

CS 540 Introduction to Artificial Intelligence Perceptron

Yingyu Liang University of Wisconsin-Madison

Slides created by Sharon Li [modified by Yingyu Liang]

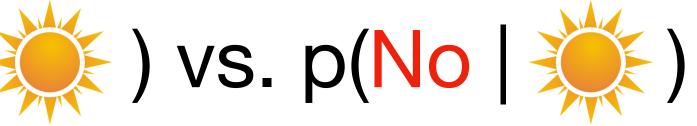
Oct 19, 2021

Today's outline

- Naive Bayes (cont.)
- Single-layer Neural Network (Perceptron)

Part I: Naïve Bayes (cont.)

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)



- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)
- Weather = {Sunny, Rainy, Overcast}
- $Play = {Yes, No}$
- Observed data {Weather, play on day m}, m={1,2,...,N}

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)
- Weather = {Sunny, Rainy, Overcast}
- $Play = {Yes, No}$
- Observed data {Weather, play on day m}, m={1,2,...,N}

p(Play |) =

p(| Play) p(Play)

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table				
Weather	No			
Overcast				
Rainy	3			
Sunny	2			
Grand Total	5			

Step 1: Convert the data to a frequency table of Weather and Play

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Step 1: Convert the data to a frequency table of Weather and Play

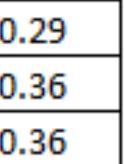
Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

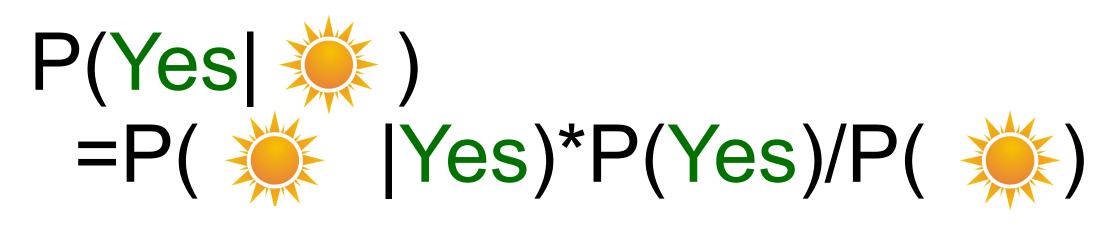
	Frequency Table]	Likelihood table				
	Weather	No	Yes		Weather	No	Yes		
	Overcast		4		Overcast		4	=4/14	0
	Rainy	3	2		Rainy	3	2	=5/14	0
	Sunny	2	3		Sunny	2	3	=5/14	0
	Grand Total	5	9		All	5	9		
						=5/14	=9/14		
						0.36	0.64		

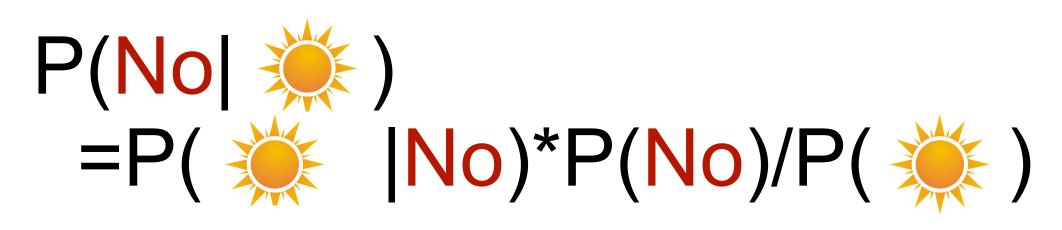
p(Play = Yes) = 0.64p(**¥es**) = 3/9 = 0.33

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/



Step 3: Based on the likelihoods and priors, calculate posteriors



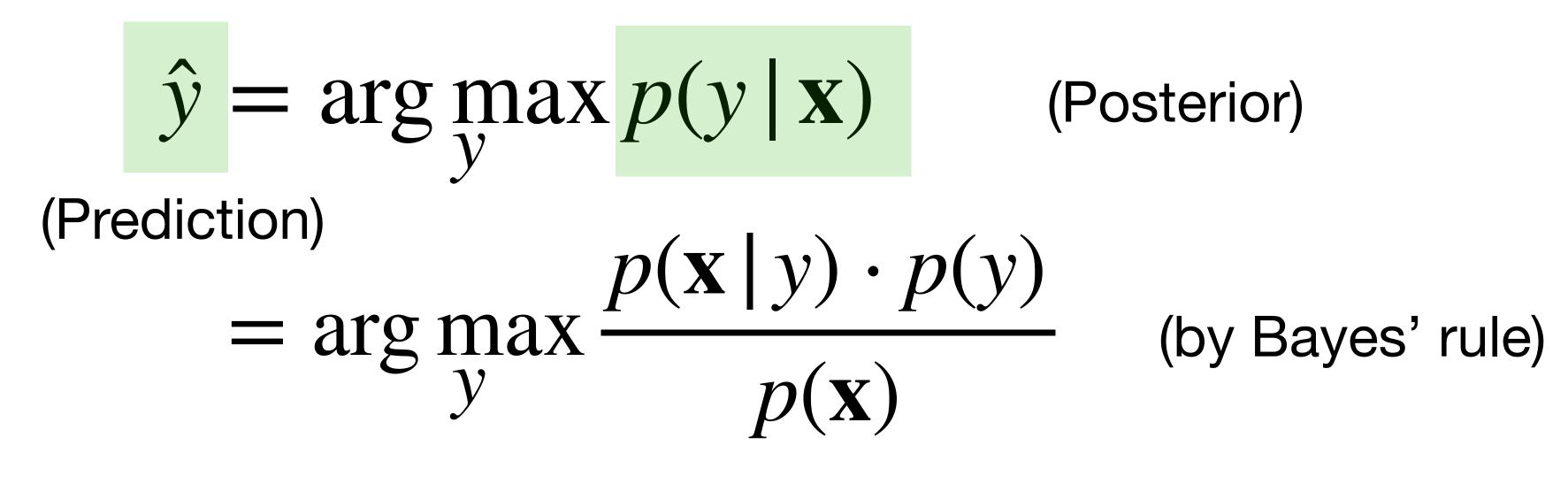


Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes =P(***** |Yes)*P(Yes)/P(*****) =0.33*0.64/0.36 =0.6

