CS 540 Introduction to Atrtificial Intelligence
Review on Search, Games, and RL

Yingyu Liang
University of Wisconsin-Madison
Dec 9, 2021

Based on slides by Fred Sala

Announcements (details on Piazza)

* Final Exam information

— On Canvas/Quizzes as midterm; but no one-day window
— Main: Dec 20 2:45-4:45pm
— Makeup: Dec 23 2:45-4:45pm

* Course Evaluation
— Dec1toDec15

— Explicit incentive: some details about the final exam if the
participation rate reaches 50%/75%/95%

Building The Theoretical Model

Basic setup:
* Set of states, S
* Set of actions A Agent

7o)

(
\ o/
v

Actions

f
{

>

&
<

Observations

* Information: at time t, observe state s, € S. Get reward r,
* Agent makes choice g, € A. State changes to s,,; continue

Goal: find a map from states to actions maximize rewards.

t

A “policy”

We will go through these three steps: build the math model, introduce the notion of
values that comes from our goal and enables decision making, and then design
algorithms for computing the values.

We will begin with building the math model.

Recall that we have an agent interacting with the world. The interaction happens in
rounds. In each round, the agent has some observations and takes some actions. The
actions can change the state of the world, and the observations should consist of
rewards for the agent.

To describe the state of the world, we introduce a state space S. To describe the
action, we introduce an action space A.

What about observations? Here we consider the observations consist of the state of
the world and the reward. More precisely, at time t, the agent can observe the state
of the world at that time denoted as s_t, and get a reward at that time denoted as
r_t.

In summary, at each iteration t, the agent observes the state s_t and get a reward r_t,
and then takes an action a_t. Then the state of the world changes to s_{t+1}, and we
go to the next iteration.

The goal is then to take actions to maximize the rewards. More precisely, we would
like to have a decision function that takes as input a state and output an action. This
is called a policy, which is a map from states to actions.

3 things to be formalized:

1. State transition

2. Reward function

3. Policy maximizing the reward

For the first two we use Markov assumption leading to the MDP framework. For the
last, we introduce the value function and define the optimal policy as the policy
maximizing the value.

Value function

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

Ve (sy) = Z P(sequence)U(sequence)

sequences
starting from s,

Called the value function (for =, s;)

The value function for a policy from an initial state is the expected reward/utility
collected by following the policy starting from the initial state.

It’s an expectation since we have randomness in the state transition. We also define
the utility or reward collected for a sequence of states as the sum of the discounted
rewards of the states in the sequence, so that we can get convergence.

To compute the value function, we introduce a key property: Bellman equation. It can
be derived from the definition of the value function, by walking one step of the
interaction.

The Bellman equation

S Agent receives reward r(s)

Environment returns s'~ P(- |5, a) A g

e What is the recursive expression for V™ (s) in terms
of V™ (s") - the utilities of its successors?

V() =r() +7) P(s'lsm(s) WH(S")

Image source: L. Lazbenik

To explain better, we consider the tree description of the interaction.

Current state: s

Different actions lead to different children specified by (s, a) pairs.

The (s,a) pair then leads to a distribution over the next state s’ according to the state
transition distribution.

Recall the definition of the value function of a policy \pi from a state s: it’s the
expected utility accumulated starting from s and following the policy \pi. Break the
accumulation of rewards into two parts: the first step and future steps.
1. In the first step we get the reward r(s) at the state s.
2. Suppose then the next state is s”. Then in the future steps, we will get utility
accumulated starting from s’ and following the policy \pi. This is exactly the definition
of the value of a policy \pi from a state s’! Considering the distribution of s’ and the
discounted factor, the utility collected in future steps is the expectation of VA{\pi}(s’)
over the distribution P(s’| s, \pi(s)).
In summary, we have

VA{\pi}(s) = r(s) + \gamma * E_{s’} VA{\pi}(s’) = r(s) + \gamma * \sum_{s’} P(s’]s,
\pi(s)) VA{\pi}s’)

This is the Bellman Equation for a general policy.

