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Outline

• Intro of convolutional computations


• 2D convolution


• Padding, stride


• Multiple input and output channels


• Pooling



Review: Deep neural networks (DNNs)
f1 f2 h1 = σ(W1x + b1)

h2 = σ(W2h1 + b2)
h3 = σ(W3h2 + b3)

f = W4h3 + b4
y = softmax(f)

NNs are composition 
of nonlinear 

functions

We first want to answer the question: why we need convolutional neural networks? Can’t we just use the standard deep networks?  

We will mention two main reasons.  



How to classify 
Cats vs. dogs?

36M floats in a RGB image!

To illustrate the first reason, consider the running example of image classification. A typical image can have millions of pixels. 



Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output 

Hidden layer 
Input 

100 neurons

Fully Connected Networks

Suppose we use a standard neural network (also called fully connected networks in contrast to convolutional networks). Even with only one hidden layer with only 100 
hidden neurons, the number of parameters in the first layer is ~3.6 billion! This is too large even for modern computing resources.   



Convolutions come to rescue!

Convolutional networks have much less parameters, and thus are used to replace the fully connected networks.  



Where is 
Waldo?

The second reason to use convolutions is that they can make use of properties of computer vision tasks on images. Consider identifying the face of a particular person in 
an image with many faces. 



• Translation 
Invariance 

• Locality

Why Convolution?

The pattern we’re interested in (the face) appears in a local patch. This is called the locality property. 
The pattern can also appear in different locations of the images. This is called translation invariance property.  
Convolution can make use of these two properties. 



2-D Convolution

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

Given 2D input matrix, convolution has a 2D kernel matrix (also called filter). We put a sliding window (of the same size as the kernel) on the input, and then multiply the 
corresponding entries in the window and in the kernel, and sum up the multiplications’ outcomes. This gives an output entry.  

Then we move the sliding window to different locations in the input matrix, and compute in the same way to get the corresponding output entries.  

Note that: if we view the sliding window and kernel as vectors, then the output entry is exactly the inner product between these two vectors. Inner products measure 
similarities. Therefore, the output entry can be viewed as a measurement of the similarity between the sliding window and the pattern represented by the kernel. If the 
window contains the pattern of kernel, the output entry will be large (detecting the presence of the pattern in this window). That means, convolution can serve as pattern 
detector. 



2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19
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3 4 5

6 7 8
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2-D Convolution

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25

We move the sliding window to the right, and compute the corresponding output entry 25. 



2-D Convolution

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37

We move the sliding window to the bottom, and compute the corresponding output entry 37. 



2-D Convolution

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43

We move the sliding window to the right and bottom corner, and compute the corresponding output entry 43. 



2-D Convolution Layer

•                   input matrix 
•                   kernel matrix 
•                                                  output matrix 

 
Y = X ⋆ W

X : nh × nw

W : kh × kw

Y : (nh − kh + 1) × (nw − kw + 1)

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

In general, suppose we have input matrix X with height n_h and width n_w, and we have kernel matrix W with height k_h and k_w. Then the output is a matrix of a 
particular size (n_h-k_h+1) by (n_w- k_w+1).  

To see this, consider only the width (same reasoning for the height). In the leftmost location, the sliding window’s left end aligns with the column 1 of the input. In the 
rightmost location, the sliding window’s right end align with the column n_w of the input, and thus its left end aligns with the column (n_w - k_w +1) of the input. Therefore, 
there are in total (n_w - k_w +1) possible locations for the sliding window. This is also the width of the output matrix. 



2-D Convolution Layer

•                   input matrix 
•                   kernel matrix 
• b: scalar bias 
•                                                  output matrix 

 

• W and b are learnable parameters 

Y = X ⋆ W + b

X : nh × nw

W : kh × kw

Y : (nh − kh + 1) × (nw − kw + 1)

0 1 2

3 4 5

6 7 8

0 1

2 3

20 26

38 44

The convolution can also involve a bias scalar. Note that we will add the scalar to each entry of the output matrix. 



Examples
Edge Detection 
(Viewed black and white)

Sharpen

Gaussian Blur

(wikipedia)

Some practical examples of convolution’s effect on an image. If we use the first kernel (which puts a weight 8 on the central pixel and subtracts all the surrounding pixels), 
then the effect is edge detection, ie, the output image highlights the edges.  

If we use the second kernel (a smaller weight 5 for the center and subtract the immediate neighboring pixels), then the effect is sharpening the image.  