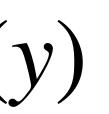
P(No|) =P(| | No)*P(No)/P(| |) =0.4*0.36/0.36=0.4

Bayesian classification



 $= \arg \max p(\mathbf{x} | y) p(y)$

(Posterior)

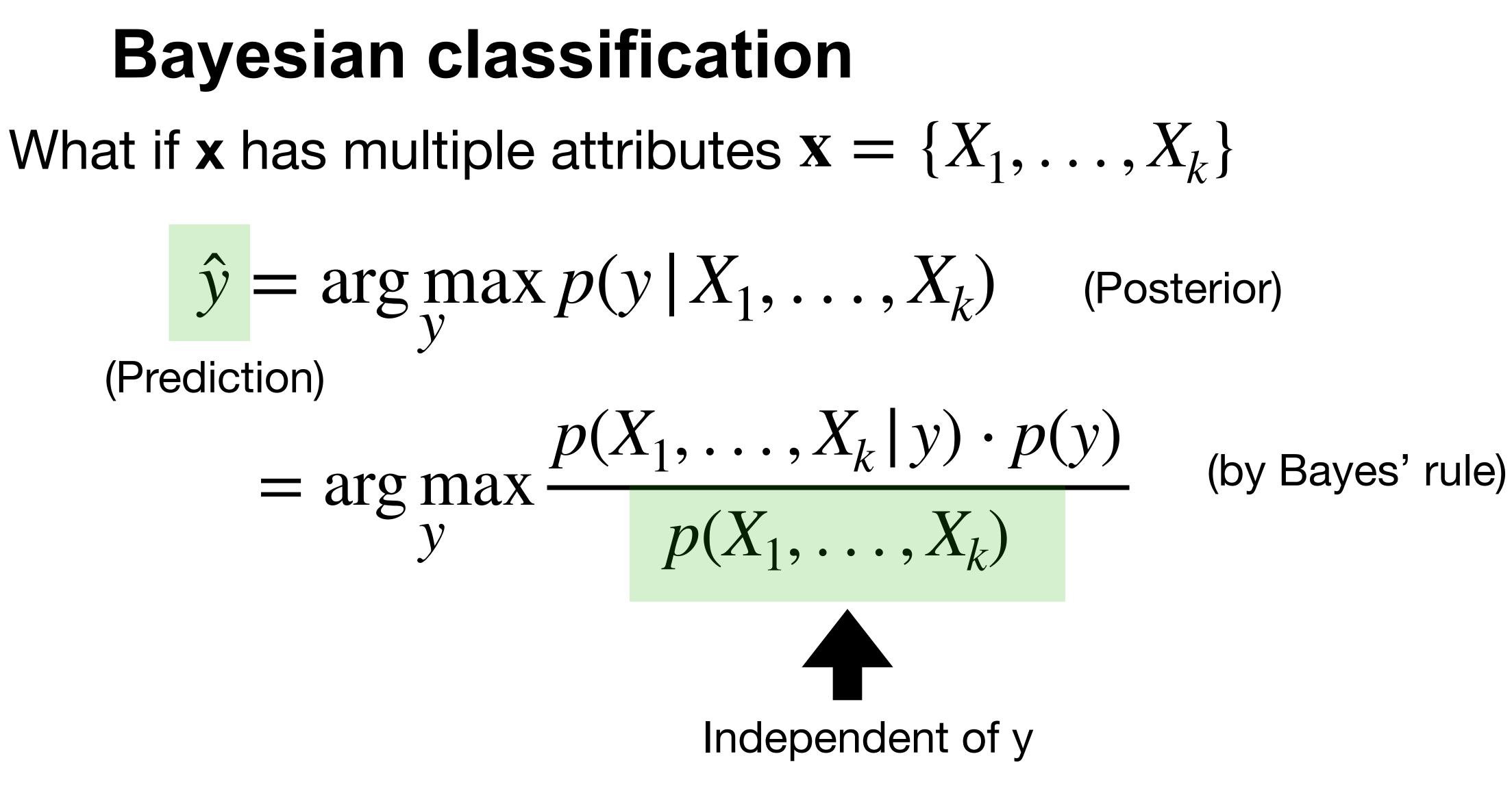


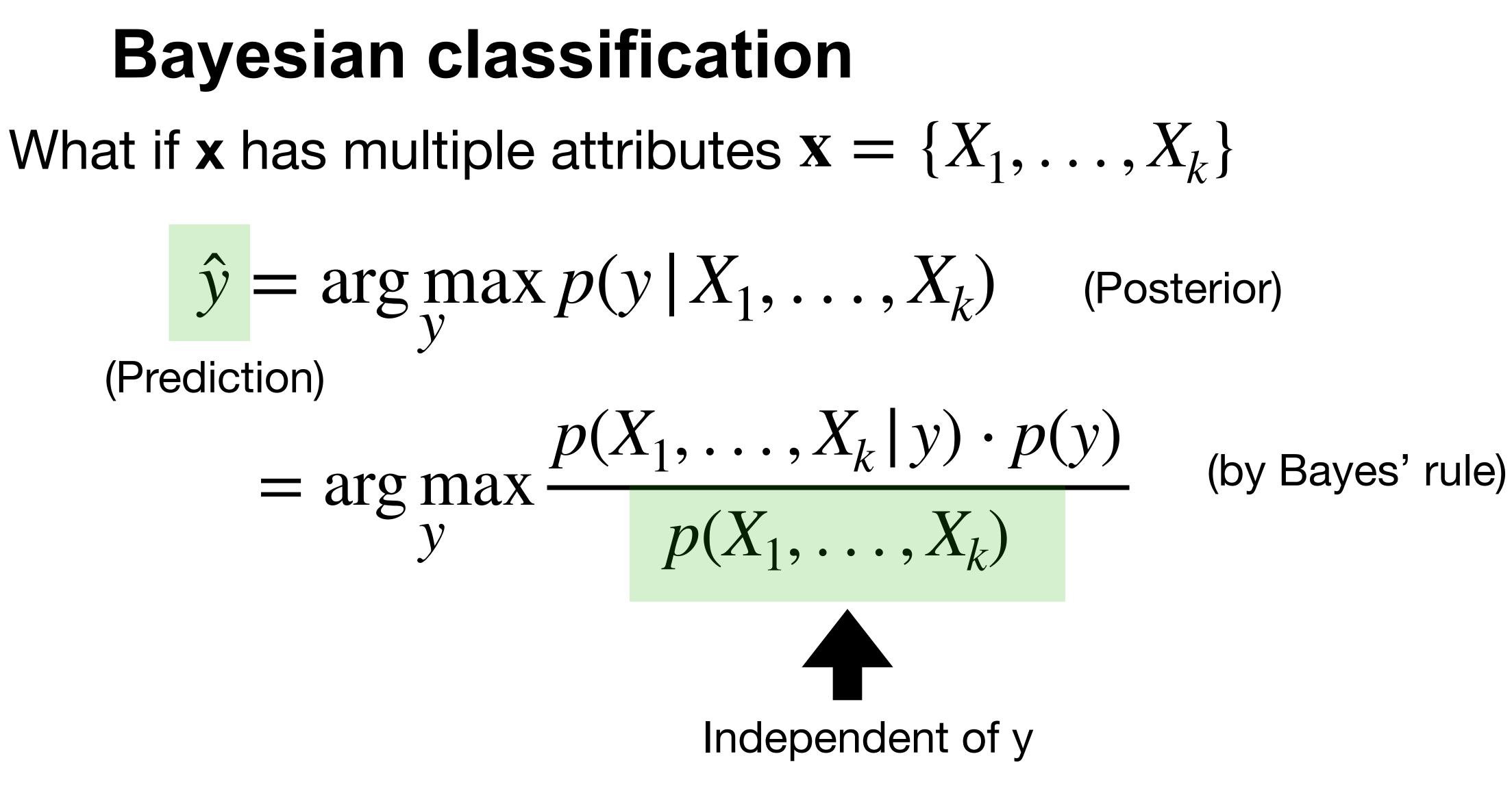
Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$

