring probability distributions
are similar to those of the original vectors.

Step 1: compute the neighboring probability distributions of the original data vectors.
Denote them as p_{ij}
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T-SNE Algorithm: Step 2

How does it work? Two steps s o
* 1. Turn vectors into probability pairs ¢ o

* 2. Turn pairs back into (lower-dim) vectors ®x.
Step 2: set (T+ lys —yslI*) 1

Qi = .
’ Zk;é@(l + [lyk — yel?)

Pij == KL Divergence
E : § , Pij log between p and q
F dij

7

and minimize

Step 2: compute the neighboring probability distributions of the lower-dim vectors.
Denote them as g_{ij}. Note that q is using a different form from p.

Then find the set of lower-dim vectors that minimize the KL-divergence between p
and g. Recall that KL-divergence is some dissimilarity metric between two
distributions.
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T-SNE Algorithm: Step 2

More on step 2: Z Zp’?i log Pij
* We have two distributions p, g. p is fixed i g qij
* gis a function of the y;which we move around
* Move y; around until the KL divergence is small T

— So we have a good representation! KL Divergence

between p and q

* Optimizing a loss function---we’ll see more in
supervised learning.

Note that the only unknown variables in the KL-divergence are the set of lower-dim
vectors. So we can view the KL-divergence as a quality measurement of the set of
lower-dim vectors, and we would like to find the set with the smallest KL-divergence.
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T-SNE Examples

* Examples: (from Laurens van der Maaten)

* Movies:
https://lvdmaaten.github.io/tsne/examples/netflix_tsne.jpg
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T-SNE Examples

* Examples: (from Laurens van der Maaten)

* NORB:
https://lvdmaaten.github.io/tsne/examples/norb_tsne.jpg
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Visualization: T-SNE

t-SNE vs PCA?

* “Local” vs “Global” k. %?

* Lose information in t-SNE
— not a bad thing necessarily

* Downstream use S

Good resource/credit: 7]
https://www.thekerneltrip.com/statistics/tsne-vs-pca/ .. %

T-SNE: try to preserve the neighboring information, which is local
PCA: try to preserve the variance, which is global.

Both can lose information.
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Break & Quiz

Q 2.1: Can we do t-SNE on NLP (words) or graph
datasets?

A. Never

B. Yes, after running PCA on them
C. Yes, after mapping them into R9(ie, embedding)
D. Yes, after running hierarchical clustering on them

27



Break & Quiz

Q 2.1: Can we do t-SNE on NLP (words) or graph
datasets?

A. Never

B. Yes, after running PCA on them
C. Yes, after mapping them into R (ie, embedding)

D. Yes, after running hierarchical clustering on them

28



Break & Quiz

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

* A. Never (No: too strong)

* B. Yes, after running PCA on them (No: can’t run PCA on
words or graphs directly. Need vectors)

 C. Yes, after mapping them into R?(ie, embedding)

* D. Yes, after running hierarchical clustering on them (No:

hierarchical clustering gives us a graph)
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Short Intro to Density Estimation

Goal: given samples x;, ..., x,, from some distribution B
estimate P.

* Compute statistics (mean, variance)
* Generate samples from P |
* Run inference
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Simplest Idea: Histograms

Goal: given samples x;, ..., x,, from some distribution B
estimate P.

Histogram
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Define bins; count # of samples in each bin, normalize

If we know P is from certain family of distributions with parameters (e.g., Gaussians),
then we can try to estimate the parameters.

If not, then we use nonparametric methods. The simplest one is histogram
(essentially using frequency to estimate the probability).
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Simplest Idea: Histograms

Goal: given samples x;, ..., x,, from some distribution B
estimate P.

| Histogram

o
w

Downsides:

o
N

i) High-dimensions: most
bins empty

©
[

Normalized Density

ii) Not continuous

o
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+ 'ftl C X A C ﬂ"lﬂ:Ltﬂ'—
iii) How to choose bins?
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Kernel Density Estimation

Goal: given samples x;, ..., x,, from some distribution B
estimate P.

Idea: represent density as combination of “kernels”

T , [T — T; \ 4= Center at
fz) = - 21 1‘1( h each point
-

Kernel function: often

Width

Gaussian parameter

Over continuous space: we can estimate P using the combination of some special
functions (kernel function).

K is chosen so that f is a density (ie. the integral of f over the whole input space is 1).
Typical choice: the RBF kernel (Gaussian density function) K(x) = \frac{1H{\sqrt{2\pi}}
exp(-x"2/2)
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Kernel Density Estimation

Idea: represent density as combination of kernels
* “Smooth” out the histogram
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In the histogram method, for a data point x_i, it puts all probability mass in the bin
(the neighborhood of the data point) and puts 0 outside the bin.

Kernel puts a large fraction of probability mass in the neighborhood of the data point
X_i, but also puts some far from the neighborhood. This gives a smooth version of the
histogram method.
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