CS540 Introduction to Artificial Intelligence
Deep Learning II: Convolutional Neural Networks
Yingyu Liang
University of Wisconsin-Madison
Nov 4, 2021

Slides created by Sharon Li [modified by Yingyu Liang]
Outline

• Brief review of convolutional computations
• Convolutional Neural Networks
 • LeNet (first conv nets)
 • AlexNet
 • ResNet
Review: 2-D Convolution
Review: 2-D Convolution

<table>
<thead>
<tr>
<th>Input</th>
<th>Kernel</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
<td>0 1</td>
<td>19 25</td>
</tr>
<tr>
<td>3 4 5</td>
<td>2 3</td>
<td>37 43</td>
</tr>
<tr>
<td>6 7 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Review: 2-D Convolution

\[\begin{array}{cccc}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
\end{array}\] \times \begin{array}{cc}
0 & 1 \\
2 & 3 \\
\end{array} = \begin{array}{cc}
19 & 25 \\
37 & 43 \\
\end{array}\]

\[0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19,\]
\[1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25,\]
\[3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37,\]
\[4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.\]
Review: 2-D Convolution

\[
\begin{align*}
0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 &= 19, \\
1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 &= 25, \\
3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 &= 37, \\
4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 &= 43.
\end{align*}
\]
Padding

Padding adds rows/columns around input

<table>
<thead>
<tr>
<th>Input</th>
<th>Kernel</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0</td>
<td>0 1</td>
<td>0 3 8 4</td>
</tr>
<tr>
<td>0 0 1 2 0</td>
<td>2 3</td>
<td>9 19 25 10</td>
</tr>
<tr>
<td>0 3 4 5 0</td>
<td></td>
<td>21 37 43 16</td>
</tr>
<tr>
<td>0 6 7 8 0</td>
<td></td>
<td>0 7 8 0</td>
</tr>
</tbody>
</table>

Original input/output

\[0 \times 0 + 0 \times 1 + 0 \times 2 + 0 \times 3 = 0 \]
Stride

- Stride is the #rows/#columns per slide

Strides of 3 and 2 for height and width

- Input:
 - 0 0 0 0 0
 - 0 0 1 2 0
 - 0 3 4 5 0
 - 0 6 7 8 0
 - 0 0 0 0 0

- Kernel:
 - 0 1
 - 2 3

- Output:
 - 0 8
 - 6 8

\[
0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8
\]
\[
0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6
\]
Output shape

\[
\left\lfloor \frac{(n_h - k_h + p_h + s_h)}{s_h} \right\rfloor \times \left\lfloor \frac{(n_w - k_w + p_w + s_w)}{s_w} \right\rfloor
\]
Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

\[
\begin{array}{c}
\text{Input} \\
\hline
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
\end{array}
\times
\begin{array}{c}
\times \\
\times \\
\times \\
\end{array}
= 56
\]
Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

\[
(1 \times 1 + 2 \times 2 + 4 \times 3 + 5 \times 4) + (0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3) = 56
\]
Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

\[
\begin{array}{cccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{array}
\begin{array}{cccc}
1 & 2 \\
3 & 4 \\
\end{array}
=
\begin{array}{cccc}
4 & 10 & 15 \\
13 & 20 & 27 \\
17 & 26 & 35 \\
\end{array}
\begin{array}{cc}
1 \\
2 \\
\end{array}
\]
Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

\[
\begin{array}{ccc}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
\end{array} * \begin{array}{ccc}
0 & 1 \\
2 & 3 \\
\end{array} = \begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{array} \\
\begin{array}{ccc}
0 & 1 \\
2 & 3 \\
\end{array} * \begin{array}{ccc}
1 & 2 \\
3 & 4 \\
\end{array} + \begin{array}{ccc}
0 & 1 \\
2 & 3 \\
\end{array} * \begin{array}{ccc}
1 & 2 \\
3 & 4 \\
\end{array} = \begin{array}{ccc}
123 \\
456 \\
789 \\
\end{array}
\]
Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

\[
(1 \times 1 + 2 \times 2 + 4 \times 3 + 5 \times 4) + (0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3) = 56
\]

```plaintext
Input
0 1 2 3
3 4 5 0
6 7 8 2

Kernel
1 0 1
2 1 2
3 2 3

Input
1 2 3
4 5 6
7 8 9

Kernel
1 0 1
2 1 2
3 2 3

Output
56 72
104 120
```
Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

\[
\begin{align*}
(1 \times 1 + 2 \times 2 + 4 \times 3 + 5 \times 4) \\
+ (0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3) \\
= 56
\end{align*}
\]
Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels
Review: Multiple Input Channels

• Input and kernel can be 3D, e.g., an RGB image have 3 channels

• Have a kernel for each channel, and then sum results over channels
Review: Multiple Input Channels

• Input and kernel can be 3D, e.g., an RGB image have 3 channels

• Have a kernel for each channel, and then sum results over channels
Review: 2-D Max Pooling