If we use the third kernel which leads to a weighted average of the pixels in the window, the effect is smoothing the image (more precisely, Gaussian blur).  

Different kernels can be used for different purposes. 



Convolutional Neural Networks

•Strong empirical application performance


•Convolutional networks: neural networks that use convolution 
in place of general matrix multiplication in at least one of their 
layers



Advantage: sparse interaction

Fully connected layer, !×#	edges

!	output nodes

#	input nodes

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Convolutions lead to fewer parameters and few computation (=connections in the network).  

Fully connected layer has (input size) x (output size) connections 



Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Convolutional layer has at most (kernel size) x (output size) connections 



Efficiency of Convolution
• Input size: 320 x 280


• Kernel Size: 2 x 1


• Output size: 319 x 280

(ignoring bias) 

#parameters:  
Convolution’s is equal to the entries in the kernel which is 2. Fully connected layer’s is equal to the number of entries in the weight matrix, which is (input size) X (output 
size).  

#computations: 
For convolution, for each output entry: we need to multiple the kernel’s entries with the sliding window’s and then sum up, and thus #multiplications=kernel_size, 
#additions=kernel_size -1.  
For fully connected layer (also called dense layer), for each output entry: we need to multiple the weight vector with the input and then sum up, and thus 
#multiplications=input_size, #additions=input_size -1. 



Q1. Suppose we want to perform convolution as follows. What’s the output?  

A.  

B.   

C.  

D. 
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3 4



Q1. Suppose we want to perform convolution as follows. What’s the output?  

A.  

B.   

C.  

D. 

1 2

4 5

1 2

3 4

1 3

3 5

0 1

3 4

0 1 2

3 4 5

6 7 8

0 1

1 -1

1 2

4 5

0 × 0 + 1 × 1 + 3 × 1 + 4 × (−1) + 1 = 1
1 × 0 + 2 × 1 + 4 × 1 + 5 × (−1) + 1 = 2
3 × 0 + 4 × 1 + 6 × 1 + 7 × (−1) + 1 = 4
4 × 0 + 5 × 1 + 7 × 1 + 8 × (−1) + 1 = 5

Slide the window to different locations. Don’t forget to add the bias to each output entry. 



Padding and Stride



Padding

• Given a 32 x 32 input image 
• Apply convolution with 5 x 5 kernel  

• 28 x 28 output with 1 layer 
• 4 x 4 output with 7 layers 



Padding

• Given a 32 x 32 input image 
• Apply convolution with 5 x 5 kernel  

• 28 x 28 output with 1 layer 
• 4 x 4 output with 7 layers  

• Shape decreases faster with larger kernels   
• Shape reduces from              tonh × nw

(nh − kh + 1) × (nw − kw + 1)

The issue with 2D conv: each time it can shrink the size of the layer. 



Padding

Padding adds rows/columns around input

0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0
Original input/output

To address the issue of shrining size, we can pad rows/columns (with only 0’s) to the input matrix. Then move the sliding window on the padded input. 



Padding

Padding adds rows/columns around input

0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0



Padding

• Padding      rows and      columns, output shape will be

(nh − kh + ph + 1) × (nw − kw + pw + 1)

ph pw

If we add p_h rows, then along the height dimension, we have p_h more locations for the sliding window, and thus the output height is increased by p_h. Similar for the 
width dimension. 



Padding

• Padding      rows and      columns, output shape will be 

• A common choice is                   and 
• Odd     : pad         on both sides 
• Even     : pad           on top,           on bottom

(nh − kh + ph + 1) × (nw − kw + pw + 1)

ph pw

ph = kh − 1 pw = kw − 1
kh ph/2
kh ⌈ph/2⌉ ⌊ph/2⌋

The common choice is to make sure the output shape=input shape.  

If k_h is even and p_h = k_h - 1 is odd, we can round p_h/2 up to the nearest integer (called the ceil function). We can also round it down to the nearest integer ( called the 
floor function). ceil(4.5) = 5 and floor(4.5)=4. 



Stride

• Stride is the #rows/#columns per slide

Strides of 3 and 2 for height and width

0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8
0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6

We can move >1 positions each time we move the sliding window.  

The example shows a case we have stride 3 for height and stride 2 for width.



Stride

• Stride is the #rows/#columns per slide

Strides of 3 and 2 for height and width

0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8
0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6



Stride

• Given stride     for the height and stride     for the width,  
the output shape is 

sh sw

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

In general, suppose we have input matrix X with height n_h and width n_w, and we have kernel matrix W with height k_h and k_w, and we pad p_h rows and p_w columns, 
and we use stride s_h for height and s_w for width. Then the output is a matrix of a particular size in the expression. 

