

CS 540 Introduction to Artificial Intelligence
Classification - KNN and Naive Bayes
Yingyu Liang
University of Wisconsin-Madison

Today's outline

- K-Nearest Neighbors
- Maximum likelihood estimation
- Naive Bayes

Part I: K-nearest neighbors

Example 1: Predict whether a user likes a song or not

Example 1: Predict whether a user likes a song or not


```
Example 1: Predict whether a user likes a song or not
                                    \(1-\mathrm{NN}\)
    User Sharon
- DisLike
- Like
```



```
Example 1: Predict whether a user likes a song or not
                                    \(1-\mathrm{NN}\)
    User Sharon
- DisLike
- Like
```


K-nearest neighbors for classification

- Input: Training data $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$

Distance function $d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$; number of neighbors k; test data \mathbf{x}^{*}

1. Find the k training instances $\mathbf{x}_{i_{1}}, \ldots, \mathbf{x}_{i_{k}}$ closest to \mathbf{x}^{*} under $d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
2. Output y^{*} as the majority class of $y_{i_{1}}, \ldots, y_{i_{k}}$. Break ties randomly.

Example 2: 1-NN for little green man

- Predict gender (M,F) from weight, height
- Predict age (adult, juvenile) from weight, height

For any location in the input space, we predict its label using 1-NN. This determines the region of different predicted classes. The boundary between different classes is called the decision boundary.

The decision regions for $1-\mathrm{NN}$

Voronoi diagram: each polyhedron indicates the region of feature space that is in the nearest neighborhood of each training instance
x_{2}

Each red dot is a training data point.

1-NN divide the input space into regions. Each region will be given the label of the corresponding training data point.

K-NN for regression

- What if we want regression?
- Instead of majority vote, take average of neighbors' labels
- Given test point \mathbf{x}^{*}, find its k nearest neighbors $\mathbf{x}_{i_{1}}, \ldots, \mathbf{x}_{i_{k}}$
- Output the predicted label $\frac{1}{k}\left(y_{i_{1}}+\ldots+y_{i_{k}}\right)$

How can we determine distance?

suppose all features are discrete

- Hamming distance: count the number of features for which two instances differ

How can we determine distance?

suppose all features are discrete

- Hamming distance: count the number of features for which two instances differ
suppose all features are continuous
- Euclidean distance: sum of squared differences
$d(\mathbf{p}, \mathbf{q})=\sqrt{\sum_{i=1}^{n}\left(p_{i}-q_{i}\right)^{2}}$
- Manhattan distance:
$d(\mathbf{p}, \mathbf{q})=\sum_{i=1}^{n}\left|p_{i}-q_{i}\right|$

How to pick the number of neighbors

- Split data into training and tuning sets
- Classify tuning set with different k
- Pick k that produces least tuning-set error

Small k: curvy decision boundary, sensitive to the noise. Can be viewed as having large model capacity
Large k : smooth decision boundary, not sensitive to the noise. Can be viewed as having small model capacity.
Extreme case $\mathrm{k}=\#$ training data points: then any location in the input space will get the same prediction, ie, the prediction is a constant function.

Quiz break

Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Quiz break

Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Quiz break

Q1-2: Which of the following distance measure do we use in case categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Quiz break

Q1-2: Which of the following distance measure do we use in case categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Quiz break

Q1-3: Consider binary classification in 2D where the intended label of a point $x=(x 1, x 2)$ is positive if $x 1>x 2$ and negative otherwise. Let the training set be all points of the form $x=[4 a$, 3b] where a,b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean distance), which ones of the following points are labeled positive? Multiple answers.

- [5.52, 2.41]
- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Quiz break

Q1-3: Consider binary classification in 2D where the intended label of a point $x=(x 1, x 2)$ is positive if $x 1>x 2$ and negative otherwise. Let the training set be all points of the form $x=[4 a$, 3b] where a,b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean distance), which ones of the following points are labeled positive? Multiple answers.

- [5.52, 2.41]
- [8.47, 5.84]
- $[7,8.17]$
- [6.7,8.88]

Nearest neighbors are
[4,3] => positive
[8,6] $=>$ positive
[8,9$] \Rightarrow$ negative
[8,9] => negative
Individually.

Part II: Maximum Likelihood Estimation

Parametric here means using a class of functions with parameters.

