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Today’s outline

* K-Nearest Neighbors
¢ Maximum likelihood estimation

* Naive Bayes




Part |: K-nearest neighbors




WIKIPEDIA

The Free Encyclopedia

Main page

Article Talk

k-nearest neighbors algorithm

From Wikipedia, the free encyclopedia

Not to be confused with k-means clustering.

(source: wiki)




Example 1: Predict whether a user likes a song or not
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K-nearest neighbors for classification

* Input: Training data (X1, Y1)s (X2, ¥2), -+ .5 (X, ¥,,)
d(x;, Xj); number of neighbors k; test data x*

1. Find the £k training instances X;,...,X; closestto x* under d(X;, X;)

1 l

2. Output y* as the majority class of Vi o v s Vi Break ties randomly.

Do nothing during the training.
When given a test input, find its k nearest neighbors in the training dataset, and do majority voting to predict the label.



Example 2: 1-NN for little green man
- Predict gender (M,F) from weight, height

- Predict age (adult, juvenile) from weight, height

Decision boundary

17 4 g .
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o
(521

height (in.)

45

401 male 1 40
80 90 100 110 80 90 100 110
weight (Ibs.) weight (Ibs.)
(a) classification by gender (b) classification by age

For any location in the input space, we predict its label using 1-NN. This determines the region of different predicted classes. The boundary between different classes is
called the decision boundary.



The decision regions for 1-NN

Voronoi diagram: each polyhedron indicates the region of feature
space that is in the nearest neighborhood of each training instance

Each red dot is a training data point.

1-NN divide the input space into regions. Each region will be given the label of the corresponding training data point.



K-NN for regression

* What if we want regression?

* Instead of majority vote, take average of neighbors’ labels

- Given test point x*, find its k nearest neighbors Xl-l, cees Xik

1
- Output the predicted label ;()’il + ...+ y,-k)




How can we determine distance?

suppose all features are discrete

* Hamming distance: count the number of features for
which two instances differ




How can we determine distance?

suppose all features are discrete

* Hamming distance: count the number of features for
which two instances differ

suppose all features are continuous

* Euclidean distance: sum of squared differences

d(p,9) = 4 [ (pi- 4’
i=1

* Manhattan qqistance:

dp.q) = ) Ipi— gl

i=1




How to pick the number of neighbors

* Split data into training and tuning sets
» Classify tuning set with different k

* Pick k that produces least tuning-set error




Effect of k

A

What’s the predicted label for the black dot
using 1 neighbor? 3 neighbors?

Small k: curvy decision boundary, sensitive to the noise. Can be viewed as having large model capacity
Large k: smooth decision boundary, not sensitive to the noise. Can be viewed as having small model capacity.
Extreme case k=#training data points: then any location in the input space will get the same prediction, ie, the prediction is a constant function.



Quiz break

Q1-1: K-NN algorithms can be used for:

* A Only classification

* B Only regression

 C Both




Quiz break

Q1-1: K-NN algorithms can be used for:

* A Only classification

* B Only regression

e C Both




Quiz break

Q1-2: Which of the following distance measure do we use in case
categorical variables in k-NN?

A Hamming distance
B Euclidean distance

* C Manhattan distance




Quiz break

Q1-2: Which of the following distance measure do we use in case
categorical variables in k-NN?

A Hamming distance
B Euclidean distance

* C Manhattan distance




Quiz break

Q1-3: Consider binary classification in 2D where the intended
label of a point x = (x1, x2) is positive if x1>x2 and negative
otherwise. Let the training set be all points of the form x = [4a,
3b] where a,b are integers. Each training item has the correct
label that follows the rule above. With a 1NN classifier (Euclidean
distance), which ones of the following points are labeled
positive? Multiple answers.

[5.52, 2.41]
[8.47, 5.84]
[7,8.17]
[6.7,8.88]




Quiz break

Q1-3: Consider binary classification in 2D where the intended
label of a point x = (x1, x2) is positive if x1>x2 and negative
otherwise. Let the training set be all points of the form x = [4a,
3b] where a,b are integers. Each training item has the correct
label that follows the rule above. With a 1NN classifier (Euclidean
distance), which ones of the following points are labeled
positive? Multiple answers.

Nearest neighbors are

* [5.52,2.41] [4,3] => positive
. [8.47, 5.84] [8,6] => positive

[8,9] => negative
e [7,8.17] [8,9] => negative

[6.7,8.88] Individually.