The Bellman equation

S Agent receives reward r(s)

Environment returns s'~ P(- |5, a) A g

e Applied to the optimal policy:

V*(s) = r(s) + y max, Z P(s'|s,a)V*(s")

Image source: L. Lazbenik

The Bellman’s equation for the optimal policy is a special case.

Example

AlO—G/lg(D

Deterministic transition. y = 0.8, policy shown in red arrow.

Apply Bellman equation on a given policy.

Consider G. After one step of the policy we get to the next state G deterministically.
Then by Bellman equation:

Value of the policy on G = r(G) + \gamma * Value of the policy on G
Then

Value of the policy on G =r(G) / (1-\gamma) = 100/(1-0.8) = 500

Consider A:
value on A =r(A) + \gamma * value on G =10+ 0.8 * 500 = 410

Consider B:
value of B =r(B) + \gamma * value on A=20+ 0.8 * 410 = 348

Consider C:
value of C = r(C) + \gamma * value on G =20+ 0.8 * 500 = 420

Value Iteration

Q: how do we find V*(s)?

* Why do we want it? Can use it to get the best policy
* Know: reward r(s), transition probability P(s’|s,a)
* Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Vivi(s) =r(s) +7 maXZP(s’Is, a)Vi(s")

Our original goal is to get V* without knowing the optimal policy, so cannot apply
Bellman equation as we did in the example in the previous slide. But we can still use
an iterative approach.

Q-Learning

What if we don’t know transition probability P(s’|s,a)?
* Need a way to learn to act without it

* Q-learning: get an action-utility function Q(s,a) that tells us
the value of doing a in state s (including the reward in s)

Q@) =7() +v) PGl V()

* Note: V*(s) = max, Q(s,a)

* Now, we can just do *(s) = arg max,Q(s,a)
— But need to estimate Q!

Note that definition of Q slightly different from the the expected utility of an action
we talked about in the previous slide: Q includes the reward in s.

From Bellman equation we can introduce Q function. Then V* and \pi* has a simple
form.

Definition of value function -> Bellman equation -> value iteration; and also Q
function and Q-learning

Q-Learning Iteration

How do we get Q(s,a)?
* Similar iterative procedure

Q(st, ag) Q(:.s't, (lt) + a'[("»"t) y llll‘fl.x Q(stH, (1) — Q(""t~ (It:)]

Learning rate

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the
estimated Q!

Suppose during training, we observe that: at time t, the agent is in the state s_t and
gets reward r(s_t), and then takes an action a_t and goes to the next state s_{t+1}.
Then we can use these observations to update the Q function.

The update rule RHS can be rewritten as:

(1-\alpha) Q(s_t, a_t) +\alpha [r(s_t) + \gamma \max_a Q(s_{t+1}, a)]
It’s a weighted sum of two terms: the old value Q(s_t, a_t) and a new estimate r(s_t)
+\gamma \max_a Q(s_{t+1}, a).

Why is r(s_t) + \gamma \max_a Q(s_{t+1}, a) a good estimate of Q(s_t, a_t)?
By definition:
Q(s_t, a_t) =r(s_t) + \gamma E_{s'} V*(s').
In training we don’t know the distribution of s’. We only have one sample s_{t+1}, so
we use this sample to estimate the expectation E_{s’} V*(s’):
new estimate of Q(s_t, a_t) = r(s_t) + \gamma V*(s_{t+1}).
But we also don’t know V*(s_{t+1}). We can use the current estimation of Q function
to estimate V*(s_{t+1}) = \max_{a} Q(s_{t+1},a). So we have
new estimate of Q(s_t, a_t) = r(s_t) + \gamma = \max_{a} Q(s_{t+1},a).
This then leads to the new estimate in the update rule.