Supervised Machine Learning

Statistical modeling approach

Labeled training

data (n examples)
$\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$
drawn independently from
a fixed underlying distribution
(also called the i.i.d. assumption)

Supervised Machine Learning

Statistical modeling approach

$\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$
drawn independently from a fixed underlying distribution (also called the i.i.d. assumption)
select $\hat{f}(\theta)$ from a pool of models \mathscr{F} that best describe the data observed

How to select $\hat{f} \in \mathscr{F}$?

- Maximum likelihood (best fits the data)
- Maximum a posteriori (best fits the data but incorporates prior assumptions)
- Optimization of 'loss' criterion (best discriminates the labels)

Maximum Likelihood Estimation: An Example

Flip a coin 10 times, how can you estimate $\theta=p($ Head $) ?$

Intuitively, $\theta=4 / 10=0.4$

MLE is a general approach to estimate the parameter \theta of a distribution. Forget about labels for now.

Suppose we have a set of iid samples x_i's from a distribution p_\theta with parameter \theta. We want to estimate \theta. The given example: we have a set of 10 iid samples from the distribution of coin-flipping where the parameter is p (Head); we want to estimate $p(H e a d)$.

MLE:

1. Write down the likelihood for different \theta values. (Usually use the log of the likelihood.)
2. Find the \theta value that can maximize the likelihood. (Or equivalently maximize the log-likelihood, since the log doesn't change the maximizer.)

How good is θ ?

It depends on how likely it is to generate the observed data
$\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \quad$ (Let's forget about label for a second)
Likelihood function $L(\theta)=\prod_{i} p\left(\mathbf{x}_{i} \mid \theta\right)$

Under i.i.d assumption
Interpretation: How probable (or how likely) is the data given the probabilistic model p_{θ} ?

How good is θ ?

It depends on how likely it is to generate the observed data
$\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \quad$ (Let's forget about label for a second)
Likelihood function $L(\theta)=\prod_{i} p\left(\mathbf{x}_{i} \mid \theta\right)$

Log-likelihood function

$$
\begin{aligned}
L_{D}(\theta) & =\theta \cdot(1-\theta) \cdot(1-\theta) \cdot \theta \cdot \theta \\
& =\theta^{N_{H}} \cdot(1-\theta)^{N_{T}}
\end{aligned}
$$

Log-likelihood function

$$
\begin{aligned}
\ell(\theta) & =\log L(\theta) \\
& =N_{H} \log \theta+N_{T} \log (1-\theta)
\end{aligned}
$$

Maximum Likelihood Estimation (MLE)

Find optimal θ^{*} to maximize the likelihood function (and log-likelihood)

$$
\begin{gathered}
\theta^{*}=\arg \max N_{H} \log \theta+N_{T} \log (1-\theta) \\
\frac{\partial l(\theta)}{\partial \theta}=\frac{N_{H}}{\theta}-\frac{N_{T}}{1-\theta}=0 \Rightarrow \theta^{*}=\frac{N_{H}}{N_{T}+N_{H}}
\end{gathered}
$$

which confirms your intuition!

Maximum Likelihood Estimation: Gaussian Model

Fitting a model to heights of females
Observed some data (in inches): $60,62,53,58, \ldots \in \mathbb{R}$

$$
\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

Model class: Gaussian model

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

So, what's the MLE for the given data?

Estimating the parameters in a Gaussian

- Mean

$$
\mu=\mathbf{E}[x] \text { hence } \hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Variance

$$
\sigma^{2}=\mathbf{E}\left[(x-\mu)^{2}\right] \text { hence } \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}
$$

Why?

Maximum Likelihood Estimation: Gaussian Model

Observe some data (in inches): $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$
Assume that the data is drawn from a Gaussian

$$
L\left(\mu, \sigma^{2} \mid X\right)=\prod_{i=1}^{n} p\left(x_{i} ; \mu, \sigma^{2}\right)=\prod_{i=1}^{n} \frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)
$$

Fitting parameters is maximizing likelihood w.r.t μ, σ^{2}
(maximize likelihood that data was generated by model)

MLE

$$
\underset{\mu, \sigma^{2}}{\arg \max _{i=1}^{n}} \prod_{i=1}^{n} p\left(x_{i} ; \mu, \sigma^{2}\right)
$$

Maximum Likelihood

- Estimate parameters by finding ones that explain the data

$$
\underset{\mu, \sigma^{2}}{\arg \max } \prod_{i=1}^{n} p\left(x_{i} ; \mu, \sigma^{2}\right)=\underset{\mu, \sigma^{2}}{\arg \min }-\log \prod_{i=1}^{n} p\left(x_{i} ; \mu, \sigma^{2}\right)
$$

