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We will go through these three steps: build the math model, introduce the notion of 
values that comes from our goal and enables decision making, and then design 
algorithms for computing the values. 

We will begin with building the math model. 

Recall that we have an agent interacting with the world. The interaction happens in 
rounds. In each round, the agent has some observations and takes some actions. The 
actions can change the state of the world, and the observations should consist of 
rewards for the agent.

To describe the state of the world, we introduce a state space S. To describe the 
action, we introduce an action space A. 
What about observations? Here we consider the observations consist of the state of 
the world and the reward. More precisely, at time t, the agent can observe the state 
of the world at that time denoted as s_t, and get a reward at that time denoted as 
r_t. 

In summary, at each iteration t, the agent observes the state s_t and get a reward r_t, 
and then takes an action a_t. Then the state of the world changes to s_{t+1}, and we 
go to the next iteration.
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The goal is then to take actions to maximize the rewards. More precisely, we would 
like to have a decision function that takes as input a state and output an action. This 
is called a policy, which is a map from states to actions.  

3 things to be formalized:
1. State transition
2. Reward function 
3. Policy maximizing the reward
For the first two we use Markov assumption leading to the MDP framework. For the 
last, we introduce the value function and define the optimal policy as the policy 
maximizing the value. 
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The value function for a policy from an initial state is the expected reward/utility 
collected by following the policy starting from the initial state. 

It’s an expectation since we have randomness in the state transition. We also define 
the utility or reward collected for a sequence of states as the sum of the discounted 
rewards of the states in the sequence, so that we can get convergence. 

To compute the value function, we introduce a key property: Bellman equation. It can 
be derived from the definition of the value function, by walking one step of the 
interaction. 
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To explain better, we consider the tree description of the interaction. 

Current state: s
Different actions lead to different children specified by (s, a) pairs. 
The (s,a) pair then leads to a distribution over the next state s’ according to the state 
transition distribution. 

Recall the definition of the value function of a policy \pi from a state s: it’s the 
expected utility accumulated starting from s and following the policy \pi. Break the 
accumulation of rewards into two parts: the first step and future steps. 
1. In the first step we get the reward r(s) at the state s. 
2. Suppose then the next state is s’.  Then in the future steps, we will get utility 
accumulated starting from s’ and following the policy \pi. This is exactly the definition 
of the value of a policy \pi from a state s’! Considering the distribution of s’ and the 
discounted factor, the utility collected in future steps is the expectation of V^{\pi}(s’) 
over the distribution P(s’| s, \pi(s)).
In summary, we have

V^{\pi}(s) = r(s) + \gamma * E_{s’} V^{\pi}(s’) = r(s) + \gamma * \sum_{s’}  P(s’|s, 
\pi(s))   V^{\pi}(s’)
This is the Bellman Equation for a general policy. 
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The Bellman’s equation for the optimal policy is a special case. 
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Apply Bellman equation on a given policy. 

Consider G. After one step of the policy we get to the next state G deterministically. 
Then by Bellman equation: 

Value of the policy on G = r(G) + \gamma * Value of the policy on G
Then 

Value of the policy on G = r(G) / (1-\gamma) = 100/(1-0.8) = 500

Consider A:
value on A = r(A) + \gamma * value on G = 10 + 0.8 * 500 = 410

Consider B:
value of B = r(B) + \gamma * value on A = 20 + 0.8 * 410 = 348

Consider C:
value of C = r(C) + \gamma * value on G = 20 + 0.8 * 500 = 420
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Our original goal is to get V* without knowing the optimal policy, so cannot apply 
Bellman equation as we did in the example in the previous slide. But we can still use 
an iterative approach.  
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Note that definition of Q slightly different from the the expected utility of an action 
we talked about in the previous slide: Q includes the reward in s.

From Bellman equation we can introduce Q function. Then V* and \pi* has a simple 
form.

Definition of value function -> Bellman equation -> value iteration; and also Q 
function and Q-learning
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Suppose during training, we observe that: at time t, the agent is in the state s_t and 
gets reward r(s_t), and then takes an action a_t and goes to the next state s_{t+1}. 
Then we can use these observations to update the Q function. 

The update rule RHS can be rewritten as: 
(1-\alpha) Q(s_t, a_t)  + \alpha [ r(s_t) + \gamma \max_a Q(s_{t+1}, a) ]

It’s a weighted sum of two terms: the old value Q(s_t, a_t) and a new estimate r(s_t) 
+ \gamma \max_a Q(s_{t+1}, a). 

Why is r(s_t) + \gamma \max_a Q(s_{t+1}, a)   a good estimate of Q(s_t, a_t)? 
By definition: 

Q(s_t, a_t) = r(s_t) + \gamma E_{s'} V*(s’). 
In training we don’t know the distribution of s’. We only have one sample s_{t+1}, so 
we use this sample to estimate the expectation E_{s’} V*(s’): 

new estimate of Q(s_t, a_t) = r(s_t) + \gamma V*(s_{t+1}).
But we also don’t know V*(s_{t+1}). We can use the current estimation of Q function 
to estimate V*(s_{t+1}) = \max_{a} Q(s_{t+1},a). So we have 

new estimate of Q(s_t, a_t) = r(s_t) + \gamma = \max_{a} Q(s_{t+1},a). 
This then leads to the new estimate in the update rule.