When alpha =1, we use the new estimate to completely replace the old value. This is
similar to value iteration. But we use a learning rate 0< alpha <1 to balance the old

10

and new, so that the learning is more stable.

One thing still needs to be specified: How to choose the action a_t.

10

Q-Learning: Epsilon-Greedy Policy

How to explore?

* With some 0<e<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

argmax, 4 Q(s,a) uniform(0,1) > e
a= e ’
random a € A otherwise

A simple but effective method to choose the action to tradeoff exploration and
exploitation: with a small probability eps (eps is a parameter), the agent choose a

random action; otherwise choose the best action according to the current estimate
of Q.

In summary, in Q-learning

1. First use some method (like epsilon-greedy) to choose an action, get the
observations_t, r(s_t), a_t, s_{t+1}.

2. Use the observations in the update rule (like the one on the previous slide) to
update the Q value for (s_t, a_t)

3. Repeat

We can have other action-choosing methods other than epsilon-greedy. We can also
have other update rules.

11

Q-Learning: SARSA

An alternative:

* Just use the next action, no max over actions:

Q(st, ar) « Q(st, ar) + alr(se) +YQ(se41, ary1) — Q(se, ar))

Learning rate

* Called state—action—reward—state—action (SARSA)
* Can use with epsilon-greedy policy

Another popular update rule is SARSA, which replace the max over actions with
simply the next action. This is more efficient especially when there are many actions.

The name comes from the observations used for the update: state s_t, action a_t,
reward r(s_t), state s_{t+1}, action a_{t+1}.

12

Summary of RL

Reinforcement learning setup
Mathematical formulation: MDP

Value functions & the Bellman equation

Value iteration
Q-learning

13

Search and Games Review

e Search
— Uninformed vs Informed
— Optimization
* Games
— Game tree, Game-theoretical value, Minimax search
— Normal form, Equilibrium

14

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
* Path cost g(s) from start to node s

* Successors. @
gls)

Informed search. Know:
* Alluninformed search properties, plus
* Heuristic h(s) from s to goal (recall game heuristic)

Key difference: informed search knows an additional function h(s), which can be
regarded as an estimation of the cost from a state to the goal (or one of the goal
states).

15

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS
 Search like BFS, fringe like DFS

* Properties:
— Complete
— Optimal (if edge cost 1)
— Time O(bY)
— Space O(bd)

A good option!

Fractalsaco

All uninformed/informed search methods fall into the same general framework:
1. Atthe beginning put the initial state into the fringe
2. Then run in iterations:

1) First pick a node from the fringe

2) Check if goal; if so return

3) Put the successors into the fringe

The preferred method is iterative deepening, which has good performance metrics.

16

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement
* Demand that h(s) < h*(s)

* |f heuristic has this property, “admissible”
— Optimistic! Never over-estimates

* Still need h(s) 20

— Negative heuristics can lead to strange behavior

A* search = A search with an admissible heuristic.

Admissible: 0 <= h(s) <= true cost h*(s) for any state s.

17

Q1: You need to search a randomly generated state
space graph with one goal, uniform edges costs. The
goal is d=2 steps from the initial state, and the
maximum depth is m=100. Considering worst case
behavior, do you select BFS or DFS for your search?

1. BFS

2. DFS

21

Q1: You need to search a randomly generated state
space graph with one goal, uniform edges costs. The
goal is d=2 steps from the initial state, and the
maximum depth is m=100. Considering worst case
behavior, do you select BFS or DFS for your search?

1. BFS < The goal is 2 steps
from the initial state,
which is good for
BFS.

2. DFS

22

Break & Quiz

Q2: Consider the state space graph
below. Goal states have bold borders.
h(s) is show next to each node. What

node will be expanded by A* after h=

the initial state 1?

0O ™ >

23

Break & Quiz

Q2: Consider the state space graph h
below. Goal states have bold borders.
h(s) is show next to each node. What

node will be expanded by A* after h=

the initial state 1?

