

CS 540 Introduction to Artificial Intelligence Review on Search, Games, and RL

Yingyu Liang University of Wisconsin-Madison Dec 9, 2021

Based on slides by Fred Sala

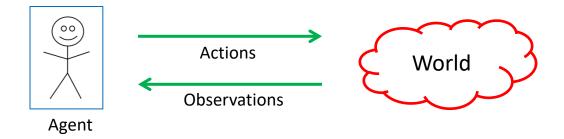
Announcements (details on Piazza)

- Final Exam information
 - On Canvas/Quizzes as midterm; but no one-day window
 - Main: Dec 20 2:45-4:45pm
 - Makeup: Dec 23 2:45-4:45pm
- Course Evaluation
 - Dec 1 to Dec 15
 - Explicit incentive: some details about the final exam if the participation rate reaches 50%/75%/95%

Building The Theoretical Model

Basic setup:

- Set of states, S
- Set of actions A



- Information: at time *t*, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1} , continue

Goal: find a map from **states to actions** maximize rewards.

Value function

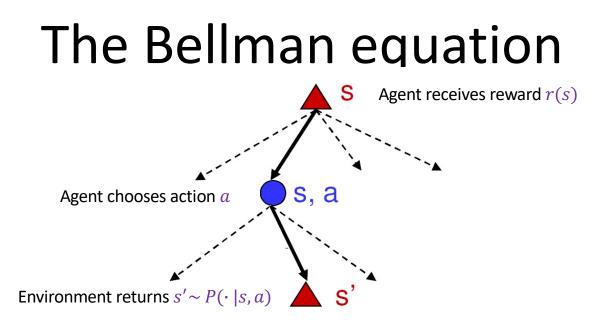
For policy π , **expected utility** over all possible state sequences from s_0 produced by following that policy:

$$V^{\pi}(s_0) =$$

P(sequence)*U*(sequence)

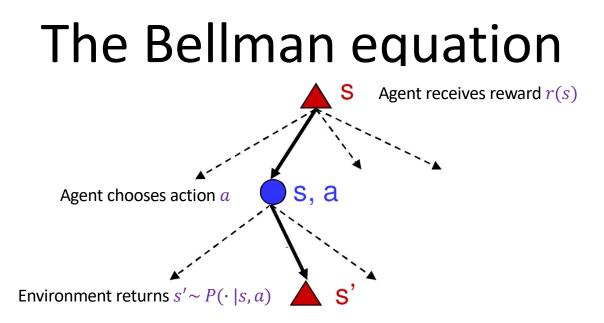
sequences starting from s_0

Called the value function (for π , s_0)



• What is the recursive expression for $V^{\pi}(s)$ in terms of $V^{\pi}(s')$ - the utilities of its successors?

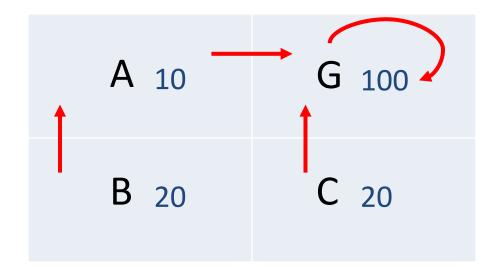
$$V^{\pi}(s) = r(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$



• Applied to the optimal policy:

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s')$$

Example



Deterministic transition. $\gamma = 0.8$, policy shown in red arrow.

Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)
- Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

Q-Learning

What if we don't know transition probability P(s'|s,a)?

- Need a way to learn to act without it
- Q-learning: get an action-utility function Q(s,a) that tells us the value of doing a in state s (including the reward in s)

$$Q(s,a) = r(s) + \gamma \sum_{s'} P(s'|s,a) V^*(s')$$

- Note: $V^*(s) = \max_a Q(s,a)$
- Now, we can just do $\pi^*(s) = \arg \max_a Q(s, a)$
 - But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?

• Similar iterative procedure

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r(s_t) + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Learning rate

Idea: combine old value and new estimate of future value. Note: We are using a policy to take actions; based on the estimated Q!

Q-Learning: Epsilon-Greedy Policy

How to **explore**?