When alpha = 1, we use the new estimate to completely replace the old value. This is 
similar to value iteration. But we use a learning rate 0< alpha <1 to balance the old 
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and new, so that the learning is more stable. 

One thing still needs to be specified: How to choose the action a_t.
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A simple but effective method to choose the action to tradeoff exploration and 
exploitation: with a small probability eps (eps is a parameter), the agent choose a 
random action; otherwise choose the best action according to the current estimate 
of Q. 

In summary, in Q-learning
1. First use some method (like epsilon-greedy) to choose an action, get the 

observation s_t, r(s_t), a_t, s_{t+1}. 
2. Use the observations in the update rule (like the one on the previous slide) to 

update the Q value for (s_t, a_t)
3. Repeat 

We can have other action-choosing methods other than epsilon-greedy. We can also 
have other update rules. 
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Another popular update rule is SARSA, which replace the max over actions with 
simply the next action. This is more efficient especially when there are many actions. 

The name comes from the observations used for the update: state s_t, action a_t, 
reward r(s_t), state s_{t+1}, action a_{t+1}. 
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Key difference: informed search knows an additional function h(s), which can be 
regarded as an estimation of the cost from a state to the goal (or one of the goal 
states). 
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All uninformed/informed search methods fall into the same general framework:
1. At the beginning put the initial state into the fringe
2. Then run in iterations: 

1) First pick a node from the fringe 
2) Check if goal; if so return
3) Put the successors into the fringe

The preferred method is iterative deepening, which has good performance metrics. 
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A* search = A search with an admissible heuristic.

Admissible: 0 <= h(s) <= true cost h*(s) for any state s. 
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After expanding the initial state I, the fringe has A B C. 
A’s g + h value: 10+0
B’s: 6 + \infinity
C’s: 3 + 8
A* search will pick A.  
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Optimization-like search: want a state with the optimal value; don’t care about 
solution path. 
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Key idea: keep greedily picking the best neighbor. 
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Can be viewed as a variant of Hill-Climbing:
1. Randomly pick one neighbor instead of checking all neighbors
2. With some probability allow to go to a neighbor with worse value

Key idea: in the early iterations, accept worse neighbors with larger probability for 
exploration; in later iterations, accept with smaller probability for exploitation; use a 
decreasing temperature parameter to implement this.
The probability should also be smaller for larger gaps between the values for the 
neighbor and the current state. 
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The  genetic algorithm runs in generations, each generation has the following 
operations  corresponding to natural selection, crossover and mutation.
1. Compute the f value (the fitness), and then normalize them to get the probability 

of reproduction. Then do natural selection: by sampling from the reproduction 
probability distribution. 

2. Then pair up the individuals; for each pair, pick a random location to cut each 
code into two segments; then do crossover by mixing up the segments.

3. Finally do mutation: (one standard variant) for each location in each individual, 
determine whether to do mutation with a small mutation probability; if yes, then 
replace the original symbol with a randomly pick symbol. 

Repeat this until we are satisfied with the solution or run out of time budget. 
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Simulated annealing may not find the global optimum and it may take longer time to 
terminate. But it allows some probability to accept a worse neighbor so can have 
better chance to escape local optima. 
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We can model the interactions between multiple agents (and potentially with the 
world). We assume that each player/agent has its own reward function and wants to 
maximize that. However, the reward function of any player depends on all the actions 
of all the players and the world. So the reward function captures the interaction. 

What’s the different between the world and a player? Players are rational or selfish or 
strategic. They want to maximize their own rewards. The world is not strategic: 
though its state can affect the rewards but it doesn’t have or want to maximize its 
own reward. 
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Use a game tree to formalize the sequential game. 

Two other important implications:
1. We can compute the game-theoretical values easily from bottom up.
2. Once  we  have the values of the children of a current state, then we know  which is 

the best
action. That is, to play the ga



solutions for the sma
current state.

The  minimax algorithm replaces the bottom-up computation with recursion. 

The key idea of recursion: we assume that smaller problems  are already solved, and we want to 
use the solutions for the  smaller problems to solve  the current problem. 
Here,  the smaller problems are the values of the children,  and the  current problem is the value 
of the current state. 

On a state where Max is going to play:  
1. it’s terminal then we can return the  terminal score which is the value by definition
2. If not terminal, just take the maximum of the values of the children (here we pretend that we 
have already solve the smaller problems of computing the values of the children)

This is the Max-Value function. Similar for the Min-Value  function  that computes the value  of 
a state where Min is  going to play. 

already solve the smaller 
where Min is going to



Simultaneous games (one round) can be formalized using normal form (math 
definition of the reward/utility functions of the players). Can show in a diagram for 
illustration. 
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Key notion: Nash equilibrium. This is the foundation for many important concepts in 
various areas, like price and market in economics. 

In x*, each player has a mixed strategy, a probabilistic distribution over its action 
space. 

Nash equilibrium: all the players do not have an incentive to deviate from its current 
mixed strategy. 

Focus on any player i: If the other players keep their strategies, then player i will 
suffer from using other mixed strategy. 
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