.
0O ™ >

After expanding the initial state I, the fringe has AB C.
A’s g + h value: 10+0

B’s: 6 + \infinity

Cs:3+8

A* search will pick A.

24

Search vs. Optimization

Before: wanted a path from start state to goal state
* Uninformed search, informed search

New setting: optimization 7o

TuringFin

* States s have values f{(s)
* Want: s with optimal value f{(s) (i.e, optimize over states)

* Challenging setting: too many states for previous search
approaches, but maybe not a continuous function for SGD.

Optimization-like search: want a state with the optimal value; don’t care about
solution path.

25

Hill Climbing Algorithm
Pseudocode:

Pick initial state s

Pick t in neighbors(s) with the largest f(t)
if f(t) < f(s) THEN stop, return s

s« t. goto 2.

HhWwhNpR

What could happen? Local optimal!

e

Key idea: keep greedily picking the best neighbor.

26

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Where do | go?

state state

27

Simulated Annealing

A more sophisticated optimization approach.

* Idea: move quickly at first, then slow down Fy
* Pseudocode:

Pick initial state s

For k = 0 through k.,

T & temperature((k+1)/Kmax)

Pick a random neighbor, t ¢ neighbor(s)
If f(s) < f(t), thens & t

Else, with prob. P(f(s), f(t), T) thens & t
Output: the final state s

The interesting bit

Can be viewed as a variant of Hill-Climbing:
1. Randomly pick one neighbor instead of checking all neighbors
2. With some probability allow to go to a neighbor with worse value

Key idea: in the early iterations, accept worse neighbors with larger probability for
exploration; in later iterations, accept with smaller probability for exploitation; use a
decreasing temperature parameter to implement this.

The probability should also be smaller for larger gaps between the values for the
neighbor and the current state.

28

Genetic Algorithm

Goal of genetic algorithms: optimize using principles inspired by
mechanism for evolution

E.g., analogous to natural selection, cross-over, and mutation

" SR ERIT 3
[z27B2—{ 24752411 |
|
]

32752124 |—{ 342b2124

[24215800}~ 244154103

= :
(a)) -) (e)
Tnstial Population tnes: l MO0 Selection H Cross-Over Mutation
of non- :
prob. :

attacking pairs . : :
i reproduction i > Next generation
o fithess

The genetic algorithm runs in generations, each generation has the following
operations corresponding to natural selection, crossover and mutation.

1.

Compute the f value (the fitness), and then normalize them to get the probability
of reproduction. Then do natural selection: by sampling from the reproduction
probability distribution.

Then pair up the individuals; for each pair, pick a random location to cut each
code into two segments; then do crossover by mixing up the segments.

Finally do mutation: (one standard variant) for each location in each individual,
determine whether to do mutation with a small mutation probability; if yes, then
replace the original symbol with a randomly pick symbol.

Repeat this until we are satisfied with the solution or run out of time budget.

29

Q3: What is an advantage of simulated annealing over
hill climbing?

1. It is guaranteed to
find the global
optimum

2. Algorithms inspired by
real world processes
work better

3. ltis less vulnerable to
getting stuck in local
optima

4. It terminates more
quickly

36

Q3: What is an advantage of simulated annealing over
hill climbing?

1. It is guaranteed to
find the global
optimum

2. Algorithms inspired by

real world processes
work better

3. ltis less vulnerable to
getting stuck in local S
optima

4. It terminates more
quickly

Simulated annealing may not find the global optimum and it may take longer time to
terminate. But it allows some probability to accept a worse neighbor so can have
better chance to escape local optima.

37

Games Setup

Games setup: multiple agents

o)
Q:\ e j)
= " | ~}—
7 5 > A
\\]
: ‘\\ Player 3
Player 1 (-)
— Now: interactions between agents /
— Still want to maximize utility Player 2

— Strategic decision making.

We can model the interactions between multiple agents (and potentially with the
world). We assume that each player/agent has its own reward function and wants to
maximize that. However, the reward function of any player depends on all the actions
of all the players and the world. So the reward function captures the interaction.