 With some 0<ε<1 probability, take a random action at each state, or else the action with highest Q(s,a) value.

$$a = \begin{cases} \operatorname{argmax}_{a \in A} Q(s, a) & \operatorname{uniform}(0, 1) > \epsilon \\ \operatorname{random} a \in A & \operatorname{otherwise} \end{cases}$$

Q-Learning: SARSA

An alternative:

• Just use the next action, no max over actions:

$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha [r(\mathbf{s}_t) + \gamma Q(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) - Q(\mathbf{s}_t, \mathbf{a}_t)]$$

Learning rate

- Called state-action-reward-state-action (SARSA)
- Can use with epsilon-greedy policy

Summary of RL

- Reinforcement learning setup
- Mathematical formulation: MDP
- Value functions & the Bellman equation
- Value iteration
- Q-learning

Search and Games Review

- Search
 - Uninformed vs Informed
 - Optimization
- Games
 - Game tree, Game-theoretical value, Minimax search
 - Normal form, Equilibrium

Uninformed vs Informed Search

h(s

als

Uninformed search (all of what we saw). Know:

- Path cost *g*(*s*) from start to node *s*
- Successors. start s

goa

Informed search. Know:

• All uninformed search properties, plus

start

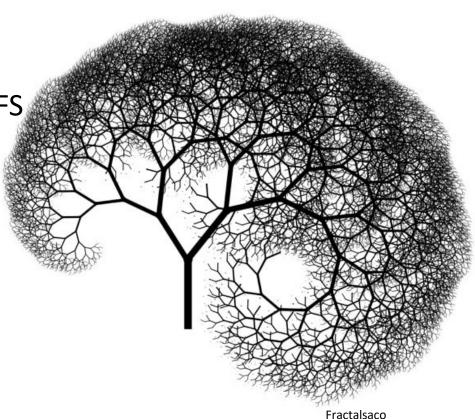
• Heuristic h(s) from s to goal (recall game heuristic)

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- Properties:
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
 - Space O(bd)

A good option!



Informed Search: A* Search

- A*: Expand best *g(s)* + *h(s)*, with one requirement
- Demand that $h(s) \le h^*(s)$

- If heuristic has this property, "admissible"
 - Optimistic! Never over-estimates

- Still need $h(s) \ge 0$
 - Negative heuristics can lead to strange behavior

Search vs. Optimization

Before: wanted a path from start state to goal state

• Uninformed search, informed search

New setting: optimization

• States *s* have values *f*(*s*)

- $\begin{array}{c} \mathsf{ICH} \\ & & \\ &$
- Want: *s* with optimal value *f*(*s*) (i.e, optimize over states)
- Challenging setting: **too many states** for previous search approaches, but maybe not a continuous function for SGD.

Hill Climbing Algorithm

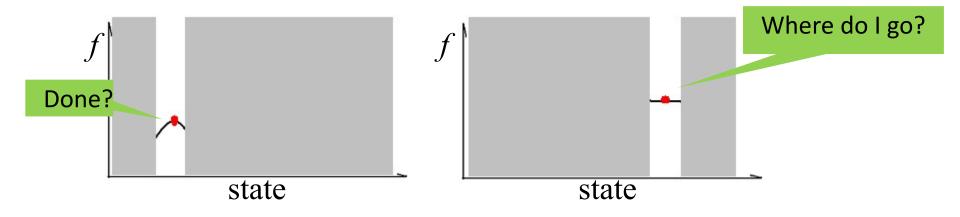
Pseudocode:

- 1. Pick initial state s
- 2. Pick t in **neighbors**(s) with the largest f(t)
- 3. if $f(t) \leq f(s)$ THEN stop, return s
- 4. $s \leftarrow t$. goto 2.

What could happen? Local optima!

Hill Climbing: Local Optima

Note the **local optima**. How do we handle them?



Simulated Annealing

A more sophisticated optimization approach.

