CS 540 Introduction to Artificial Intelligence

Advanced Search

Yingyu Liang
University of Wisconsin-Madison

Nov 18, 2021

Based on slides by Fred Sala
Outline

• Advanced Search & Hill-climbing
 – More difficult problems, basics, local optima, variations

• Simulated Annealing
 – Basic algorithm, temperature, tradeoffs

• Genetic Algorithms
 – Basics of evolution, fitness, natural selection
Search vs. Optimization

Before: wanted a **path** from start state to goal state
- Uninformed search, informed search

New setting: optimization
- States s have values $f(s)$
- Want: s with optimal value $f(s)$ (i.e., **optimize** over states)
- Challenging setting: **too many states** for previous search approaches, but maybe not a continuous function for SGD.
Examples: n Queens

A classic puzzle:

- Place 8 queens on 8 x 8 chessboard so that no two have same row, column, or diagonal.
- Can generalize to n x n chessboard.

- What are states s? Values $f(s)$?
 - State: configuration of the board
 - $f(s)$: # of non-conflicting queens
Hill Climbing

One approach to such optimization problems

• Basic idea: move to a neighbor with a better $f(s)$

• **Q:** how do we define **neighbor**?
 – Not as obvious as our successors in search
 – Problem-specific
 – As we’ll see, needs a careful choice

Defining Neighbors: n Queens

In n Queens, a simple possibility:

- Look at the **most-conflicting column** (ties? right-most one)
- Move queen in that column vertically to a different location

Neighborhood of s
Hill Climbing Neighbors

Q: What’s a neighbor?

• **Vague definition.** For a given problem structure, neighbors are states that can be produced by a small change

• **Tradeoff!**
 – Too small? Will get struck.
 – Too big? Not very efficient

• **Q:** how to pick a neighbor? Greedy

• **Q:** terminate? When no neighbor has better value
Hill Climbing Algorithm

Pseudocode:

1. Pick initial state s
2. Pick t in $\text{neighbors}(s)$ with the best $f(t)$
3. if $f(t)$ is not better than $f(s)$ THEN stop, return s
4. $s \leftarrow t$. goto 2.

What could happen? Local optima!
Hill Climbing: Local Optima

Q: Why is it called hill climbing?

L: What’s actually going on.

R: What we get to see.

![Graph showing hill climbing](image)

Global optimum, where we want to be

![Diagram](image)

Fog
Hill Climbing: Local Optima

Note the local optima. How do we handle them?
Escaping Local Optima

Simple idea 1: random restarts
- Stuck: pick a random new starting point, re-run.
- Do \(k\) times, return best of the \(k\) runs

Simple idea 2: reduce greed
- “Stochastic” hill climbing: randomly select between neighbors
- Probability proportional to the value of neighbors
Hill Climbing: Variations

Q: neighborhood too large?
• Generate random neighbors, one at a time. Take the better one.

Q: relax requirement to always go up?
• Often useful for harder problems
Simulated Annealing

A more sophisticated optimization approach

• **Idea**: move quickly at first, then slow down
• Pseudocode:

 Pick initial state s
 For $k = 0$ through k_{max}:
 $T \leftarrow \text{temperature}((k+1)/k_{\text{max}})$
 Pick a random neighbor, $t \leftarrow \text{neighbor}(s)$
 If $f(t)$ better than $f(s)$, then $s \leftarrow t$
 Else, with prob. $P(f(s), f(t), T)$ then $s \leftarrow t$

Output: the final state s
Simulated Annealing: Picking Probability

How do we pick probability P? Note 3 parameters.

• Decrease with time
• Decrease with gap $|f(s) - f(t)|$

Pick initial state s
For $k = 0$ through k_{max}:
 $T \leftarrow \text{temperature}((k+1)/k_{\text{max}})$
 Pick a random neighbour, $t \leftarrow \text{neighbor}(s)$
 If $f(t)$ better than $f(s)$, then $s \leftarrow t$
 Else, with prob. $P(f(s), f(t), T)$ then $s \leftarrow t$

Output: the final state s
Simulated Annealing: Picking Probability

How do we pick probability \(P \)? Note 3 parameters.

- Decrease with time
- Decrease with gap \(|f(s) - f(t)| \):
 \[
 \exp \left(-\frac{|f(s) - f(t)|}{Temp} \right)
 \]
- Temperature cools over time.
 - So: high temperature, accept any \(t \)
 - But, low temperature, behaves like hill-climbing
 - Still, \(|f(s) - f(t)| \) plays a role: if big, replacement probability low.
Simulated Annealing: Visualization

What does it look like in practice?

Temperature: 25.0
Simulated Annealing: Picking Parameters

• Have to balance the various parts, e.g., cooling schedule.
 – Too fast: becomes hill climbing, stuck in local optima
 – Too slow: takes too long.

• Combines with variations (e.g., with random restarts)
 – Probably should try hill-climbing first though.

• Inspired by cooling of metals
 – We’ll see one more alg. inspired by nature
Genetic Algorithms

Another optimization approach based on nature

• Survival of the fittest!
Encode genetic information in DNA (four bases)

- A/C/T/G: nucleobases acting as symbols

- Two types of changes
 - Crossover: exchange between parents’ codes
 - Mutation: rarer random process
 - Happens at individual level
Natural Selection

Competition for resources
• Organisms better fit → better probability of reproducing
• Repeated process: fit become larger proportion of population

Goal: use these principles for optimization
– New terminology: state is ‘individual’
– Value $f(s)$ is now the ‘fitness’
Genetic Algorithms Setup I

Keep around a fixed number of states/individuals

- Call this the **population**

For our n Queens game example, an individual:

(3 2 7 5 2 4 1 1)
Genetic Algorithms Setup II

Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

- E.g., analogous to natural selection, cross-over, and mutation

![Diagram showing the process of genetic algorithms, including initial population, fitness function, selection, cross-over, and mutation leading to the next generation.](image)
Genetic Algorithms Pseudocode

Just one variant:

1. Let $s_1, ..., s_N$ be the current population
2. Let $p_i = \frac{f(s_i)}{\sum_j f(s_j)}$ be the reproduction probability
3. for $k = 1; k<N; k+=2$
 • parent1 = randomly pick according to p
 • parent2 = randomly pick another
 • randomly select a crossover point, swap strings of parents 1, 2 to generate children $t[k], t[k+1]$
4. for $k = 1; k<=N; k++$
 • Randomly mutate each position in $t[k]$ with a small probability (mutation rate)
5. The new generation replaces the old: $\{ s \} \leftarrow \{ t \}$. Repeat
Reproduction: Proportional Selection

Reproduction probability: \(p_i = \frac{f(s_i)}{\sum_j f(s_j)} \)

- **Example:** \(\sum_j f(s_j) = 5+20+11+8+6=50 \)
- \(p_1 = 5/50 = 10\% \)

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>40%</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>22%</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>16%</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>12%</td>
</tr>
</tbody>
</table>
Acknowledgements: Adapted from materials by Jerry Zhu + Tony Gitter (University of Wisconsin), Andrew Moore