What's the different between the world and a player? Players are rational or selfish or
strategic. They want to maximize their own rewards. The world is not strategic:
though its state can affect the rewards but it doesn’t have or want to maximize its
own reward.

38

Game tree for II-Nim

Two players:
Max and Min

| (- jiy Max | LaipMax | [EjMax | [jyMax | [yMax |
+1 -1 | A1 +1
[pMin | [yMin | [pMin ||, yMin | [)Min |
+1 A +1 1 1
(o) Max | (- Max |
+1 +1 Max wants the largest score

Min wants the smallest score

Use a game tree to formalize the sequential game.

Two other important implications:

1. We can compute the game-theoretical values easily from bottom up.

2. Once we have the values of the children of a current state, then we know which is
the best

Minimax Algorithm

function Max-Value(s) Time complexity?

inputs: . O(bm)
s: current state in game, Max about to play .
output: best-score (for Max) available from s Space comp [EXIty?
if (s is a terminal state) . O(bm)

then return (terminal value of s)
else
o :=—infinity
for each s’ in Succ(s)
a := max(o, Min-value(s’))
return a

function Min-Value(s)
output: best-score (for Min) available from s

if (sis a terminal state)
then return (terminal value of s)
else
B := infinity
for each s’ in Succs(s)
B :=min(B, Max-value(s’))

return B

The minimax algorithm replaces the bottom-up computation with recursion.

The key idea of recursion: we assume that smaller problems are already solved, and we want to
use the solutions for the smaller problems to solve the current problem.

Here, the smaller problems are the values of the children, and the current problem is the value
of the current state.

On a state where Max is going to play:

1. it’s terminal then we can return the terminal score which is the value by definition

2. If not terminal, just take the maximum of the values of the children (here we pretend that we
have already solve the smaller problems of computing the values of the children)

This is the Max-Value function. Similar for the Min-Value function that computes the value of
a state where Min is going to play.

Simultaneous Games

The players make moves simultaneously
* Can express reward with a simple diagram (Normal form)
* Ex: for prisoner’s dilemma

Player 2
Stay silent Betray
Player 1
Stay silent -1,-1 -3,0
Betray 0,-3 -2, -2

Simultaneous games (one round) can be formalized using normal form (math
definition of the reward/utility functions of the players). Can show in a diagram for
illustration.

41

Nash Equilibrium

Consider the mixed strategy x* = (x;*, ..., x,*)
* This is a Nash equilibrium if

wi(zs,xl ;) 2 wl®i,x,) Va;€ Ay, Vie{l,2

1

Better than doing Space of
anything else, probability
“best response” distributions

* Intuition: nobody can increase expected reward by
changing only their own strategy. A type of solution!

Key notion: Nash equilibrium. This is the foundation for many important concepts in

various areas, like price and market in economics.

In x*, each player has a mixed strategy, a probabilistic distribution over its action

space.

Nash equilibrium: all the players do not have an incentive to deviate from its current

mixed strategy.

Focus on any player i: If the other players keep their strategies, then player i will

suffer from using other mixed strategy.

42

Q4: Consider a variant of the Nim game. There is only 1 pile of 3
sticks. And the player takes 1 or 2 sticks from a pile. Which is
true about the game tree?

1. Max always wins
along all possible
trajectories

2. The longest
trajectory has 3
moves

3. There are 4 possible
trajectories

4. None of the above

43

Q4: Consider a variant of the Nim game. There is only 1 pile of 3
sticks. And the player takes 1 or 2 sticks from a pile. Which is
true about the game tree?

1. Max always wins i Max

along all possible 22 N
trajectories T Min Min

2. The longest 7 N

trajectory has 3 <4mmmm [v |
moves . -t

3. There are 4 possible “Win
trajectories -

4. None of the above

_ Max

44

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik,
Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

45

