,,,,,,

¥

CS 540 Introduction to Artificial Intelligence
Review on Search, Games, and RL

Yingyu Liang
University of Wisconsin-Madison
Dec 9, 2021

Based on slides by Fred Sala

Announcements (details on Piazza)

 Final Exam information

— On Canvas/Quizzes as midterm; but no one-day window
— Main: Dec 20 2:45-4:45pm
— Makeup: Dec 23 2:45-4:45pm

e Course Evaluation
— Dec 1to Dec 15

— Explicit incentive: some details about the final exam if the
participation rate reaches 50%/75%/95%

Building The Theoretical Model

Basic setup: © >
Actions
* Set of states, S < m
. Observations
e Set of actions A Agent

* Information: at time t, observe state s, € S. Get reward r,
* Agent makes choice a, € A. State changes to s;,; continue

Goal: find a map from states to actions maximize rewards.

t

A “policy”

Value function

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sg) = 2 P(sequence)U(sequence)

sequences
starting from s

R

Called the value function (for =, s;)

The Bellman equation

S Agent receives reward 7(s)

Environment returns s'~ P(: |s, a) A S’

e What is the recursive expression for V' (s) in terms
of V™ (s") - the utilities of its successors?

V() = 7(5) +7) P(s'ls,m(s) V(s

Image source: L. Lazbenik

The Bellman equation

S Agent receives reward 7(s)

Environment returns s'~ P(: |s, a) A S’

e Applied to the optimal policy:

V*(s) = r(s) + y max, Z P(s'|s,a)V*(s")

Image source: L. Lazbenik

Example

Deterministic transition. y = 0.8, policy shown in red arrow.

Value Iteration

Q: how do we find V*(s)?

* Why do we want it? Can use it to get the best policy

* Know: reward r(s), transition probability P(s’|s,a)

e Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Vigi(s) =1 (s) +7m3XZP(3/\SaG)W(3/>

Q-Learning

What if we don’t know transition probability P(s’|s,a)?
* Need a way to learn to act without it

* Q-learning: get an action-utility function Q(s,a) that tells us
the value of doing a in state s (including the reward in s)

0(s,0) =7(s) +y) P(s'ls, V" (s")

* Note: V*(s) = max, Q(s,a)

* Now, we can just do m*(s) = arg max,Q(s,a)
— But need to estimate Q!

Q-Learning lteration

How do we get Q(s,a)?

e Similar iterative procedure
Q(8¢, ar) < Q(s¢,a¢) + afr(se) + ’YmC?JXQ<5t—I—17 a) — Q(st,at)]

Learning rate

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the
estimated Q!

Q-Learning: Epsilon-Greedy Policy

How to explore?

* With some 0<e<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

argmax,c 4 Q(s,a) uniform(0,1) > €
a =
random a € A otherwise

Q-Learning: SARSA

An alternative:

e Just use the next action, no max over actions:

Q(st,a1) + Q(s4,a¢) + alr(ss) +7Q(St41, ap41) — Q8¢ ay)]

Learning rate

e C(Called state—action—reward—state—action (SARSA)

e (Can use with epsilon-greedy policy

Summary of RL

Reinforcement learning setup
Mathematical formulation: MDP

Value functions & the Bellman equation
Value iteration

Q-learning

Search and Games Review

* Search
— Uninformed vs Informed
— Optimization
* Games
— Game tree, Game-theoretical value, Minimax search

— Normal form, Equilibrium

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

e Path cost g(s) from start to node s

* Successors. @
anuun®® .goal
gls) .

Informed search. Know:
* All uninformed search properties, plus
* Heuristic h(s) from s to goal (recall game heuristic)

(»)@h” oG

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS
e Search like BFS, fringe like DFS,
* Properties: |
— Complete
— Optimal (if edge cost 1)
— Time O(b9)
— Space O(bd)

A good option!

Fractalsaco

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement
 Demand that h(s) < h*(s)

* If heuristic has this property, “admissible”

— Optimistic! Never over-estimates

e Stillneed h(s) =20

— Negative heuristics can lead to strange behavior

Search vs. Optimization

Before: wanted a path from start state to goal state

New setting: optimization s

Uninformed search, informed search

TuringFin

States s have values f{(s)
Want: s with optimal value f(s) (i.e, optimize over states)

Challenging setting: too many states for previous search
approaches, but maybe not a continuous function for SGD.

Hill Climbing Algorithm
Pseudocode:

Pick initial state s

Pick t in neighbors(s) with the largest f(t)
if f(t) < f(s) THEN stop, return s

s «— t. goto 2.

h W

What could happen? Local optimal

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

\ \ Where do | go?

state state

Simulated Annealing

A more sophisticated optimization approach.

* ldea: move quickly at first, then slow down
 Pseudocode:

Pick initial state s
For k = 0 through k;.,:
T & temperature((k+1)/Kmax)
_ o Pick a random neighbor, t < neighbor(s)
The interesting bit

\Iff(s) <f(t), thens & t
Else, with prob. P(f(s), f(t), T) then s & t
Output: the final state s

Genetic Algorithm

Goal of genetic algorithms: optimize using principles inspired by
mechanism for evolution

* E.g., analogous to natural selection, cross-over, and mutation

(24748552 24 a1% _[32752411 | : .[32748552 {32742]

(32752411 [23 2% ~[24748552 | = \[247B2411] 24752411 |

| 24415124 | 20 26% = | 327.525411 >J_<| 32752124 —{ 32252124 |

32543213 | 11 1% ™[24415124 | 24415411 |—{ 2441541[|

(a) (b) ©) (d) (e)
Initial Population tness Funcon Selection Cross—Over Mutation
of non-
prob. .

attacking pairs . I
sP reproduction 1 —> Next generation
oc fithess

Games Setup

Games setup: multiple agents

e

Player 3
Player 1 @
— Now: interactions between agents %
— Still want to maximize utility Player 2

— Strategic decision making.

Game tree for Sequential Game II-Nim
Two players:

Max and Min y Max\

Il Min (- ii) Min
-1 / \
/(_41” Max\ (i) Max (- i) Max (- i) Max (_1_) Max
+1 -1 -1 +

(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
+1 -1 +1 -1 1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Minimax Algorithm

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is a terminal state)
then return (terminal value of s)

else
a :=—infinity
for each s’ in Succ(s)
a := max(a, Min-value(s’))
return o

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state)
then return (terminal value of s)
else
B :=infinity
for each s’ in Succs(s)
B :=min(B, Max-value(s’))

return

Time complexity?
° O(bm)
Space complexity?
e O(bm)

Simultaneous Games

The players make moves simultaneously
e (Can express reward with a simple diagram (Normal form)

e Ex: for prisoner’s dilemma

Player 2
Stay silent Betray
Player 1
Stay silent -1, -1 -3,0

Betray 0, -3 -2, -2

Nash Equilibrium

Consider the mixed strategy x* = (x,*, ..., x,,*)
* Thisis a Nash equilibrium if

wi(x;,x" ;) > u,—(:z:if’zr*l—) Va; € A\AI.W c{l1,2,...,n}
Better than doing Space of
anything else, probability
“best response” distributions

* Intuition: nobody can increase expected reward by
changing only their own strategy. A type of solution!

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik,
Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