- Decompose likelihood

$$
\sum_{i=1}^{n} \frac{1}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}=\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

$$
\text { Minimized for } \mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Maximum Likelihood

- Estimating the variance

$$
\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

Maximum Likelihood

- Estimating the variance

$$
\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

- Take derivatives with respect to it

$$
\begin{aligned}
& \partial_{\sigma^{2}}[\cdot]=\frac{n}{2 \sigma^{2}}-\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=0 \\
& \Longrightarrow \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
\end{aligned}
$$

courses.d2l.ai/berkeley-stat-157

Classification via Bayes' rule + MLE

Classification via Bayes' rule + MLE

$$
\hat{y}=\hat{f}(\mathbf{x})=\arg \max p(y \mid \mathbf{x}) \quad \text { (Posterior) }
$$

(Prediction)

Classification via Bayes' rule + MLE

$$
\begin{aligned}
& \hat{y}=\hat{f}(\mathbf{x})=\arg \max p(y \mid \mathbf{x}) \\
& \text { (Prediction) } \\
&=\underset{y}{\arg \max } \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})} \quad \text { (by Bayesterior) } \\
&=\underset{y}{\arg \max } p(\mathbf{x} \mid y) p(y)
\end{aligned}
$$

Then use MLE labelled training data, to learn class conditionals and class priors

Stages:

1. Formulate the decision making (ie, discrete prediction label for y) into a conditional probability problem $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$: the distribution over all possible labels given x .
2. Apply Bayes' rule, turn the problem into maximizing the product of class conditionals $p(x \mid y)$ and class priors $p(y)$
3. Use the training data to estimate $\mathrm{p}(\mathrm{x} \mid \mathrm{y})$ and $\mathrm{p}(\mathrm{y})$, and plug in the Bayes' rule to make the prediction. Can use MLE or MAP. We will talk about MLE.

Quiz break

Q2-2: True or False
Maximum likelihood estimation is the same regardless of whether we maximize the likelihood or log-likelihood function.

- A True
- B False

Quiz break

Q2-2: True or False
Maximum likelihood estimation is the same regardless of whether we maximize the likelihood or log-likelihood function.

- A True
- B False

Quiz break

Q2-3: Suppose the weights of randomly selected American female college students are normally distributed with unknown mean μ and standard deviation σ. A random sample of 10 American female college students yielded the following weights in pounds: 115122130127149 160152138149180 . Find a maximum likelihood estimate of μ.

- A 132.2
- B 142.2
- C 152.2
- D 162.2

Quiz break

Q2-3: Suppose the weights of randomly selected American female college students are normally distributed with unknown mean μ and standard deviation σ. A random sample of 10 American female college students yielded the following weights in pounds: 115122130127149 160152138149180 . Find a maximum likelihood estimate of μ.

- A 132.2
- B 142.2
- C 152.2
- D 162.2

Recall the stages:

1. Formulate the decision making (ie, discrete prediction label for y) into a conditional probability problem $p(y \mid x)$: the distribution over all possible labels given x.
2. Apply Bayes' rule, turn the problem into maximizing the product of class conditionals $p(x \mid y)$ and class priors $p(y)$
3. Use the training data to estimate $p(x \mid y)$ and $p(y)$, and plug in the Bayes' rule to make the prediction.

Naive Bayes is using Naive Bayes assumption on $p(x \mid y)$, to get $p(x \mid y)=\backslash p r o d _i p\left(x _i \mid y\right)$ where $x_{-} i$ is the $i-t h$ feature of the input x. Then use MLE to estimate $p\left(x _i \mid y\right)$ and $p(y)$. For discrete x, MLE is essentially counting.

Example 1: Play outside or not?

- If weather is sunny, would you likely to play outside?

Posterior probability p(Yes|舀) vs. po (No

Stage 1: formulate the decision making problem (play outside or not) into a conditional probability problem: p (Play|sunny) for two labels Play=Yes and Play=No.

Example 1: Play outside or not?

- If weather is sunny, would you likely to play outside?

Posterior probability $\mathrm{p}(\mathrm{Yes} \mid$

- Weather = \{Sunny, Rainy, Overcast $\}$
- Play $=\{$ Yes, No $\}$
- Observed data $\{$ Weather, play on day $m\}, m=\{1,2, \ldots, N\}$

Example 1: Play outside or not?