- Returns the maximal value in the sliding window

\[
\text{max}(0,1,3,4) = 4
\]
Review: 2-D Max Pooling

• Returns the maximal value in the sliding window

\[
\text{max}(0, 1, 3, 4) = 4
\]
Convolutional Neural Networks
Evolution of neural net architectures
Evolution of neural net architectures

- **LeNet**
- **AlexNet**
- **Inception Net**
- **ResNet**
- **DenseNet**

[Diagrams of LeNet, AlexNet, Inception Net, ResNet, and DenseNet]
Handwritten Digit Recognition
MNIST

- Centered and scaled
- 50,000 training data
- 10,000 test data
- 28 x 28 images
- 10 classes
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998
Gradient-based learning applied to document recognition
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998
Gradient-based learning applied to document recognition
LeNet Architecture
(first conv nets)

Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner
def __init__(self):
 super(LeNet5, self).__init__()
 # Convolution (In LeNet-5, 32x32 images are given as input. Hence padding of 2 is done below)
 self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)
 # Max-pooling
 self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
 # Convolution
 self.conv2 = torch.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)
 # Max-pooling
 self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
 # Fully connected layer
 self.fc1 = torch.nn.Linear(16*5*5, 120) # convert matrix with 16*5*5 (= 400) features to a matrix of 120 features (columns)
 self.fc2 = torch.nn.Linear(120, 84) # convert matrix with 120 features to a matrix of 84 features (columns)
 self.fc3 = torch.nn.Linear(84, 10) # convert matrix with 84 features to a matrix of 10 features (columns)

https://github.com/bollakarthikeya/LeNet-5-PyTorch/blob/master/lenet5_gpu.py
def forward(self, x):
 # convolve, then perform ReLU non-linearity
 x = torch.nn.functional.relu(self.conv1(x))
 # max-pooling with 2x2 grid
 x = self.max_pool_1(x)
 # convolve, then perform ReLU non-linearity
 x = torch.nn.functional.relu(self.conv2(x))
 # max-pooling with 2x2 grid
 x = self.max_pool_2(x)
 # first flatten 'max_pool_2_out' to contain 16*5*5 columns
 # read through https://stackoverflow.com/a/42482819/7551231
 x = x.view(-1, 16*5*5)
 # FC-1, then perform ReLU non-linearity
 x = torch.nn.functional.relu(self.fc1(x))
 # FC-2, then perform ReLU non-linearity
 x = torch.nn.functional.relu(self.fc2(x))
 # FC-3
 x = self.fc3(x)

 return x
AlexNet
AlexNet

- AlexNet won ImageNet competition in 2012
AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
AlexNet

• AlexNet won ImageNet competition in 2012
• Deeper and bigger LeNet
• Paradigm shift for computer vision
AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision
AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision
AlexNet Architecture

AlexNet
- 3x3 MaxPool, stride 2
- 11x11 Conv (96), stride 4
- image (3x224x224)

LeNet
- 2x2 AvgPool, stride 2
- 5x5 Conv (6), pad 2
- image (32x32)
AlexNet Architecture

AlexNet
- 3x3 MaxPool, stride 2
- 11x11 Conv (96), stride 4
- Image (3x224x224)

LeNet
- 2x2 AvgPool, stride 2
- 5x5 Conv (6), pad 2
- Image (32x32)

Larger pool size
AlexNet Architecture

Larger pool size

Larger kernel size, stride because of the increased image size, and more output channels.

AlexNet:
- 3x3 MaxPool, stride 2
- 11x11 Conv (96), stride 4
- Image (3x224x224)

LeNet:
- 2x2 AvgPool, stride 2
- 5x5 Conv (6), pad 2
- Image (32x32)
AlexNet Architecture

AlexNet

3x3 MaxPool, stride 2
3x3 Conv (384), pad 1
3x3 Conv (384), pad 1
3x3 Conv (384), pad 1
3x3 MaxPooling, stride 2
5x5 Conv (256), pad 2

LeNet

2x2 AvgPool, stride 2
5x5 Conv (16)
AlexNet Architecture

3 additional convolutional layers

AlexNet

3x3 MaxPool, stride 2

3x3 Conv (384), pad 1

3x3 Conv (384), pad 1

3x3 MaxPooling, stride 2

5x5 Conv (256), pad 2

LeNet

2x2 AvgPool, stride 2

5x5 Conv (16)
AlexNet Architecture

3 additional convolutional layers

More output channels.

