

CS 540 Introduction to Artificial Intelligence Course Overview

Yingyu Liang University of Wisconsin-Madison Sept 14, 2021

Based on slides created by Sharon Li

Classify Images

http://www.image-net.org/

Classify Images

https://qz.com/1034972/the-data-that-changed-the-directionof-ai-research-and-possibly-the-world/

Detect and Segment Objects

https://github.com/matterport/Mask_RCNN

Style Transfer

https://github.com/StacyYang/MXNet-Gluon-Style-Transfer

Generative Modeling 4.5 years of face generation

2015

2016

2017

Artificial Image Synthesis Synthesize the images

Machine Translation

https://www.pcmag.com/news/google-expands-neural-networks-for-language-translation

Google Expands Neural Networks for Language Translation

The new system can translate whole sentences at a time, rather than just phrases.

		♥⊿ 🚊 5:39
≡ Google	Translate	
German *	10	English*
GERMAN		×
Probleme kann Denkweise löse sind.	man niemals m n, durch die sie	it derselben entstanden
Ø	٠	23
• ENGLISH		☆
	And and the second	

By <u>Tom Brant</u> November 15, 2016 🗗 💕

Text Synthesis

Li et al, NACCL, 2018

courses.d2l.ai/berkeley-stat-157

Content: Two dogs play by a tree.

happily, love

RNN

Two dogs in love play happily by a tree.

Image Captioning

Human captions from the training set

A cute little dog sitting in a heart drawn on a sandy beach.

A large brown dog next to a small dog looking out a window.

https://ai.googleblog.com/2016/09/show-and-tell-image-captioning-open.html

Automatically captioned

Open Al GPT-3: <u>Giving GPT-3 a Turing Test</u>

- Q: What is your favorite animal?
- A: My favorite animal is a dog.
- Q: Why?
- A: Because dogs are loyal and friendly.

Open Al GPT-3: <u>Giving GPT-3 a Turing Test</u>

- Q: What is your favorite animal?
- A: My favorite animal is a dog.
- Q: Why?
- A: Because dogs are loyal and friendly.
- Q: What are two reasons that a dog might be in a bad mood?
- Q: How many eyes does a giraffe have?
- A: A giraffe has two eyes.
- Q: How many legs does a frog have?
- A: A frog has four legs.
- Q: Are there any animals with three legs? A: No, there are no animals with three legs.
- Q: Why don't animals have three legs?
- A: Animals don't have three legs because they would fall over.

A: Two reasons that a dog might be in a bad mood are if it is hungry or if it is hot.

What is Artificial Intelligence (AI)?

Artificial Intelligence

Machine Learning

Deep Learning

Artificial Intelligence

Any technique which enables computers to mimic behavior.

What is Artificial Intelligence (AI)?

Artificial Intelligence

Machine Learning

Deep Learning

Artificial Intelligence

Any technique which enables computers to mimic behavior.

Machine Learning

Subset of AI techniques which use statistical methods to enable machines to improve with experiences.

What is Artificial Intelligence (AI)?

Artificial Intelligence

Machine Learning

Deep Learning

Artificial Intelligence

Any technique which enables computers to mimic behavior.

Machine Learning

Subset of AI techniques which use statistical methods to enable machines to improve with experiences.

Deep Learning

Subset of ML which make the computation of multi-layer neural networks feasible.

Artificial Intelligence is not Magic They rely on **fundamental** techniques in:

- Algorithms
- Mathematics
- Logic
- Probability and Statistics
- Optimization

- elements of Statistics.
- Smoothing.
- •Basics of Machine Learning. supervised learning vs. unsupervised learning
- Descent.
- Fundamentals of **Game Theory**.
- Search and Reinforcement Learning

•Foundational tools in Machine Learning and Artificial Intelligence: Linear algebra, Probability, Logic, and

•Core techniques in Natural Language Processing (NLP), including bag-of-words, tf-idf, n-Gram Models, and

•Neural Networks and Deep Learning: Network Architecture, Training, Backpropagation, Stochastic Gradient

•Artificial Intelligence and Machine Learning in Real-World settings and the Ethics of Artificial Intelligence.

- elements of Statistics.
- Smoothing.

TL:DR Lots of useful stuff, theory and practice in Al

- Descent.
- Fundamentals of **Game Theory**.
- Search and Reinforcement Learning

•Foundational tools in Machine Learning and Artificial Intelligence: Linear algebra, Probability, Logic, and

•Core techniques in Natural Language Processing (NLP), including bag-of-words, tf-idf, n-Gram Models, and

•Neural Networks and Deep Learning: Network Architecture, Training, Backpropagation, Stochastic Gradient

Artificial Intelligence and Machine Learning in Real-World settings and the Ethics of Artificial Intelligence.

https://pages.cs.wisc.edu/~yliang/cs540_1_fall21/schedule.html

Date	Topic
Tuesday, Sept 14	Course Overview and Probab
Thursday, Sept 16	Linear Algebra and PCA
Tuesday, Sept 21	Statistics and Math Review
Thursday, Sept 23	Introduction to Logic
Tuesday, Sept 28	Natural Language Processing
Thursday, Sept 30	Machine Learning: Introduct
Tuesday, Oct 5	Machine Learning: Unsuperv
Thursday, Oct 7	Machine Learning: Unsuperv
Tuesday, Oct 12	Machine Learning: Linear re
Thursday, Oct 14	Machine Learning: K - Neare
Tuesday, Oct 19	Machine Learning: Neural N

