
CS 540 Introduction to Artificial Intelligence
Review on Search, Games, and RL

Yingyu Liang
University of Wisconsin-Madison

Dec 9, 2021
Based on slides by Fred Sala

Announcements (details on Piazza)
• Final Exam information

– On Canvas/Quizzes as midterm; but no one-day window
– Main: Dec 20 2:45-4:45pm
– Makeup: Dec 23 2:45-4:45pm

• Course Evaluation
– Dec 1 to Dec 15
– Explicit incentive: some details about the final exam if the

participation rate reaches 50%/75%/95%

Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A
• Information: at time t, observe state st∈ S. Get reward rt
• Agent makes choice at∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Value function

For policy p, expected utility over all possible state
sequences from 𝑠! produced by following that policy:

Called the value function (for p, 𝑠!)

𝑉! 𝑠" = %

#$%&$'($#
#)*+),'- .+/0 1!

𝑃 sequence 𝑈(sequence)

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• What is the recursive expression for 𝑉! 𝑠 in terms
of 𝑉! 𝑠′ - the utilities of its successors?

𝑉! 𝑠 = 𝑟 𝑠 + 𝛾8
"!
𝑃 𝑠# 𝑠, 𝜋(𝑠) 𝑉!(𝑠#)

Image source: L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• Applied to the optimal policy:

𝑉∗ 𝑠 = 𝑟 𝑠 + 𝛾 max%8
"!
𝑃 𝑠# 𝑠, 𝑎 𝑉∗(𝑠#)

Image source: L. Lazbenik

Example

A 10

B 20 C 20

G 100

Deterministic transition. 𝛾 = 0.8, policy shown in red arrow.

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)
• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Q-Learning

What if we don’t know transition probability P(s’|s,a)?
• Need a way to learn to act without it
• Q-learning: get an action-utility function Q(s,a) that tells us

the value of doing a in state s (including the reward in s)

• Note: V*(s) = maxa Q(s,a)
• Now, we can just do 𝜋∗ 𝑠 = arg maxC𝑄 𝑠, 𝑎

– But need to estimate Q!

𝑄(𝑠, 𝑎) = 𝑟 𝑠 + 𝛾+
!&
𝑃 𝑠" 𝑠, 𝑎 𝑉∗(𝑠")

Q-Learning Iteration

How do we get Q(s,a)?
• Similar iterative procedure

Idea: combine old value and new estimate of future value.
Note: We are using a policy to take actions; based on the
estimated Q!

Learning rate

Q-Learning: Epsilon-Greedy Policy

How to explore?
• With some 0<ε<1 probability, take a random action at each

state, or else the action with highest Q(s,a) value.

Q-Learning: SARSA

An alternative:
• Just use the next action, no max over actions:

• Called state–action–reward–state–action (SARSA)
• Can use with epsilon-greedy policy

Learning rate

Summary of RL

• Reinforcement learning setup
• Mathematical formulation: MDP
• Value functions & the Bellman equation
• Value iteration
• Q-learning

Search and Games Review

• Search
– Uninformed vs Informed
– Optimization

• Games
– Game tree, Game-theoretical value, Minimax search
– Normal form, Equilibrium

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to node s
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal (recall game heuristic)

start s
goal

g(s)

start s
goal

g(s) h(s)

Fractalsaco

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)
– Space O(bd)

A good option!

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement
• Demand that h(s) £ h*(s)

• If heuristic has this property, “admissible”
– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

Search vs. Optimization

Before: wanted a path from start state to goal state
• Uninformed search, informed search

New setting: optimization
• States s have values f(s)
• Want: s with optimal value f(s) (i.e, optimize over states)
• Challenging setting: too many states for previous search

approaches, but maybe not a continuous function for SGD.

Wiki TuringFin

Hill Climbing Algorithm

Pseudocode:

What could happen? Local optima!

1. Pick initial state s
2. Pick t in neighbors(s) with the largest f(t)
3. if f(t) ≤ f(s) THEN stop, return s
4. s← t. goto 2.

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Done?

state

f

state

f
Where do I go?

Simulated Annealing

A more sophisticated optimization approach.
• Idea: move quickly at first, then slow down
• Pseudocode:

Pick initial state s
For k = 0 through kmax:

T ← temperature((k+1)/kmax)
Pick a random neighbor, t ← neighbor(s)
If f(s) ≤ f(t), then s ← t
Else, with prob. P(f(s), f (t), T) then s ← t

Output: the final state s

The interesting bit

Genetic Algorithm

Goal of genetic algorithms: optimize using principles inspired by
mechanism for evolution
• E.g., analogous to natural selection, cross-over, and mutation

à Next generation
of non-

attacking pairs prob.
reproduction
µ fitness

Games Setup

Games setup: multiple agents

– Now: interactions between agents
– Still want to maximize utility
– Strategic decision making.

World

Player 1

Player 2

Player 3

(ii ii) Max
-1

(i ii) Min
-1

(- ii) Min
-1

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- -) Min
-1

(- i) Min
+1

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for Sequential Game II-Nim

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is a terminal state)
then return (terminal value of s)
else

α := – infinity
for each s’ in Succ(s)

α := max(α , Min-value(s’))
return α

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state)
then return (terminal value of s)
else

β := infinity
for each s’ in Succs(s)

β := min(β , Max-value(s’))
return β

Minimax Algorithm
Time complexity?
• O(bm)
Space complexity?
• O(bm)

Simultaneous Games

The players make moves simultaneously
• Can express reward with a simple diagram (Normal form)
• Ex: for prisoner’s dilemma

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2

Consider the mixed strategy x* = (x1*, …, xn*)
• This is a Nash equilibrium if

• Intuition: nobody can increase expected reward by
changing only their own strategy. A type of solution!

Nash Equilibrium

Better than doing
anything else,
“best response”

Space of
probability
distributions

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik,
Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