- If weather is sunny, would you likely to play outside?

Posterior probability p(Yes |

- Weather = \{Sunny, Rainy, Overcast $\}$
- Play $=\{$ Yes, No $\}$
- Observed data $\{$ Weather, play on day $m\}, m=\{1,2, \ldots, N\}$

$$
\mathrm{p}\left(\text { Play } \left\lvert\,, \frac{p(\text { Play }) p(\text { Play })}{p(1)} \quad\right.\right. \text { Bayes rule }
$$

Stage 2: apply Bayes rule. Need to estimate the terms p(sunny|Play) and p(Play).

Example 1: Play outside or not?

- Step 1: Convert the data to a frequency table of Weather and Play

https://mww.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Stage 3: MLE to estimate the terms. Essentially counting (we have proved this for Bernoulli distribution in the coin-flipping example; a similar proof holds for the multinomial distribution.) Then plug in Bayes' rule to make the prediction

Example 1: Play outside or not?

Step 1: Convert the data to a frequency table of Weather and Play
Step 2: Based on the frequency table, calculate likelihoods and priors

$$
\mathrm{p}(\text { Play }=\text { Yes })=0.64
$$

$$
\mathrm{p}(\text { 㴚 } \mid \text { Yes })=3 / 9=0.33
$$

Example 1: Play outside or not?

Step 3: Based on the likelihoods and priors, calculate posteriors
P(Yes 演)

P(Nol 嫁)
?

Example 1: Play outside or not?

Step 3: Based on the likelihoods and priors, calculate posteriors
P(Yesl 演)

$=0.33^{*} 0.64 / 0.36$
$=0.6$

$=0.4^{*} 0.36 / 0.36$
$=0.4$

Bayesian classification

$$
\hat{y}=\arg \max p(y \mid \mathbf{x}) \quad \text { (Posterior) }
$$

(Prediction)
$=\arg \max \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})} \quad$ (by Bayes' rule)
$=\arg \max p(\mathbf{x} \mid y) p(y)$

Bayesian classification

What if \mathbf{x} has multiple attributes $\mathbf{x}=\left\{X_{1}, \ldots, X_{k}\right\}$

$$
\underset{\text { (Prediction) }}{\hat{y}=\arg \max _{y} p\left(y \mid X_{1}, \ldots, X_{k}\right) \quad \text { (Posterior) }}
$$

Bayesian classification

What if \mathbf{x} has multiple attributes $\mathbf{x}=\left\{X_{1}, \ldots, X_{k}\right\}$

$$
\begin{aligned}
\hat{y} & =\arg \max _{y} p\left(y \mid X_{1}, \ldots, X_{k}\right) \quad \text { (Posterior) } \\
& =\arg \max _{y} \frac{p\left(X_{1}, \ldots, X_{k} \mid y\right) \cdot p(y)}{p\left(X_{1}, \ldots, X_{k}\right)} \quad \text { (by Bayes' rule) }
\end{aligned}
$$

Bayesian classification

What if \mathbf{x} has multiple attributes $\mathbf{x}=\left\{X_{1}, \ldots, X_{k}\right\}$

$$
\hat{y}=\arg \max _{y} p\left(y \mid X_{1}, \ldots, X_{k}\right)
$$

(Prediction)

$$
=\arg \max _{y} \frac{p\left(X_{1}, \ldots, X_{k} \mid y\right) \cdot p(y)}{p\left(X_{1}, \ldots, X_{k}\right)} \quad \text { (by Bayes' rule) }
$$

$$
=\arg \max _{y} p\left(X_{1}, \ldots, X_{k} \mid y\right) p(y)
$$

Class conditional
Class prior

Recall the stages:

1. Formulate the decision making (ie, discrete prediction label for y) into a conditional probability problem $p(y \mid x)$: the distribution over all possible labels given x.
2. Apply Bayes' rule, turn the problem into maximizing the product of class conditionals $p(x \mid y)$ and class priors $p(y)$
3. Use the training data to estimate $p(x \mid y)$ and $p(y)$, and plug in the Bayes' rule to make the prediction.