To see this, consider only the width (same reasoning for the height). The padded input has n_w+p_w columns, indexed as column 1 to column (n_w+p_w).  
In the leftmost location, the sliding window’s left end aligns with the column 1 of the input.  
If we slide it to the right once, the sliding window’s left end aligns with the column 1+s_w of the input.  
If we slide it to the right 2 times, the sliding window’s left end aligns with the column 1+2*s_w of the input. 
… 
Suppose the rightmost location is by sliding the original window to the right t times, then the sliding window’s left end aligns with the column 1+t*s_w of the input.  
Then the sliding window’s right end aligns with the column (1+t*s_w  + k_w -1) of the input.  

We know that (1+t*s_w  + k_w -1) <= n_w+p_w. This means 
    t <=  (n_w - k_w + p_w)/s_w. 
Note that the total number of possible locations for the sliding window is (t+1): 
   t+1 <=  (n_w - k_w + p_w + s_w)/s_w. 
It needs to be an integer. So  
   t+1 = floor((n_w - k_w + p_w + s_w)/s_w). 
This is just the output width. 



Stride

• Given stride     for the height and stride     for the width,  
the output shape is  

• With                   and 

• If input height/width are divisible by strides

sh sw

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

ph = kh − 1 pw = kw − 1

⌊(nh + sh − 1)/sh⌋ × ⌊(nw + sw − 1)/sw⌋

(nh/sh) × (nw/sw)

f input height/width are divisible by strides: n_h/s_h is an integer, but (s_h-1)/s_h is smaller than 1, so floor(n_h+s_h-1)/s_h) = n_h/s_h. Similar for the width dimension. 



Q2. Suppose we want to perform convolution on a single channel image 
of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is 
the dimension of the output?  

A.3x3 

B.7x7 

C.5x5 

D.2x2

7

7



Q2. Suppose we want to perform convolution on a single channel image 
of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is 
the dimension of the output?  

A.3x3 

B.7x7 

C.5x5 

D.2x2

7

7

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

We can simply apply the math expression. Or for this simple case, we can count the possible locations for the sliding window. For the width, the left end of the window can 
align with the following columns of the input: column 1, 3, 5. So the output width is 3. Similar for the height. 



Multiple Input and 
Output Channels



Multiple Input Channels

• Color image may have three RGB channels 
• Converting to grayscale loses information



Multiple Input Channels

• Color image may have three RGB channels 
• Converting to grayscale loses information

We would like to be able to directly handle such multiple-channel inputs.



Multiple Input Channels

• Have a kernel for each channel, and then sum results 
over channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

For multiple-channel inputs, we will use kernel with the same number of channels (each channel is a 2D kernel matrix, so the overall kernel is 3D).  

Put a sliding window across all input channels; for each channel, do the multiplication and sum; then sum up all results of all channels to get one output entry.  

Move the sliding window across all input channels simultaneously; do the computation to get different output entries. 



Multiple Input Channels

•                         input 
•                         kernel 
•                     output

X : ci × nh × nw

W : ci × kh × kw

Y : mh × mw

Y =
ci

∑
i=0

Xi,:,: ⋆ Wi,:,:

In general, the input X can have c_i input channels. The overall kernel is 3D with the same number of channels. The output shape remains the same; we can think of as: 
first compute the output matrix of the convolution for each channel, then sum up the output matrices of all channels. 



Multiple Output Channels

• No matter how many inputs channels, so far we always 
get single output channel 

• We can have multiple 3-D kernels, each one generates 
an output channel 

If we use multiple 3D kernels, then we get multiple output channels: Each 3D kernel leads to one output channel.



Multiple Output Channels

• No matter how many inputs channels, so far we always 
get single output channel 

• We can have multiple 3-D kernels, each one generates 
an output channel 

• Input 
• Kernels 
• Output 

X : ci × nh × nw

W : co × ci × kh × kw

Y : co × mh × mw

Yi,:,: = X ⋆ Wi,:,:,:

for i = 1,…, co

Now we have c_o so many 3D kernels (and the overall kernel is 4D). The number of output channels = the number of 3D kernels.



Multiple Input/Output Channels

• Each 3-D kernel may recognize a particular pattern

(Gabor filters)

In practical applications, when we learn convolutional networks (ie, learn the kernel matrices in the convolutions), the kernel can correspond to different interesting 
patterns, like the famous Gabor filters (simple geometric patterns like vertical lines, diagonal lines, color dots etc).  