AlexNet

3x3 MaxPool, stride 2

3x3 Conv (384), pad 1

3x3 Conv (384), pad 1

3x3 MaxPooling, stride 2

5x5 Conv (256), pad 2

LeNet

2x2 AvgPool, stride 2

5x5 Conv (16)
AlexNet Architecture

AlexNet

- Dense (4096)
- Dense (4096)
- Dense (1000)

LeNet

- Dense (120)
- Dense (84)
- Dense (10)
AlexNet Architecture

1000 classes output

AlexNet

Dense (4096)
Dense (4096)
Dense (1000)

LeNet

Dense (120)
Dense (84)
Dense (10)
AlexNet Architecture

- Increase hidden size from 120 to 4096
- 1000 classes output

AlexNet:
- Dense (4096)
- Dense (4096)
- Dense (1000)

LeNet:
- Dense (120)
- Dense (84)
- Dense (10)
More Differences…

- Change activation function from sigmoid to ReLu (no more vanishing gradient)
- Data augmentation
ImageNet Top-5 Classification Error (%)
Simple Idea: Add More Layers

Simple Idea: Add More Layers

• VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient?
• No! Some problems:
 • Vanishing gradients: more layers more likely
 • Instability: can’t guarantee we learn identity maps
Simple Idea: Add More Layers

- No! Some problems:
 - Vanishing gradients: more layers more likely
 - Instability: can’t guarantee we learn identity maps

Reflected in training error:

He et al: “Deep Residual Learning for Image Recognition”
Depth Issues & Learning Identity

• Why would more layers result in worse performance
Depth Issues & Learning Identity

• Why would more layers result in worse performance
 • Same architecture, etc.
Depth Issues & Learning Identity

• Why would more layers result in worse performance
 • Same architecture, etc.
Depth Issues & Learning Identity

• Why would more layers result in *worse* performance
 • Same architecture, etc.
 • If the A can learn f, then so can B, as long as top layers learn **identity**
Depth Issues & Learning Identity

• Why would more layers result in worse performance

• Same architecture, etc.

• If the A can learn f, then so can B, as long as top layers learn identity

Q: can we learn identity here?
Depth Issues & Learning Identity

- Why would more layers result in worse performance
 - Same architecture, etc.
 - If the A can learn f, then so can B, as long as top layers learn **identity**

Idea: if layers can learn identity, **can’t get** worse.

Q: can we learn identity here?
Residual Connections

• **Idea:** identity might be hard to learn, but zero is easy!
Residual Connections

- **Idea:** identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:
Residual Connections

• **Idea:** identity might be hard to learn, but zero is easy!
 • Make all the weights tiny, produces zero for output
 • Can easily transform learning identity to learning zero:

\[f(x) \]
Residual Connections

- **Idea**: identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

\[
f(x) \uparrow \quad x \uparrow \quad f(x)
\]
Residual Connections

• **Idea:** identity might be hard to learn, but zero is easy!
 • Make all the weights tiny, produces zero for output
 • Can easily transform learning identity to learning zero:

![Diagram](image)
Residual Connections

- **Idea:** identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:
Residual Connections

- **Idea**: identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:
Residual Connections

- **Idea:** identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

 ![Diagram](image)

 Left: Conventional layer blocks
Residual Connections

• **Idea**: identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

\[
\begin{align*}
 & f(x) \\
 & \quad \uparrow \\
 & \quad x \\
 \quad f(x) + x \\
 \quad \uparrow \\
 \quad \uparrow \\

\text{Left: Conventional layer blocks} \\
\text{Right: Residual layer blocks}
\end{align*}
\]
Residual Connections

- **Idea:** identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

Left: Conventional layer blocks
Right: Residual layer blocks

To learn identity $f(x) = x$, layers now need to learn $f(x) = 0 \rightarrow$ easier
ResNet Architecture

- **Idea:** Residual (skip) connections help make learning easier
ResNet Architecture

• **Idea:** Residual (skip) connections help make learning easier
 • Example architecture:
ResNet Architecture

Idea: Residual (skip) connections help make learning easier

Example architecture:

He et al: “Deep Residual Learning for Image Recognition”
ResNet Architecture

• **Idea:** Residual (skip) connections help make learning easier
 • Example architecture:
 • Note: residual connections
 • Every two layers for ResNet34

He et al: “Deep Residual Learning for Image Recognition”
ResNet Architecture

- **Idea:** Residual (skip) connections help make learning easier
 - Example architecture:
 - Note: residual connections
 - Every two layers for ResNet34
- **Vastly better** performance
 - No additional parameters!
 - Records on many benchmarks

He et al: “Deep Residual Learning for Image Recognition”
What we’ve learned today
What we’ve learned today

• Brief review of convolutional computations
What we’ve learned today

• Brief review of convolutional computations
• Convolutional Neural Networks
What we’ve learned today

• Brief review of convolutional computations
• Convolutional Neural Networks
 • LeNet (first conv nets)
What we’ve learned today

• Brief review of convolutional computations
• Convolutional Neural Networks
 • LeNet (first conv nets)
 • AlexNet
What we’ve learned today

• Brief review of convolutional computations
• Convolutional Neural Networks
 • LeNet (first conv nets)
 • AlexNet
 • ResNet
Acknowledgement:

Some of the slides in these lectures have been adapted/borrowed from materials developed by Yin Li (https://happyharrycn.github.io/CS540-Fall20/schedule/), Alex Smola and Mu Li: