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The weights on the edges are supposed to encode similarities, ie, larger weights 
mean more similarity between the two end points. 
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Consider 2-clustering: partition the vertices/nodes into two clusters. 

The naïve idea of minimizing the weight of the cut (i.e., the sum of all the edges 
across the two clusters) has a drawback: unbalanced clusters. Typically, one cluster is 
very small (like only one node). 
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Normalize the weight of the cut Cut(V1,V2):
1. In \bar{Cut}, we normalize it by the number of nodes in each cluster.
2. In NCut, we normalize it by the sum of the degrees of the nodes in each cluster. (If 

the edges are weighted, then normalize it by the sum of the edge weights of the 
nodes in each cluster, i.e., d_i is the sum of the weights of the edges connecting 
to node i)
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Those objectives are hard to optimize. Some greedy algorithms for those objectives 
eventually lead to the spectral approach. (We don’t require to know how to derive 
the spectral approach.)
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Spectral clustering:
The adjacency matrix: a matrix where the (i,j)-th entry is 1 iff node i is connected to 
node j. (If edges have weights, then the entry is the weight of that edge.)
The degree matrix: a diagonal matrix where the i-th diagonal entry is the degree of 
the node i. (If edges have weights, then the entry is the sum of the weights of the 
edges connected to node i.)
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In step 3: u_1 … u_k denote the k smallest eigenvectors of the Laplacian. The n rows 
are sometimes called the spectral embeddings of the nodes. 
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Intuition: The Laplacian encodes the structure of the graph. In particular, the lower 
eigenvector can be viewed as a vector whose dimensions correspond to the nodes, 
and it will have similar values for similar nodes. 

Extreme case: suppose the graph has two disconnected components, and each 
component is a complete graph (each node in the component is connected to all 
other nodes in the component). Then we have two lower eigenvectors: 
1. One is proportional to the indicator vector of the first component, i.e., a vector 

with value 1 on the dimensions corresponding to nodes in the first component 
and value 0 on the other dimensions. 

2. The other is proportional to the indicator vector of the second component.
Then the spectral embeddings are indicator vectors of the components: all nodes in 
the first component correspond to a point [1, 0], and all nodes in the second 
component correspond to a point [0, 1]. Then 2-means on these n points leads to the 
desired clustering.   
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We can use PCA to get 2-dim representation and then visualize them
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T-SNE stands for t-Distributed Stochastic Neighbor Embedding

It’s designed for visualizing high dimensional data while preserving neighboring 
information
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High level intuition: get low-dim vectors whose neighboring probability distributions 
are similar to those of the original vectors. 

Step 1: compute the neighboring probability distributions of the original data vectors. 
Denote them as p_{ij}
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Step 2: compute the neighboring probability distributions of the lower-dim vectors. 
Denote them as q_{ij}. Note that q is using a different form from p. 

Then find the set of lower-dim vectors that minimize the KL-divergence between p 
and q. Recall that KL-divergence is some dissimilarity metric between two 
distributions. 
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Note that the only unknown variables in the KL-divergence are the set of lower-dim 
vectors. So we can view the KL-divergence as a quality measurement of the set of 
lower-dim vectors, and we would like to find the set with the smallest KL-divergence. 
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T-SNE: try to preserve the neighboring information, which is local
PCA: try to preserve the variance, which is global. 

Both can lose information. 
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If we know P is from certain family of distributions with parameters (e.g., Gaussians), 
then we can try to estimate the parameters.

If not, then we use nonparametric methods. The simplest one is histogram 
(essentially using frequency to estimate the probability). 
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Over continuous space: we can estimate P using the combination of some special 
functions (kernel function). 

K is chosen so that f is a density (ie. the integral of f over the whole input space is 1). 
Typical choice: the RBF kernel (Gaussian density function) K(x) = \frac{1}{\sqrt{2\pi}} 
exp(-x^2/2)
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In the histogram method, for a data point x_i, it puts all probability mass in the bin 
(the neighborhood of the data point) and puts 0 outside the bin. 

Kernel puts a large fraction of probability mass in the neighborhood of the data point 
x_i, but also puts some far from the neighborhood. This gives a smooth version of the 
histogram method. 
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