Part II: Maximum Likelihood Estimation




Non-parametric
(e.g., KNN)

Supervised Machine Learning

VS.

Parametric

Parametric here means using a class of functions with parameters.




Supervised Machine Learning

Statistical modeling approach

Labeled training
data (n examples)

(Xla )’1), (Xza )’2), ceey (Xna yn)

drawn independently from
a fixed underlying distribution
(also called the 1.1.d. assumption)




Supervised Machine Learning

Statistical modeling approach

Labeled training
data (n examples)

—

(Xla )’1), (Xza )’2), ceey (Xna yn)

drawn independently from
a fixed underlying distribution
(also called the 1.1.d. assumption)

Learning
algorithm

—

Classifier

f

select f(@) from a pool of models F
that best describe the data observed




How to selectf e F?

e Maximum likelihood (best fits the data)
¢ Maximum a posteriori (best fits the data but incorporates prior assumptions)

e Optimization of ‘loss’ criterion (best discriminates the labels)

Note that some losses can be derived from MLE (Maximum Likelihood Estimation) or MAP (Maximum A Posteriori).



Maximum Likelihood Estimation: An Example

Flip a coin 10 times, how can you estimate 8 = p(Head)?

Intuitively, @ = 4/10 = 0.4

MLE is a general approach to estimate the parameter \theta of a distribution. Forget about labels for now.

Suppose we have a set of iid samples x_i’s from a distribution p_\theta with parameter \theta. We want to estimate \theta. The given example: we have a set of 10 iid
samples from the distribution of coin-flipping where the parameter is p(Head); we want to estimate p(Head).

MLE:
1. Write down the likelihood for different \theta values. (Usually use the log of the likelihood.)
2. Find the \theta value that can maximize the likelihood. (Or equivalently maximize the log-likelihood, since the log doesn’t change the maximizer.)



How good is 67

It depends on how likely it is to generate the observed data
XXy, ..., X, (Let’s forget about label for a second)

Likelihood function L(Q);Hi p(x;|60)

Under i.i.d assumption

Interpretation: How probable (or how likely) is the data given
the probabilistic model p,?

p(x_i | \theta): assume \theta is the truth, what is the probability of getting x_i?



How good is 67

It depends on how likely it is to generate the observed data

XXy, ..., X, (Let’s forget about label for a second)

Likelihood function L(6) = IL;p(x;|0)
H,T, T,H,H

N\

£ L,(0)=0-(1-0)-(1-0)-0-0
Bernoulli distribution




Log-likelihood function
L,(O)=60-1-60)-(1-6)-6-0
= 0N . (1 — )M
Log-likelihood function
£ (0) = log L(0)
= Nylog 0 + N;log(1 — 0)

Usually we use the log of the likelihood (called log-likelihood) which is convenient.



To maximize the

Maximum Likelihood Estimation (MLE)

Find optimal 8* to maximize the likelihood function (and log-likelihood)

0* = arg max Nylog 0 + Nylog(1l — 0)

AO) Ny _ Nr__ o oy g Ny

00 O 1-0

which confirms your intuition!




Maximum Likelihood Estimation: Gaussian Model

Fitting a model to heights of females
Observed some data (in inches): 60, 62, 53, 58,... € R
x5, %,...,x,}

Model class: Gaussian model A

p(z) = \/2;7 exp (- (362_05)2)

So, what’s the MLE for the given data?




Estimating the parameters in a Gaussian

* Mean |
=E[x]henceji=— ) x
p = Elx] I n; j
* Variance "
2 2 ) 1 A2
6> =E|(x—p?’] hence 6> =— )" (x,— )
ni:l

courses.d2l.ai/berkeley-stat-157




Maximum Likelihood Estimation: Gaussian Model

Observe some data (in inches): xX;,X5,..., X, € R

Assume that the data is drawn from a Gaussian _/\

L(u, 06| X) = ﬁp(x-ﬂ 0% = ﬁ ! exp( 0 — 'u)z)
) - 1o Mo - ) - )
Pl 2roc 20

i=1

Fitting parameters is maximizing likelihood w.r.t p, o’
(maximize likelihood that data was generated by model)

n
2
arg max X3 U, O
MLE %t’a% !_II p(x; p, 07)




Maximum Likelihood

» Estimate parameters by finding ones that explain the data

n n
argmgx | | pCx;: . 6% = argmin — log [ | p(x;: . 62)
B0 i H.0 i=1
e Decompose likelihood
i l log(276?) + L(x- — )’ = z log(276?) + L z”: (x; — p)?
= 2 202" 2 202 = :

l n
Minimized for 4 =— ) x;
)

i=1

courses.d2l.ai/berkeley-stat-157




Maximum Likelihood

 Estimating the variance

n

n 1
—log(276%) + — Z = u)?




Maximum Likelihood

 Estimating the variance

n 1 &
—log(276? +—§' = u)?

» Take derivatives with respect to it

n

1 n
a 21 | — E . 2 - 0

1 n
:>52:_Z(xi_ﬂ)2
nizl

courses.d2l.ai/berkeley-stat-157




Bayes’ rule + MLE
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Classification via Bayes’ rule + MLE

j\; — f(x) = arg max p(y | X) (Posterior)

(Prediction)




Classification via Bayes’ rule + MLE

j\; — f(x) = arg max p(y | X) (Posterior)
(Prediction)

_ px|y) - p(y)
= arg max

(by Bayes’ rule)
y p(x)

= arg ;nax px|y)p(y)

Then use MLE labelled training data, to learn class conditionals and class priors

Stages:

1. Formulate the decision making (ie, discrete prediction label for y) into a conditional probability problem p(y|x): the distribution over all possible labels given x.
2. Apply Bayes’ rule, turn the problem into maximizing the product of class conditionals p(x|y) and class priors p(y)

3. Use the training data to estimate p(x|]y) and p(y), and plug in the Bayes’ rule to make the prediction. Can use MLE or MAP. We will talk about MLE.



Quiz break

Q2-2: True or False
Maximum likelihood estimation is the same regardless of whether we
maximize the likelihood or log-likelihood function.

e A True

e B False




Quiz break

Q2-2: True or False
Maximum likelihood estimation is the same regardless of whether we
maximize the likelihood or log-likelihood function.

e A True

e B False

Log is monotonically increasing so doesn’t change the maximizer



Quiz break

Q2-3: Suppose the weights of randomly selected American female
college students are normally distributed with unknown mean y and

standard deviation . A random sample of 10 American female college
students yielded the following weights in pounds: 115 122 130 127 149
160 152 138 149 180. Find a maximum likelihood estimate of p.

« A 1322
« B 142.2
« C 1562.2
e D 162.2




Quiz break

Q2-3: Suppose the weights of randomly selected American female
college students are normally distributed with unknown mean y and

standard deviation . A random sample of 10 American female college
students yielded the following weights in pounds: 115 122 130 127 149

160 152 138 149 180. Find a maximum likelihood estimate of p.

« A 1322
e B 142.2
« C 1562.2
e D 162.2

Take the mean



Part Il: Naive Bayes

Recall the stages:

1. Formulate the decision making (ie, discrete prediction label for y) into a conditional probability problem p(y|x): the distribution over all possible labels given x.
2. Apply Bayes’ rule, turn the problem into maximizing the product of class conditionals p(x|y) and class priors p(y)

3. Use the training data to estimate p(x|y) and p(y), and plug in the Bayes’ rule to make the prediction.

Naive Bayes is using Naive Bayes assumption on p(x|y), to get p(x|]y) = \prod_i p(x_ily) where x_i is the i-th feature of the input x. Then use MLE to estimate p(x_ily) and
p(y). For discrete x, MLE is essentially counting.



Example 1: Play outside or not?

* If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ) vs. p(No | )

Stage 1: formulate the decision making problem (play outside or not) into a conditional probability problem: p(Play|sunny) for two labels Play=Yes and Play=No.



Example 1: Play outside or not?

* If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ) vs. p(No | )
* Weather = {Sunny, Rainy, Overcast}

* Play = {Yes, No}
* Observed data {Weather, play on day m}, m={1,2,...,N}




Example 1: Play outside or not?

* If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ) vs. p(No | )
* Weather = {Sunny, Rainy, Overcast}

* Play = {Yes, No}
* Observed data {Weather, play on day m}, m={1,2,...,N}

p( | Play) p(Play)
p(Cr)

p(Play | =&r)

Bayes rule

Stage 2: apply Bayes rule. Need to estimate the terms p(sunny|Play) and p(Play).



Example 1: Play outside or not?

» Step 1: Convert the data to a frequency table of Weather and Play

Weather |Play

Sunny No Frequency Table
Overcast |Yes Weather No Yes
Rainy Yes Overcast 4
Sunny Yes Rainy 2
Sunny Yes Sunny 2 3
Overcast |Yes Grand Total 5 9
Rainy No

Rainy No

Sunny Yes

Rainy Yes

Sunny No

Overcast |Yes

Overcast [Yes

Rainy No

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Stage 3: MLE to estimate the terms. Essentially counting (we have proved this for Bernoulli distribution in the coin-flipping example; a similar proof holds for the
multinomial distribution.) Then plug in Bayes’ rule to make the prediction



Example 1: Play outside or not?

Step 1: Convert the data to a frequency table of Weather and Play

Step 2: Based on the frequency table, calculate likelihoods and priors

Weather |Play

Sunny No Frequency Table Likelihood table

Overcast |Yes Weather No Yes Weather No Yes

Rainy Yes Overcast 4 Overcast 4 =4/14 0.29
Sunny Yes Rainy 2 Rainy 3 2 =5/14 0.36
Sunny Yes Sunny 2 3 Sunny 2 3 =5/14 0.36
Overcast |Yes Grand Total 5 9 All 5 9

Rainy No =5/14 =9/14

Rainy No 0.36 0.64

Sunny Yes

Rainy _[ves p(Play = Yes) = 0.64

Sunny No

Overcast |Yes p( | YeS) = 3/9 = 033

Overcast |Yes

Rainy No

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/




Example 1: Play outside or not?

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes]| ) o
=P( |Yes)*P(Yes)/P( 1) .

P(No| ) n
=P( INo)*P(No)/P( ¢ ) .




Example 1: Play outside or not?

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes]| )
=P( |Yes)*P(Yes)/P( )
=0.33*0.64/0.36
=0.6

P(No| )
=P( INo)*P(No)/P(¢:)
=0.4*0.36/0.36
=0.4

P(Yes| @) > P(No| :©7) go outside and play!




Bayesian classification

y = arg max p(y | X) (Posterion)
(Prediction)
px|y) - p(y)
= arg max (by Bayes’ rule)
p(x)

= argmax p(x|y)p(y)




Bayesian classification
What if x has multiple attributes X = { X, ..., X;}

j} — afgglaXp(y |X1, cees Xk) (Posterior)
(Prediction)




Bayesian classification
What if x has multiple attributes X = { X, ..., X;}

j} — afgglaXp(y |X1, ceey Xk) (Posterior)

(Prediction)

_ argmax PXis - X 1Y) - PO) ) gavest g

y pXy, ... Xp)

Independent of y




Bayesian classification
What if x has multiple attributes X = { X, ..., X;}

j} — afgglaXp(y |X1, ceey Xk) (Posterior)
(Prediction)

(by Bayes’ rule)

pXi, ... X |y) - p(y)
= arg max
Y pXy, ..., Xp)

= argmax pXy,.... X |y) pY)

4

Class conditional
likelihood

Class prior

Recall the stages:
1. Formulate the decision making (ie, discrete prediction label for y) into a conditional probability problem p(y|x): the distribution over all possible labels given x.

2. Apply Bayes’ rule, turn the problem into maximizing the product of class conditionals p(x|y) and class priors p(y)
3. Use the training data to estimate p(x|y) and p(y), and plug in the Bayes’ rule to make the prediction.



Naive Bayes Assumption

Conditional independence of feature attributes
pXy, ... X PO =TI p(X; | y)p()

1

Easier to estimate
(using MLE!)

Naive Bayes is using Naive Bayes (ie conditional indolence) assumption on p(x|y), to get p(x|y) = \prod_i p(x_ily) where x_i is the i-th feature of the input x. Then use MLE
to estimate each p(x_ily) and p(y). For discrete x, MLE is essentially counting.



Quiz break

Q3-1: Which of the following about Naive Bayes is incorrect?

« A Attributes can be nominal or numeric

« B Attributes are equally important

« C Attributes are statistically dependent of one another given the class value

« D Attributes are statistically independent of one another given the class value

« E All of above




Quiz break

Q3-1: Which of the following about Naive Bayes is incorrect?