Naïve Bayes Assumption

Conditional independence of feature attributes

$$
p\left(X_{1}, \ldots, X_{k} \mid y\right) p(y)=\prod_{i=1}^{k} p\left(X_{i} \mid y\right) p(y)
$$

Quiz break

Q3-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value
- D Attributes are statistically independent of one another given the class value
- E All of above

Quiz break

Q3-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value
- D Attributes are statistically independent of one another given the class value
- E All of above

Quiz break

Q3-2: Consider a classification problem with two binary features, $x_{1}, x_{2} \in\{0,1\}$, and $y \in\{1,2, \ldots, 32\}$. Suppose $P(Y=y)=1 / 32, P\left(x_{1}=1 \mid Y\right.$ $=y)=y / 46, P\left(x_{2}=1 \mid Y=y\right)=y / 62$. Which class will naive Bayes classifier produce on a test item with $\mathrm{x}_{1}=1$ and $\mathrm{x}_{2}=0$?

- A 16
- B 26
- C 31
- D 32

Quiz break

Q3-2: Consider a classification problem with two binary features, $x_{1}, x_{2} \in\{0,1\}$, and $y \in\{1,2, \ldots, 32\}$. Suppose $P(Y=y)=1 / 32, P\left(x_{1}=1 \mid Y\right.$ $=y)=y / 46, P\left(x_{2}=1 \mid Y=y\right)=y / 62$. Which class will naive Bayes classifier produce on a test item with $\mathrm{x}_{1}=1$ and $\mathrm{x}_{2}=0$?

- A 16
- B 26
- C 31
- D 32

Stage 1: need to estimate $P(Y=y \mid x 1=1, x 2=0)$ for different y 's.

Stage 2: Apply Bayes' rule and get
Prediction= \argmax_y $p(x 1=1, x 2=0 \mid Y=y) P(Y=y)$

Stage 3: estimate the terms and plug in the Bayes' rule to make the prediction.
Apply Naive Bayes assumption:
$p(x 1=1, x 2=0 \mid Y=y)=p(x 1=1 \mid Y=y) p(x 2=0 \mid Y=y)$
Then we have:
Prediction= \argmax_y $p(x 1=1 \mid Y=y) p(x 2=0 \mid Y=y) p(Y=y)$
$=$ \argmax_y y/46 * $(1-y / 62)$ * $1 / 32$
$=$ \argmax_y y * (62-y)
$=31$

Quiz break

Q3-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

- A Pass
- B Fail

Quiz break

Q3-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

- A Pass
- B Fail

Stage 1: need to estimate $P(Y=y \mid$ Confident=Yes, Studied=Yes, Sick=No) for y in \{Pass, Fail\}.

Stage 2: Apply Bayes' rule and get
Prediction= \argmax_y p (Confident=Yes, Studied=Yes, Sick=No|Y=y)P(Y=y)

Stage 3: estimate the terms and plug in the Bayes' rule to make the prediction.
Apply Naive Bayes assumption:
$p($ Confident=Yes, Studied=Yes, Sick=No|Y=y)=p(Confident=Yes $\mid Y=y$) $p($ Studied $=Y e s \mid Y=y) p($ Sick=No|Y=y)
Apply MLE on the training data (ie, counting):

1) For $Y=$ Pass
$p($ Confident=Yes $\mid Y=$ Pass $)=2 / 3$,
$p($ Studied $=$ Yes $\mid Y=$ Pass $)=2 / 3$,
$p($ Sick $=$ No $\mid Y=$ Pass $)=1 / 3$,
$p(Y=P a s s)=3 / 5$
2) For $Y=$ Fail
$p($ Confident $=Y e s \mid Y=$ Fail $)=1 / 2$,
$p($ Studied $=$ Yes $\mid Y=$ Fail $)=1 / 2$,

$p($ Sick=No|Y=Fail) $=1 / 2$,

$p(Y=$ Fail $)=2 / 5$
Then we have:
p (Confident=Yes, Studied=Yes, Sick=No|Y=Pass)P(Y=Pass) $=2 / 3$ * $2 / 3 * 1 / 3 * 3 / 5=4 / 9 * 1 / 5$
p(Confident=Yes, Studied=Yes, Sick=No|Y=Fail)P(Y=Fail) $=1 / 2$ * $1 / 2$ * $1 / 2 * 2 / 5=1 / 4 * 1 / 5$
The former is larger than the latter, so:
Prediction= \argmax_y p(Confident=Yes, Studied=Yes, Sick=No|Y=y)P(Y=y) = Pass

What we've learned today...

- K-Nearest Neighbors
- Maximum likelihood estimation
- Bernoulli model
- Gaussian model
- Naive Bayes
- Conditional independence assumption

Thanks!