$\hat{y} = \underset{v}{\operatorname{arg\,max}} p(y | X_1, \dots, X_k)$ (Posterior) (Prediction)

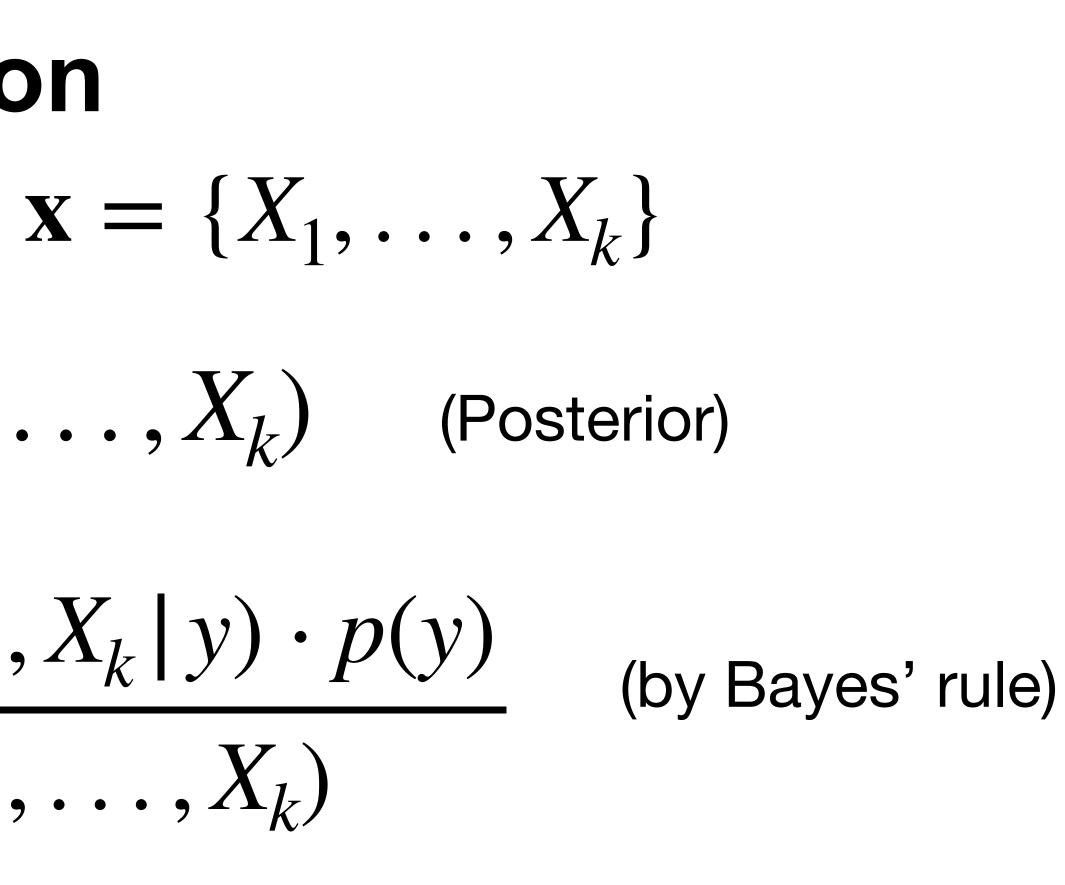
Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$

$\hat{y} = \underset{v}{\operatorname{arg\,max}} p(y | X_1, \dots, X_k)$ (Posterior) (Prediction)