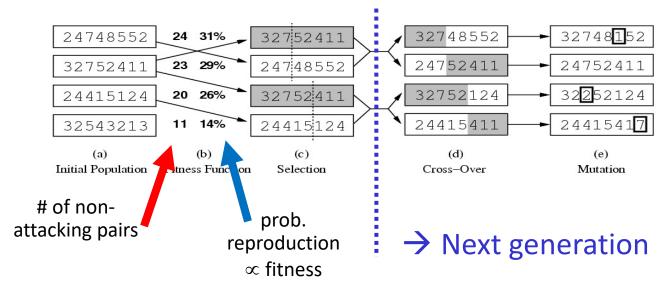
- Idea: move quickly at first, then slow down
- Pseudocode:

Pick initial state s For k = 0 through k_{max} : $T \leftarrow \text{temperature}((k+1)/k_{max})$ Pick a random neighbor, $t \leftarrow \text{neighbor}(s)$ If $f(s) \leq f(t)$, then $s \leftarrow t$ Else, with prob. P(f(s), f(t), T) then $s \leftarrow t$ **Output**: the final state s

Genetic Algorithm

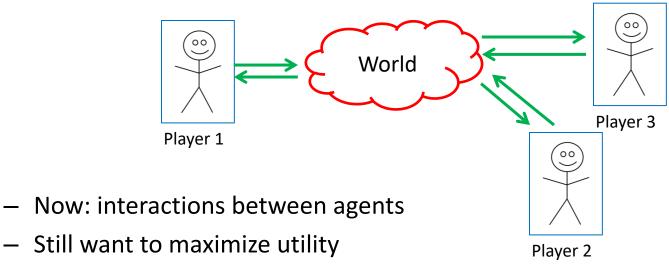
Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

• E.g., analogous to **natural selection, cross-over**, and **mutation**

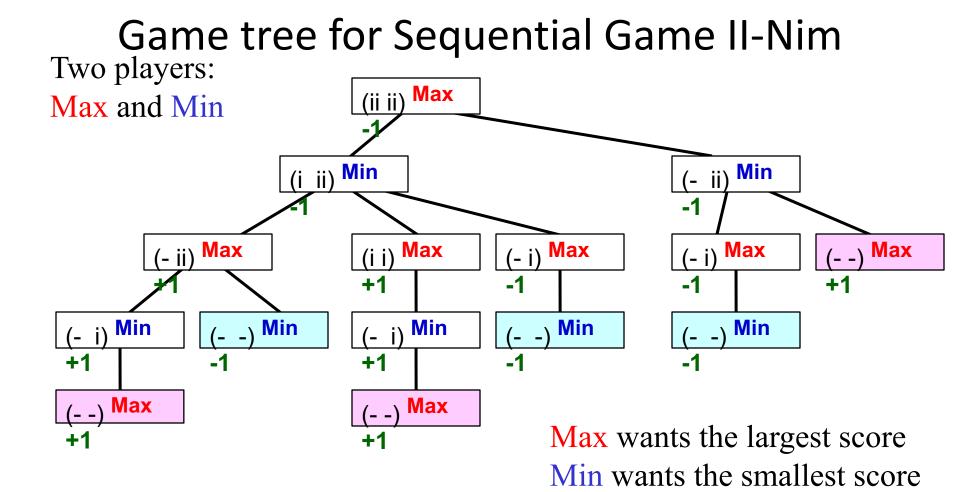


Games Setup

Games setup: multiple agents



- Strategic decision making.



Minimax Algorithm

```
function Max-Value(s)
inputs:
```

```
s: current state in game, Max about to play
output: best-score (for Max) available from s
```

```
if ( s is a terminal state )
then return ( terminal value of s )
else
```

```
α := – infinity
for each s' in Succ(s)
α := max( α , Min-value(s'))
```

return α

```
function Min-Value(s)
output: best-score (for Min) available from s
```

```
if (s is a terminal state)
then return (terminal value of s)
else
```

```
β := infinity
for each s' in Succs(s)
β := min(β, Max-value(s'))
return β
```

Time complexity?

```
• O(b<sup>m</sup>)
```

Space complexity?

• O(bm)

Simultaneous Games

The players make moves simultaneously

- Can express reward with a simple diagram (Normal form)
- Ex: for prisoner's dilemma

Player 2	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

Nash Equilibrium

Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

• This is a Nash equilibrium if

$$u_i(x_i^*, x_{-i}^*) \ge u_i(x_i, x_{-i}^*) \quad \forall x_i \in \Delta_{A_i}, \forall i \in \{1, 2, \dots, n\}$$

Better than doing Space of anything else, probability "best response" distributions

 Intuition: nobody can increase expected reward by changing only their own strategy. A type of solution!

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein