
CS 540 Introduction to Artificial Intelligence

Informed Search

Yingyu Liang
University of Wisconsin-Madison

Nov 16, 2021

Based on slides by Fred Sala

Outline

• Uninformed continued

• A* Search

– Heuristic properties, stopping rules, analysis

General State-Space Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)

;; problem describes the start state, operators, goal test, and

;; operator costs

;; queueing-function is a comparator function that ranks two states

;; general-search returns either a goal node or "failure"

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop

if EMPTY(nodes) then return "failure"

node = REMOVE-FRONT(nodes)

if problem.GOAL-TEST(node.STATE) succeeds then return node

nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

;; succ(s)=EXPAND(s, OPERATORS)

;; Note: The goal test is NOT done when nodes are generated

;; Note: This algorithm does not detect loops

end

Recall the bad space complexity of BFS

Four measures of search algorithms:

• Completeness (not finding all goals): yes, BFS will

find a goal.

• Optimality: yes if edges cost 1 (more generally

positive non-decreasing with depth), no otherwise.

• Time complexity (worst case): goal is the last node at

radius d.

▪ Have to generate all nodes at radius d.

▪ b + b2 + … + bd ~ O(bd)

• Space complexity (bad, see the Figure)

▪ Back points for all generated nodes O(bd)

▪ The queue (smaller, but still O(bd))

Solution:
Depth-first

search

Solution:
Uniform-cost

search

Depth-first search

Expand the deepest node first

1. Select a direction, go deep to the end

2. Slightly change the end

3. Slightly change the end some more…

fan

goal

Depth-first search (DFS)

Use a stack (First-in Last-out)

1. push(Initial states)

2. While (stack not empty)

3. s = pop()

4. if (s==goal) success!

5. T = succs(s)

6. push(T)

7. endWhile
stack (fringe)

[] 

What’s in the fringe for DFS?

• m = maximum depth of graph from start

• m(b-1) ~ O(mb)

(Space complexity)

• “backtracking search” even less space

▪ generate siblings (if applicable)

goal c.f. BFS O(bd)

What’s wrong with DFS?

• Infinite tree: may not find goal (incomplete)

• May not be optimal

• Finite tree: may visit almost all nodes, time

complexity O(bm)

goal

goal

c.f. BFS O(bd)

Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first
search

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

How about this?

1. DFS, but stop if path length > 1.

2. If goal not found, repeat DFS, stop if path length >

2.

3. And so on…

fan within ripple

goal

goal

Iterative deepening

• Search proceeds like BFS, but fringe is like DFS

▪ Complete, optimal like BFS

▪ Small space complexity like DFS

▪ Time complexity like BFS

• Preferred uninformed search method

Nodes expanded by:

• Breadth-First Search: S A B C D E G

Solution found: S A G

• Uniform-Cost Search: S A D B C E G

Solution found: S B G (This is the only uninformed

search that worries about costs.)

• Depth-First Search: S A D E G

Solution found: S A G

• Iterative-Deepening Search: S A B C S A D E G

Solution found: S A G

Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first
search

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

O(bd)O(bd)Y, if 1Y
Iterative
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

If state space graph is not a tree

• The problem: repeated states

• Ignore the danger of repeated states: wasteful (BFS)

or impossible (DFS). Can you see why?

• How to prevent it?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

If state space graph is not a tree

• We have to remember already-expanded states
(CLOSED).

• When we take out a state from the fringe (OPEN),
check whether it is in CLOSED (already expanded).

▪ If yes, throw it away.

▪ If no, expand it (add successors to OPEN), and
move it to CLOSED.

What you should know

• Problem solving as search: state, successors, goal test

• Uninformed search

▪ Breadth-first search

•Uniform-cost search

▪ Depth-first search

▪ Iterative deepening

• Can you unify them using the same algorithm, with

different priority functions?

• Performance measures

▪ Completeness, optimality, time complexity, space

complexity

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

• Path cost g(s) from start to node s

• Successors.