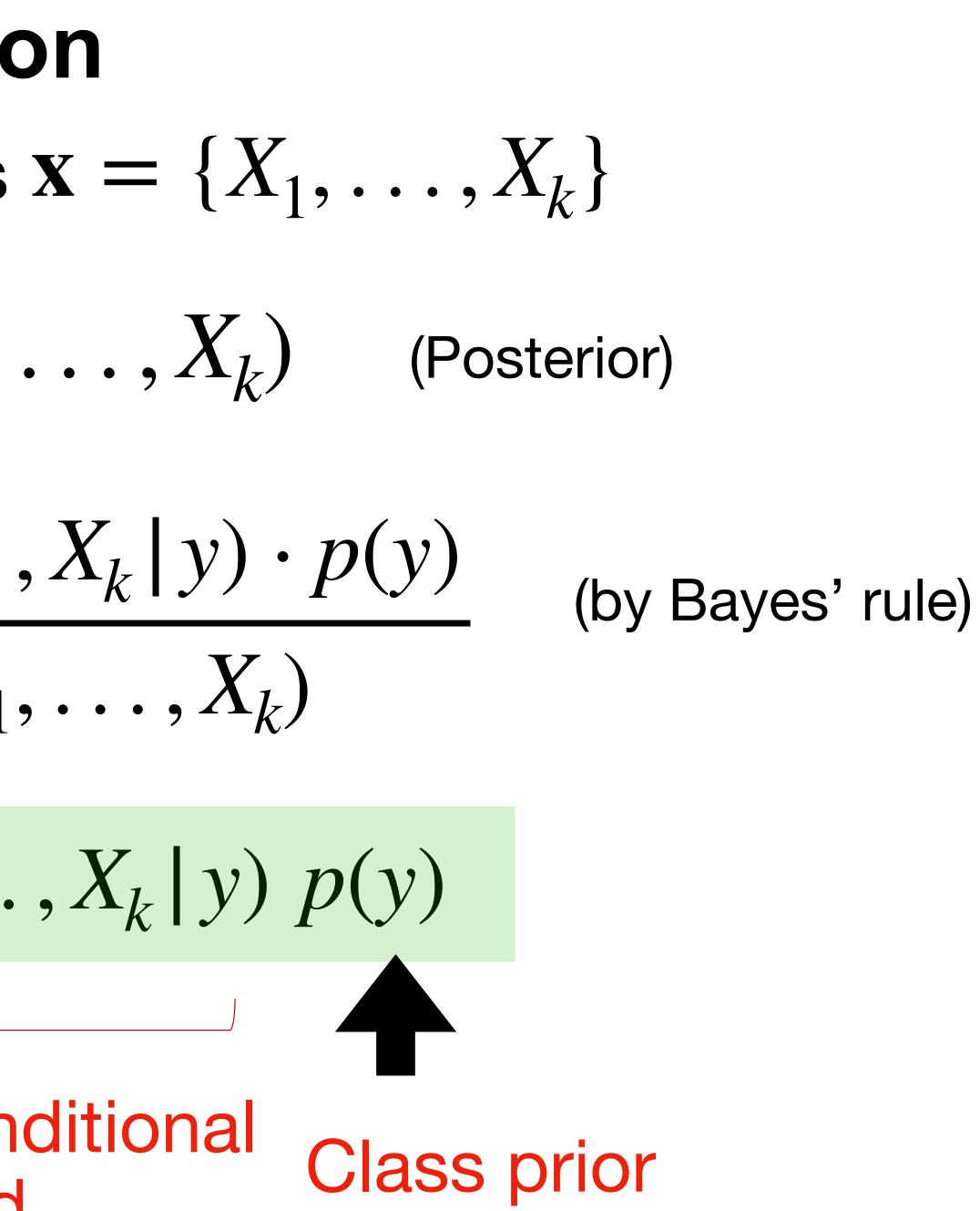




Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$ $\hat{y} = \arg\max_{v} p(y | X_1, \dots, X_k) \quad \text{(Posterior)}$ (Prediction) $= \underset{y}{\operatorname{arg\,max}} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$ $= \underset{y}{\operatorname{arg\,max}} p(X_1, \ldots, X_k | y) p(y)$



Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$ $\hat{y} = \arg\max_{v} p(y | X_1, \dots, X_k) \quad \text{(Posterior)}$ (Prediction) $= \underset{y}{\operatorname{arg\,max}} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$ $= \underset{y}{\operatorname{arg\,max}} p(X_1, \ldots, X_k | y) p(y)$ Class conditional likelihood



Naïve Bayes Assumption

Conditional independence of feature attributes

$p(X_1, \ldots, X_k | y) p(y) = \prod_{i=1}^k p(X_i | y) p(y)$ Easier to estimate (using MLE!)

