CS 540 Introduction to Artificial Intelligence
Informed Search

Yingyu Liang
University of Wisconsin-Madison
Nov 16, 2021

Based on slides by Fred Sala

Outline

e Uninformed continued
e A* Search

— Heuristic properties, stopping rules, analysis

General State-Space Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)
;; problem describes the start state, operators, goal test, and
;; operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or "failure"

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop
if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
problem.OPERATORYS))
;; succ(s)=EXPAND(s, OPERATORS)
;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops
end

Recall the bad space complexity of BFS

Four measures of search algorithms: Solution:
Uniform-cost

Completeness (not finding all goals):

find a goal. SEEEL

Time complclRCNUUUEIN: goal is the last node at
radius d. Depth-first

Space complexity (bad, see the Figure)
= Back points for all generated nodes O(bd)
= The queue (smaller, but still O(b?))

Depth-first search

Expand the deepest node first

1. select a direction, go deep to the end m——
2. Slightly change the end —

3. Slightly change the end some more. . =—

Q\#
/9%

fan

Depth-first search (DFS)

Use a stack (First-in Last-out) D.@
. push(Initial states)
While (stack not empty)

s = pop()

if (s==goal) success!

T = succs(s)

push(T) .
endWhile stack (fringe)

NoOARwWNOE

What’s in the fringe for DFS?

® m = maximum depth of graph from start
° m(b-1) ~ O(mb) Y
(Space complexity) [

N\
4N

¢ “backtracking search” even less space
® generate siblings (if applicable)

c.f. BFS O(bY)

What’s wrong with DFS?

® Infinite tree: may A not find goal (incomplete)
¢ May not be optima

® Finite tree: may vish almost all nodes, time
complexity O(b™)

¢.f. BFS O(bY)

Performance of search algorithms on trees

b: branching factor (assume finite) d: goal depth m: graph depth
Complete optimal time space
preacin-firs! v v, if 1 O(be) O(be)
;J:;fr%rhrg-cost v v O(bC™) O(bC™)
oo [N N ob™ | obm)

1.
2.

edge cost constant, or positive non-decreasing in depth
edge costs > ¢ > 0. C*is the best goal path cost.

How about this?

1. DFs, but stop if path length > 1.
2. I goal not found, repeat DFS, stop if path length >

&e‘az
=

fan within rlpple

Iterative deepening

Search proceeds like BFS, but fringe is like DFS
= Complete, optimal like BFS
= Small space complexity like DFS
= Time complexity like BFS

Preferred uninformed search method

Nodes expanded by:

1 8
Breadth-First Search: SABCDE G @
Solution found: SAG 3/ 71 N\9 |4 5

Uniform-Cost Search: SADBCEG @ @ @

Solution found: S B G (This is the only uninformed
search that worries about costs.)

Depth-First Search:. SAD E G
Solution found: SAG

Iterative-Deepening Search. SABCSADEG
Solution found: SAG

Performance of search algorithms on trees

b: branching factor (assume finite) d: goal depth m: graph depth
Complete optimal time space
preacin-firs! v Y, if 1 O(bd) O(bd)
;J:;fr%rhrg-cost v v O(bC™) O(bC™)
Deptr-first N N o(b™) O(bm)
g:re?;[ievrﬁng Y Y, if * O(bc) O(bd)

1. edge cost constant, or positive non-decreasing in depth
2. edge costs >¢> 0. C*is the best goal path cost.

If state space graph is not atree

The problem: repeated states

Ignore the danger of repeated states: wasteful (BFS)
or impossible (DFS). Can you see why?

How to prevent it?

If state space graph is not atree
We have to remember already-expanded states
(CLOSED).

When we take out a state from the fringe (OPEN),
check whether it is in CLOSED (already expanded).

= [f yes, throw it away.

= [f no, expand it (add successors to OPEN), and
move it to CLOSED.

What you should know

Problem solving as search: state, successors, goal test
Uninformed search
= Breadth-first search
*Uniform-cost search
= Depth-first search

9
= [terative deepening* S @ %g%

Can you unify them using the same algorithm, with
different priority functions?