Recall that convolution can be viewed as detecting patterns represented by the kernels. So the convolutional networks can learn interesting patterns and store them in the 
kernels, and use the kernels to detect these patterns in the images to do the computer vision tasks like image classification. 



A. 64x3x3x222x222 

B. 64x3x3x222 

C. 3x3x222x222 

D. 64x3x3x3x222x222

Q3. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding)  
with 64 kernels, each with height 3 and width 3. Stride = 1. Which is a reasonable estimate of the total 
number of scalar multiplications involved in this operation (without considering any optimization in 
matrix multiplication)?  



Q3. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding)  
with 64 kernels, each with height 3 and width 3. Stride = 1. Which is a reasonable estimate of the total 
number of scalar multiplications involved in this operation (without considering any optimization in 
matrix multiplication)?  

A. 64x3x3x222x222 

B. 64x3x3x222 

C. 3x3x222x222 

D. 64x3x3x3x222x222

For each kernel, since stride=1, we 
slide the window to 222x222 
different locations. For each 
location, the number of 
multiplication is equal to the number 
of entries in the kernel, which is 
3x3x3 (height x width x channels).  
So in total 64x3x3x3x222x222.



A. 64x222x222 

B. 64x3x3x222 

C. 3x3x3x64 

D. (3x3x3+1)x64

Q4. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding)  
with 64 kernels, each with height 3 and width 3. Stride = 1. The convolution layer has bias 
parameters. Which is a reasonable estimate of the total number of learnable parameters?



A. 64x222x222 

B. 64x3x3x222 

C. 3x3x3x64 

D. (3x3x3+1)x64

Q4. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding)  
with 64 kernels, each with height 3 and width 3. Stride = 1. The convolution layer has bias 
parameters. Which is a reasonable estimate of the total number of learnable parameters?

Each kernel is 3D kernel across 3 
input channels, so has 3x3x3 
parameters. Each kernel has 1 bias 
parameter. So in total (3x3x3+1)x64



courses.d2l.ai/berkeley-stat-157

Pooling Layer



Pooling 

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Recall that the convolution is detecting the pattern represented by the filter/kernel: if the sliding window contains a similar pattern to the filter, the corresponding output 
entry will be large. If the pattern move to a different location in the image, the large output entry will also move to the corresponding location. 



Pooling 

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

To be robust to the translation of the large output entry (due to the translation of the pattern), we can do MAX over the output entries of the convolution. This is max 
pooling. 



2-D Max Pooling

• Returns the maximal value in the 
sliding window

max(0,1,3,4) = 4

In max pooling we also have a sliding window, but no kernel. The corresponding output entry is simply the max value in the window.  

Then we move the sliding window to different locations, and compute the corresponding output entries.   



Padding, Stride, and Multiple Channels

• Pooling layers have similar padding 
and stride as convolutional layers 

• No learnable parameters 
• Apply pooling for each input channel to 

obtain the corresponding output 
channel 
 
#output channels = #input channels

Because sliding window, the notions of padding/stride/multiple-channels also apply to pooling.  

Two key differences of pooling from convolution: 
1. No learnable parameters 
2. Apply pooling on the input channels individually, no sum across the inputs as in convolution. 



Average Pooling

• Max pooling: the strongest pattern signal in a window 
• Average pooling: replace max with mean in max pooling 

• The average signal strength in a window

Max pooling Average pooling



Q5. Suppose we want to perform 2x2 average pooling on the following 
single channel feature map of size 4x4 (no padding), and stride = 2. 
What is the output?  

A. 

B. 

C. 

D. 

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5



Q5. Suppose we want to perform 2x2 average pooling on the following 
single channel feature map of size 4x4 (no padding), and stride = 2. 
What is the output?  

A. 

B. 

C. 

D. 

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5

We have the 4 possible locations of the sliding window, shown in different colors. Average pooling computes the mean in each window.



Q6. What is the output if we replace average pooling with 2 x 2 max 
pooling (other settings are the same)?

A. 

B. 

C. 

D. 

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5



Q6. What is the output if we replace average pooling with 2 x 2 max 
pooling (other settings are the same)?

A. 

B. 

C. 

D. 

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

We have the 4 possible locations of the sliding window, shown in different colors. Max pooling computes the max value in each window.



Summary

• Intro of convolutional computations


• 2D convolution


• Padding, stride


• Multiple input and output channels


• Pooling
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