Part I: Single-layer Neural Networks

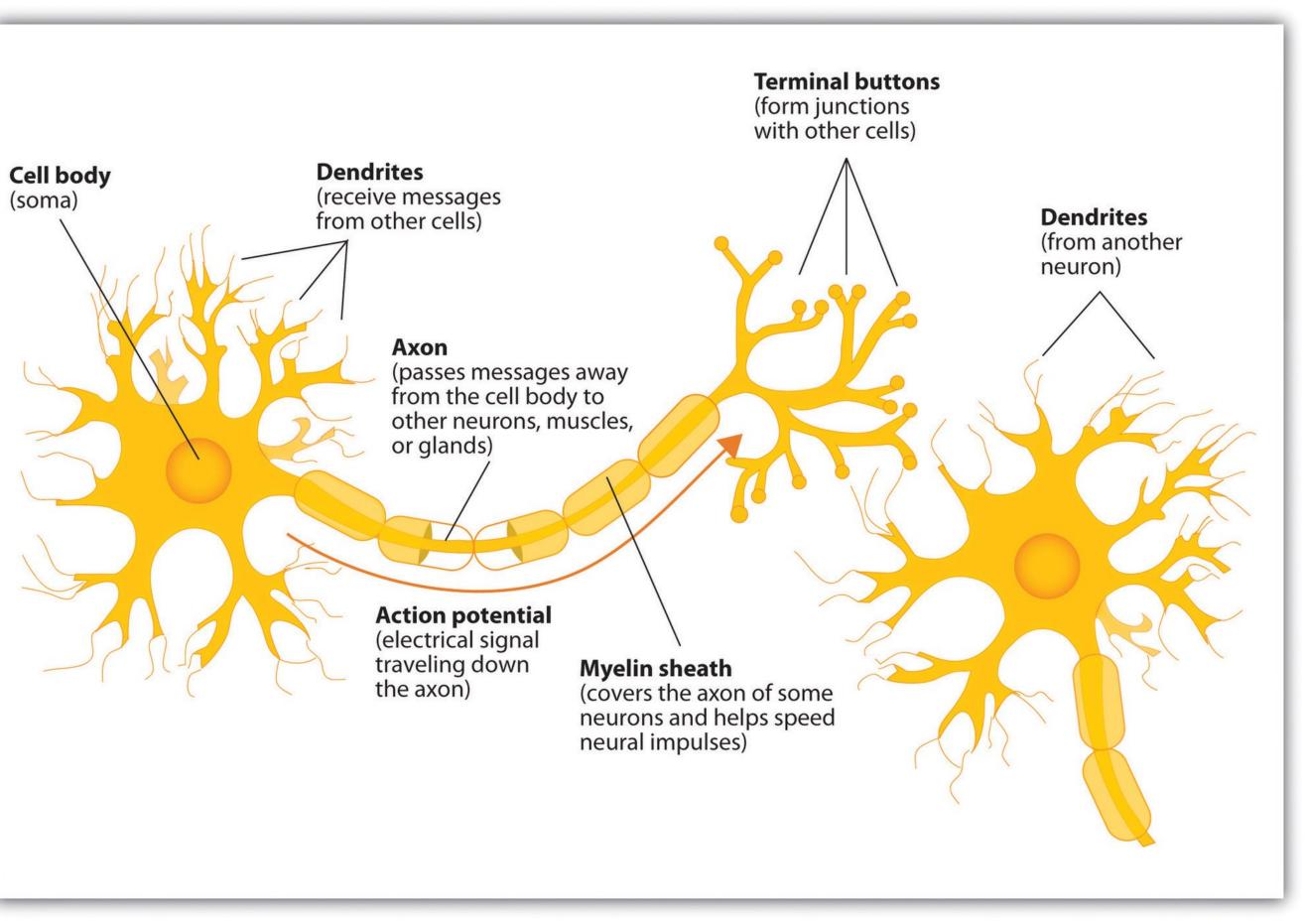
How to classify Cats vs. dogs?

Inspiration from neuroscience

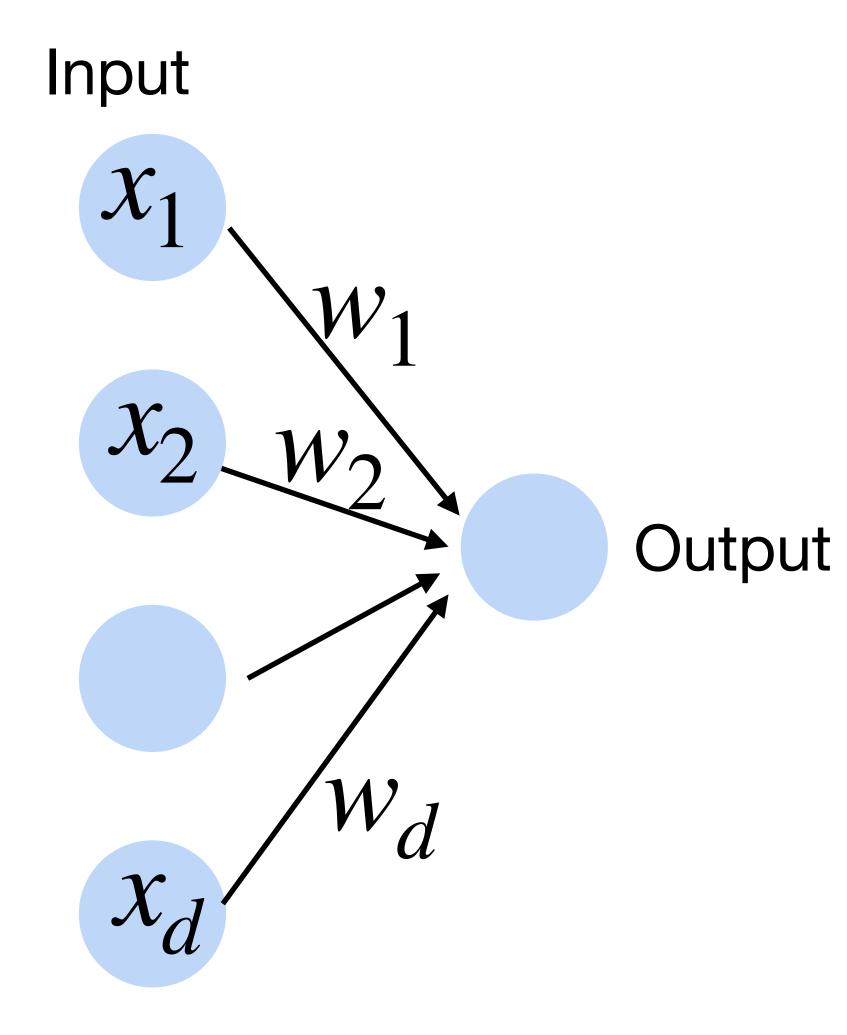
- Inspirations from human brains - Networks of simple and homogenous units

(soma)

(wikipedia)



Cats vs. dogs?