Performance measures

= Completeness, optimality, time complexity, space
complexity

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

e Path cost g(s) from start to node s

* SUCCeSSOrs. ——~ ... @
' a(s)

Informed search. Know:
e All uninformed search properties, plus
* Heuristic h(s) from s to goal

Informed Search

Informed search. Know:
e All uninformed search properties, plus
e Heuristic h(s) from s to goal

> WO

* Use information to speed up search.

Using the Heuristic

Back to uniform-cost search

* We had the priority queue

* Expand the node with the smallest g(s)
— g(s) “first-half-cost”

--------.-;;;Q‘('s)"-----...............>

* Now let’s use the heuristic (“second-half-cost”)

— Several possible approaches: let’s see what works

Attempt 1: Best-First Greedy

One approach: just use h(s) alone
» Specifically, expand node with smallest h(s)
* Thisisn’t a good idea. Why?

h=3 h=2 h=1 h=0

* NotoptimallGetA>C—-> G.Want: A>B—>C—>G

Attempt 2: A Search

Next approach: use both g(s) + h(s)
» Specifically, expand node with smallest g(s) + h(s)

* Again, use a priority queue
* Called “A” search

999

OnOmOm®

h=3 h=1000 h=1 h=0

 Still not optimal! (Does work for former example).

Attempt 3: A* Search

Same idea, use g(s) + h(s), with one requirement
e Demand that 0 < h(s) < h*(s), the actual cost
* If heuristic has this property, “admissible”

— Optimistic! Never over-estimates
e Still need h(s) >0

— Negative heuristics can lead to strange behavior
* This is A* search

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)
 Example: 8-puzzle

Example 1 > Goal [1 |2 |3
State 2 | 6|3 State 7 Ts |6
71 4| 8 7/ 8

* One useful approach: relax constraints
— h(s) = number of tiles in wrong position

 allows tiles to fly to destination in a single step

Heuristic Function Tradeoffs

Dominance: h, dominates h, if for all states s,
h,(s) < h,(s) < h*(s)

* |ldea: we want to be as close to h* as possible

— But not over!

* Tradeoff: being very close might require a very complex
heuristic, expensive computation

— Might be better off with cheaper heuristic & expand more nodes.

A* Termination

When should A* stop?

* Oneidea: as soon as we reach goal state?

h=1
* hadmissible, but note that we get A B - G (cost 1000)!

A* Termination

When should A* stop?

* Rule: terminate when a goal is popped from queue.

* Note: taking h =0 reduces to uniform cost search rule.

A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter
path:

h=900
 Put D back into priority queue, smaller g+h

A* Full Algorithm

1. Putthe start node S on the priority queue, called OPEN

2. If OPEN is empty, exit with failure

3. Remove from OPEN and place on CLOSED a node n for which f(n) is minimum (note that
f(n)=g(n)+h(n))

4. If nisagoal node, exit (trace back pointers from nto S)

Expand n, generating all successors and attach to pointers back to n. For each successor n' of n

1. If n"is not already on OPEN or CLOSED estimate h(n'), g(n')=g(n)+ c(n,n"), f(n')=g(n')+h(n’),

and place it on OPEN.

2. If n'is already on OPEN or CLOSED, then check if g(n') is lower for the new version of n'. If so,
then:

1. Redirect pointers backward from n' along path yielding lower g(n').
2. Put n' on OPEN.
3. Ifg(n') is not lower for the new version, do nothing.
6. Goto 2.

o

A* Analysis

Some properties

Terminates!

O(#

e A* can use lots of memory

states).

Will run out on large problems.

Summary

* Informed search: introduce heuristics
— Not all approaches work: best-first greedy is bad
* A* algorithm

— Properties of A*, idea of admissible heuristics

Acknowledgements: Adapted from materials by Jerry Zhu,
Anthony Gitter, and Fred Sala (University of Wisconsin-Madison).