Informed search. Know:

• All uninformed search properties, plus

• Heuristic h(s) from s to goal

start
s

goal
g(s)

start s
goal

g(s) h(s)

Informed Search

Informed search. Know:

• All uninformed search properties, plus

• Heuristic h(s) from s to goal

• Use information to speed up search.

start s
goal

g(s) h(s)

Using the Heuristic

Back to uniform-cost search

• We had the priority queue

• Expand the node with the smallest g(s)
– g(s) “first-half-cost”

• Now let’s use the heuristic (“second-half-cost”)
– Several possible approaches: let’s see what works

start s
goal

g(s) h(s)

Attempt 1: Best-First Greedy
One approach: just use h(s) alone

• Specifically, expand node with smallest h(s)

• This isn’t a good idea. Why?

• Not optimal! Get A → C → G. Want: A →B → C → G

BA GC

h=3 h=2 h=1 h=0
1 1 1

999

Attempt 2: A Search

Next approach: use both g(s) + h(s)

• Specifically, expand node with smallest g(s) + h(s)

• Again, use a priority queue

• Called “A” search

• Still not optimal! (Does work for former example).

BA GC

h=3 h=1000 h=1 h=0
1 1 1

999

Attempt 3: A* Search

Same idea, use g(s) + h(s), with one requirement

• Demand that 0  h(s)  h*(s), the actual cost

• If heuristic has this property, “admissible”
– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

• This is A* search

V. Batoćanin

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

• Example: 8-puzzle

• One useful approach: relax constraints

– h(s) = number of tiles in wrong position
• allows tiles to fly to destination in a single step

847

362

51
Example
State

87

654

321Goal
State

Heuristic Function Tradeoffs

Dominance: h2 dominates h1 if for all states s,

h1(s)  h2(s)  h*(s)

• Idea: we want to be as close to h* as possible
– But not over!

• Tradeoff: being very close might require a very complex
heuristic, expensive computation
– Might be better off with cheaper heuristic & expand more nodes.

A* Termination

When should A* stop?

• One idea: as soon as we reach goal state?

• h admissible, but note that we get A →B → G (cost 1000)!

B

A G

C

9991

1 1
h=2 h=0

h=0

h=1

A* Termination

When should A* stop?

• Rule: terminate when a goal is popped from queue.

• Note: taking h =0 reduces to uniform cost search rule.

B

A G

C

9991

1 1
h=2 h=0

h=0

h=1

A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter
path:

• Put D back into priority queue, smaller g+h

B

A D

C

999

1

1 1
h=1 h=1

h=1
G

h=0

2

h=900

A* Full Algorithm

1. Put the start node S on the priority queue, called OPEN

2. If OPEN is empty, exit with failure

3. Remove from OPEN and place on CLOSED a node n for which f(n) is minimum (note that
f(n)=g(n)+h(n))

4. If n is a goal node, exit (trace back pointers from n to S)

5. Expand n, generating all successors and attach to pointers back to n. For each successor n' of n

1. If n' is not already on OPEN or CLOSED estimate h(n'), g(n')=g(n)+ c(n,n'), f(n')=g(n')+h(n’),
and place it on OPEN.

2. If n' is already on OPEN or CLOSED, then check if g(n') is lower for the new version of n'. If so,
then:

1. Redirect pointers backward from n' along path yielding lower g(n').

2. Put n' on OPEN.

3. If g(n') is not lower for the new version, do nothing.

6. Goto 2.

A* Analysis

Some properties:

• Terminates!

• A* can use lots of memory: O(#
states).

• Will run out on large problems.

Summary

• Informed search: introduce heuristics

– Not all approaches work: best-first greedy is bad

• A* algorithm

– Properties of A*, idea of admissible heuristics

Acknowledgements: Adapted from materials by Jerry Zhu,

Anthony Gitter, and Fred Sala (University of Wisconsin-Madison).