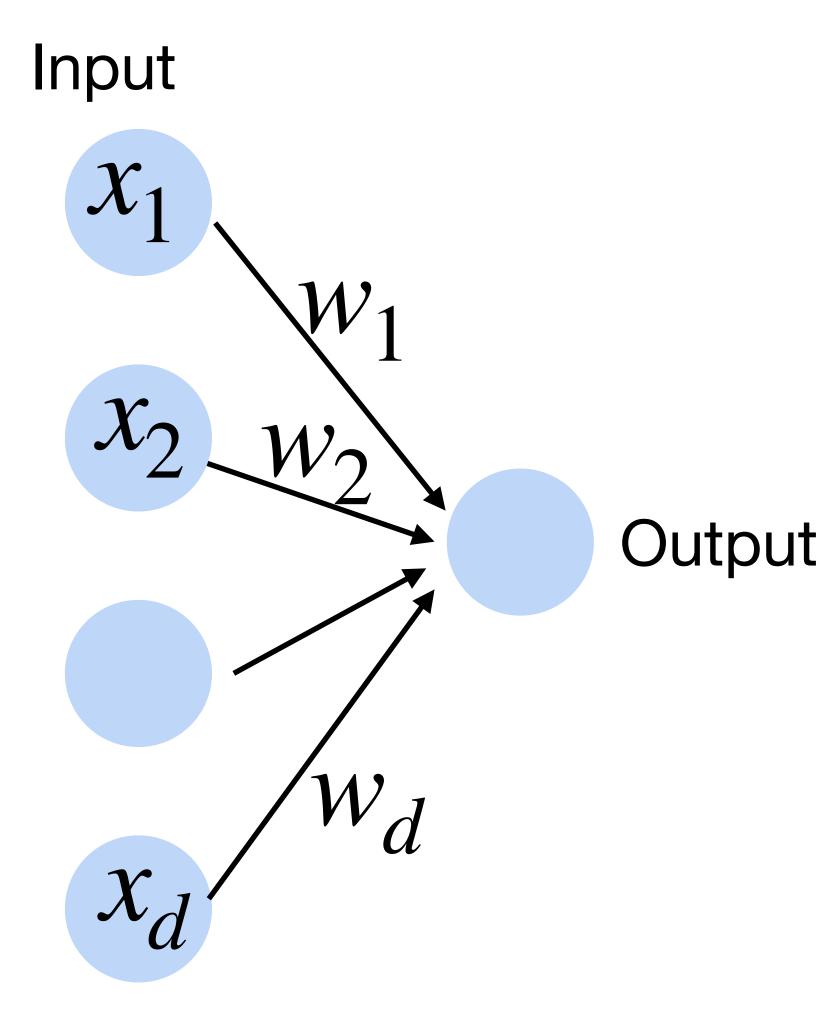


Linear Perceptron

$f = \langle \mathbf{w}, \mathbf{x} \rangle + b$

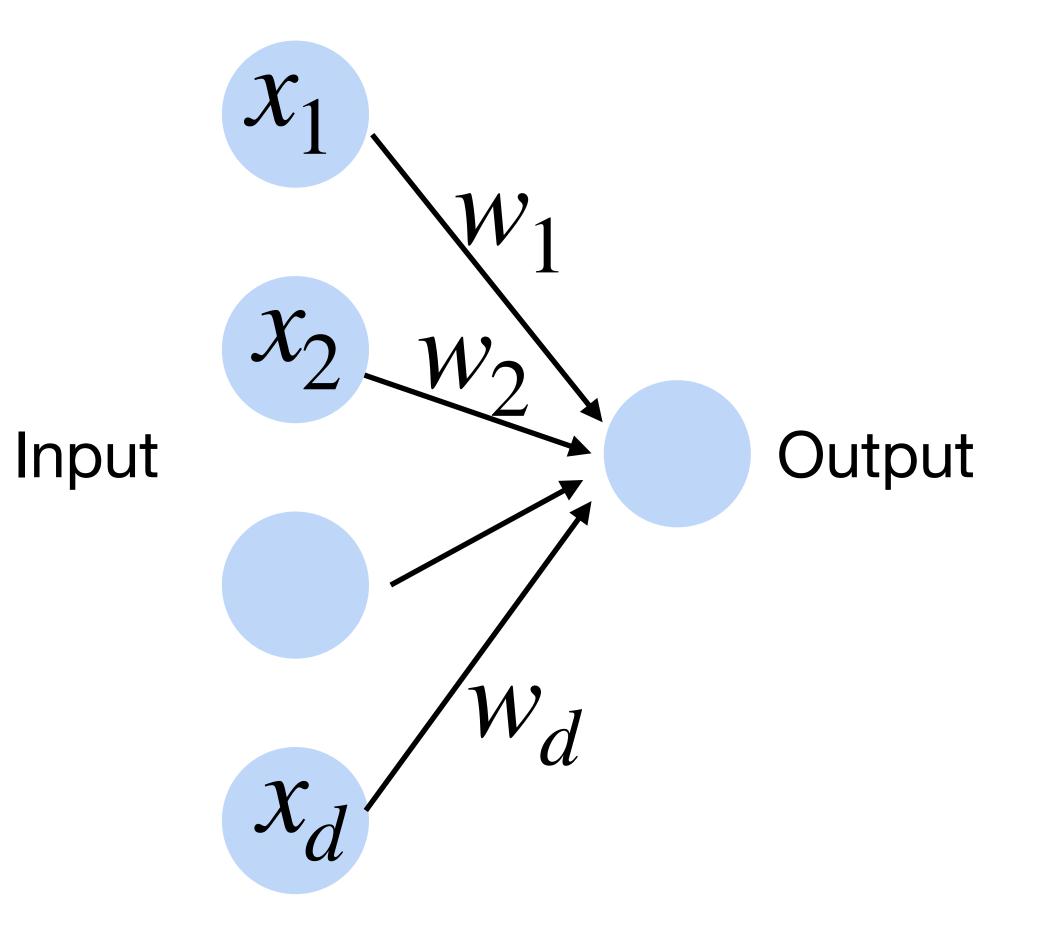
Cats vs. dogs?

• Given input x, weight w and bias b, perceptron outputs:



Cats vs. dogs?