[etwork I (Perceptron)]

https://pages.cs.wisc.edu/~yliang/cs540_1_fall21/schedule.html

Date	Topic
Tuesday, Sept 14	Course Overview and Probabi
Thursday, Sept 16	Linear Algebra and PCA
Tuesday, Sept 21	Statistics and Math Review
Thursday, Sept 23	Introduction to Logic
Tuesday, Sept 28	Natural Language Processing
Thursday, Sept 30	Machine Learning: Introducti
Thursday, Sept 30 Tuesday, Oct 5	Machine Learning: Introducti Machine Learning: Unsupervi
Thursday, Sept 30 Tuesday, Oct 5 Thursday, Oct 7	Machine Learning: Introduction Machine Learning: Unsuperverse Machine Learning: Unsuperve
Thursday, Sept 30 Tuesday, Oct 5 Thursday, Oct 7 Tuesday, Oct 12	Machine Learning: Introduction Machine Learning: Unsuperverse Machine Learning: Unsuperverse Machine Learning: Linear reg
Thursday, Sept 30 Tuesday, Oct 5 Thursday, Oct 7 Tuesday, Oct 12 Thursday, Oct 14	Machine Learning: Introduction Machine Learning: Unsuperverse Machine Learning: Unsuperverse Machine Learning: Linear reg

oility			
g			
tion			
vised Learning I			
vised Learning II		lachine	lear
gression			
est Neighbors & Naive	Bayes		
etwork I (Perceptron)			

https://pages.cs.wisc.edu/~yliang/cs540_1_fall21/schedule.html

Tuesday, Oct 19	Machine Learning: Neural Ne
Thursday, Oct 21	Machine Learning: Neural Ne
Tuesday, Oct 26	Machine Learning: Neural Ne
Tuesday, Nov 2	Machine Learning: Deep Lear
Thursday, Nov 4	Machine Learning: Deep Lear
Tuesday, Nov 9	Machine Learning: Deep Lear
Inursday, Nov 11	Machine Learning: Deep Lear
Tuesday, Nov 16	Game - Part I

etwork I etwork II etwork III etwork III etming I Deep Learning	
etwork II etwork III rning I Deep Learning	
etwork III Ening I Deep Learning	
Ining I Learning	
	J
rning II	
rning III	
ning and Neural Network's Summary	

https://pages.cs.wisc.edu/~yliang/cs540_1_fall21/schedule.html

Machine Learning: Deep Learning I
Machine Learning: Deep Learning I
Machine Learning: Deep Learning I
Machine Learning: Deep Learning a
Game - Part I
Game - Part II
Search I: Un-Informed search
Search II: Informed search
Advanced Search
Advanced Search Introduction to Reinforcement Lear
Advanced Search Introduction to Reinforcement Lean Reinforcement Learning and Search
Advanced Search Introduction to Reinforcement Lean Reinforcement Learning and Search Ethics and Trust in AI

Π

and Neural Network's Summary

	Game, searc and RL
ning	
Summary	

What you can learn from CS540? https://pages.cs.wisc.edu/~yliang/cs540_1_fall21/schedule.html

Where to find content?

- Piazza piazza.com/wisc/fall2021/cs5401/home
 - Discussion, questions
 - Announcements
- Canvas private materials *that should not be shared*
 - Videos
 - Assignments
 - Grades
- **Course website** public materials
 - Slides <u>https://pages.cs.wisc.edu/~yliang/cs540_1_fall21/</u>
 - Schedule
 - Policies

Textbook

Artificial Intelligence: A Modern Approach (4th edition). Stuart Russell and Peter Norvig. Pearson, 2020. ISBN 978-0134610993. (textbook is optional, but may be useful)

Russell Norvig Artificial Intelligence A Modern Approach Third Edition

Grading scheme

- •Midterm Exam: 15%
- •Final Exam: 15%
- •Homework Assignments: 70% (10 HWs)

TWO lowest homework scores are dropped from the final homework average calculation.

Homework is always due the minute before class starts on the due date. (Late submissions will not be accepted.)

Homework will be posted and submitted via Canvas.

Office Hours

- Teaching team: 1 instructor, 3 TAs, 1 Grader, 12 Peer Mentors
- Office hours: <u>http://pages.cs.wisc.edu/~yliang/cs540_1_fall21/</u> office hours.html
- use TA office hours for conceptual level questions

• Use Peer Mentor hours for detailed-level questions (e.g. coding related), and

Regrade Request

Use Google Form for regrade request

Raised with the TAs within 72 hours after it is returned.

Integrity

http://pages.cs.wisc.edu/~yliang/cs540 1 fall21/about.html

You are encouraged to discuss with your peers, the TA or the instructors ideas, approaches and techniques broadly. However, all examinations, programming assignments, and written homeworks must be written up individually. For example, code for programming assignments must not be developed in groups, nor should code be shared. Make sure you work through all problems yourself, and that your final write-up is your own. If you feel your peer discussions are too deep for comfort, declare it in the homework solution: "I discussed with X,Y,Z the following specific ideas: A, B, C; therefore our solutions may have similarities on D, E, F...".

You may use books or legit online resources to help solve homework problems, but you must always credit all such sources in your writeup and you must never copy material verbatim.

We are aware that certain websites host previous years' CS540 homework assignments and solutions against the wish of instructors. Do not be tempted to use them: the solutions may contain "poisonous berries" previous instructors planted intentionally to catch cheating. If we catch you copy such solutions, you automatically fail.

Do not bother to obfuscate plagiarism (e.g. change variable names, code style, etc.) One application of AI is to develop sophisticated plagiarism detection techniques!

Cheating and plagiarism will be dealt with in accordance with University procedures (see the UW-Madison Academic Misconduct Rules and Procedures)

Software Tools

- Python

 - A Crash course in Python (self-study): Link
- Jupyter

 - So much easier to keep track of your experiments Obviously you should put longer code into modules
- Colab
 - Go to <u>colab.research.google.com</u>
 - Activate the GPU supported runtime

Everyone is using it in machine learning & data science

Thanks!