« A Attributes can be nominal or numeric

« B Attributes are equally important

« C Attributes are statistically dependent of one another given the class value

« D Attributes are statistically independent of one another given the class value

« E All of above

Naive Bayes assumption: Attributes are statistically independent of one another given the class value.



Quiz break

Q3-2: Consider a classification problem with two binary features,

x1, X2 € {0,1}, and ye {1,2,...,32}. Suppose P(Y =y)=1/32, P(x1 =1 Y
=y)=yl46, P(x2 =1 | Y =vy) =y/62. Which class will naive Bayes
classifier produce on a test item with x1 =1 and x2 = 0?

« A 16
- B 26
- C 31
« D 32




Quiz break

Q3-2: Consider a classification problem with two binary features,

x1, X2 € {0,1}, and ye {1,2,...,32}. Suppose P(Y =y) =1/32, P(x1=1]| Y
=y)=yl46, P(x2 =1 | Y =vy) =y/62. Which class will naive Bayes
classifier produce on a test item with x1 =1 and x2 = 0?

« A 16
- B 26
« C 31
« D 32

Stage 1: need to estimate P(Y=y|x1=1, x2=0) for different y’s.

Stage 2: Apply Bayes’ rule and get
Prediction= \argmax_y p(x1=1,x2=0|Y=y)P(Y=y)

Stage 3: estimate the terms and plug in the Bayes’ rule to make the prediction.
Apply Naive Bayes assumption:

p(x1=1,x2=0[Y=y)=p(x1=1|Y=y) p(x2=0[Y=y)

Then we have:

Prediction= \argmax_y p(x1=1|Y=y) p(x2=0|Y=y) p(Y=y)

= \argmax_y y/46 * (1-y/62) * 1/32

=\argmax_y y * (62-y)

= 31



Quiz break

Q3-3: Consider the following dataset showing the result whether a
person has passed or failed the exam based on various factors.
Suppose the factors are independent to each other. We want to classify
a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident Studied Sick Result
Yes No No Fail °
Yes No Yes Pass A PaSS
No Yes Yes Fail .
No Yes No Pass * B Fa”
Yes Yes Yes Pass




Quiz break

Q3-3: Consider the following dataset showing the result whether a
person has passed or failed the exam based on various factors.
Suppose the factors are independent to each other. We want to classify
a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident Studied Sick Result
Yes No No Fail °
Yes No Yes Pass A PaSS
No Yes Yes Fail .
No Yes No Pass * B Fa”
Yes Yes Yes Pass

Stage 1: need to estimate P(Y=y|Confident=Yes, Studied=Yes, Sick=No) for y in {Pass, Fail}.

Stage 2: Apply Bayes’ rule and get
Prediction= \argmax_y p(Confident=Yes, Studied=Yes, Sick=No|Y=y)P(Y=y)

Stage 3: estimate the terms and plug in the Bayes’ rule to make the prediction.

Apply Naive Bayes assumption:
p(Confident=Yes, Studied=Yes, Sick=No|Y=y)=p(Confident=Yes|Y=y) p(Studied=Yes|Y=y) p(Sick=No|Y=y)

Apply MLE on the training data (ie, counting):
1) For Y=Pass

p(Confident=Yes|Y=Pass) = 2/3,
p(Studied=Yes|Y=Pass) = 2/3,
p(Sick=No|Y=Pass) = 1/3,

p(Y=Pass) = 3/5

2) For Y=Fall
p(Confident=Yes|Y=Fail) = 1/2,
p(Studied=Yes|Y=Fail) = 1/2,



p(Sick=No|Y=Fail) = 1/2,
p(Y=Falil) = 2/5

Then we have:

p(Confident=Yes, Studied=Yes, Sick=No|Y=Pass)P(Y=Pass) =2/3 *2/3*1/3*3/5=4/9*1/5
p(Confident=Yes, Studied=Yes, Sick=No|Y=Fail)P(Y=Fail) =1/2*1/2*1/2*2/5=1/4*1/5
The former is larger than the latter, so:

Prediction= \argmax_y p(Confident=Yes, Studied=Yes, Sick=No|Y=y)P(Y=y) = Pass



What we’ve learned today...

* K-Nearest Neighbors

¢ Maximum likelihood estimation
* Bernoulli model
* Gaussian model

* Naive Bayes

» Conditional independence assumption