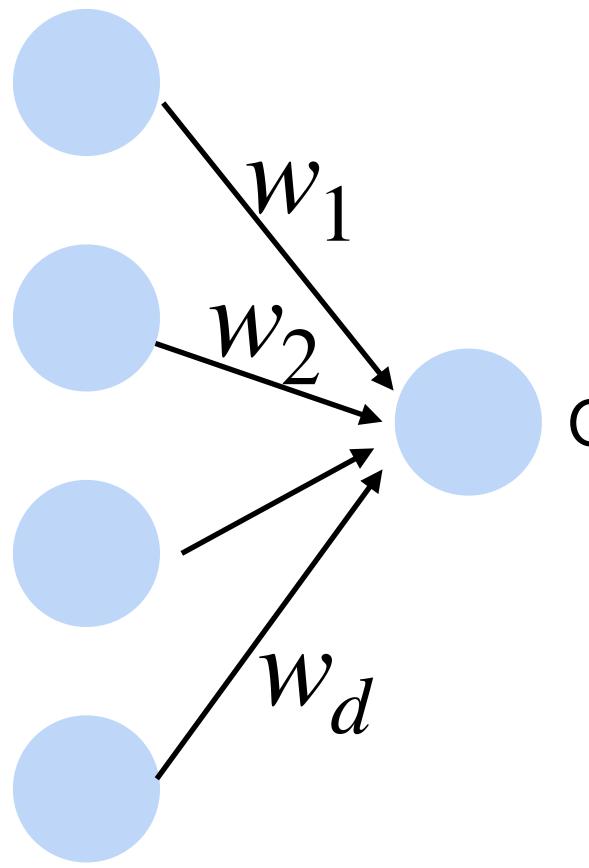
• Given input x, weight w and bias b, perceptron outputs: $o = \sigma \left(\langle \mathbf{w}, \mathbf{x} \rangle + b \right) \qquad \sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$ Activation function



• Goal: learn parameters $\mathbf{W} = \{w_1, w_2, \dots, w_d\}$ and b to minimize the classification error

Cats vs. dogs?

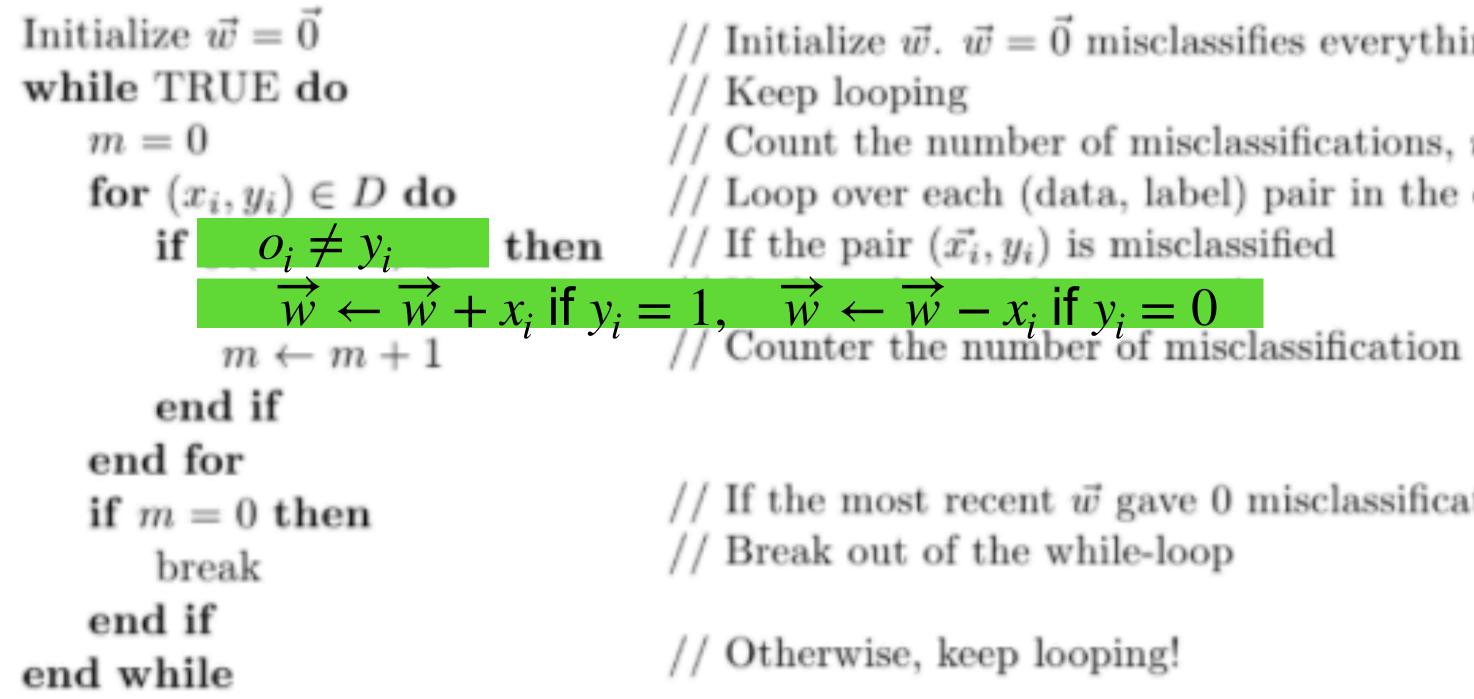
Input



Output

Training the Perceptron

Perceptron Algorithm

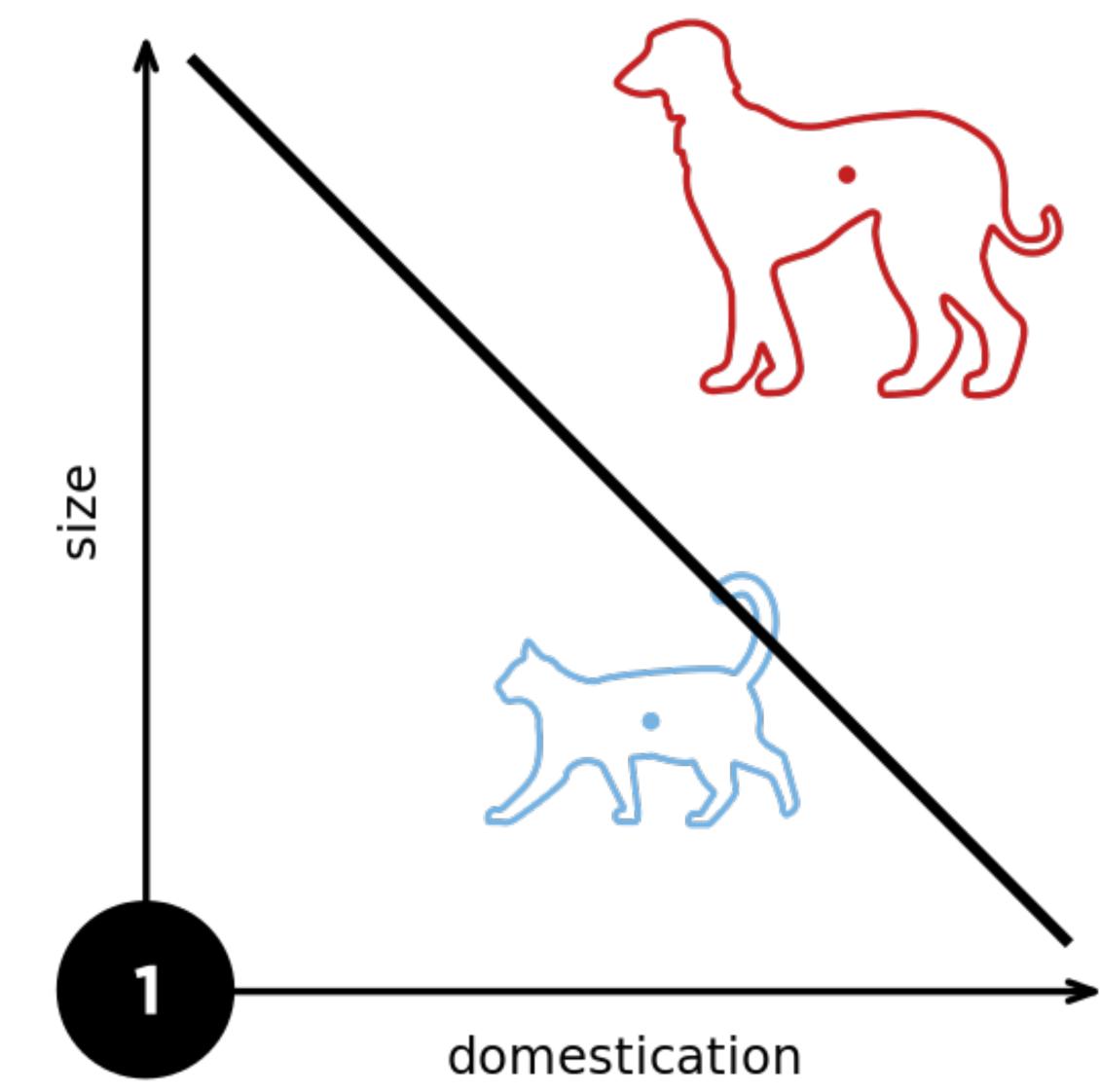


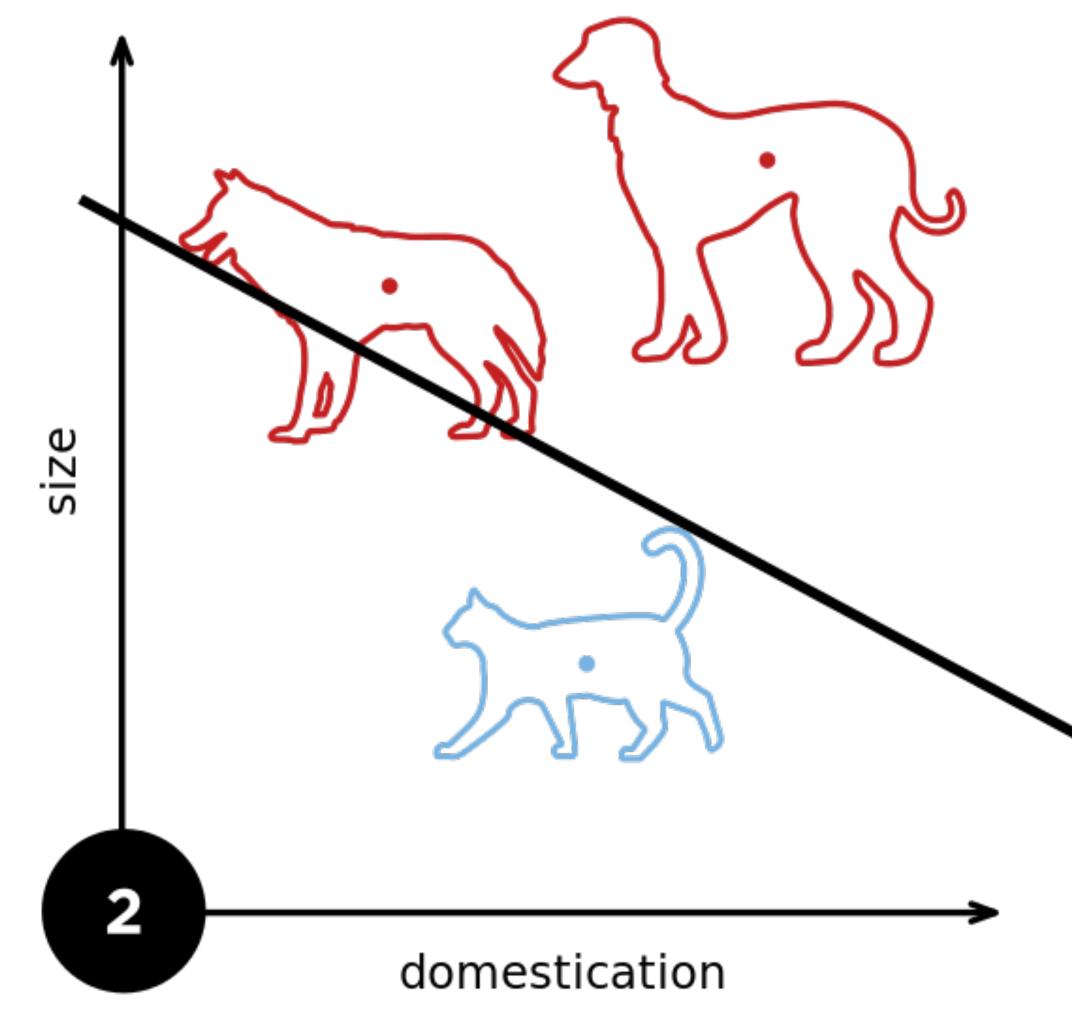
For simplicity, the weight vector and input vector are extended vectors (including the bias or the constant 1).

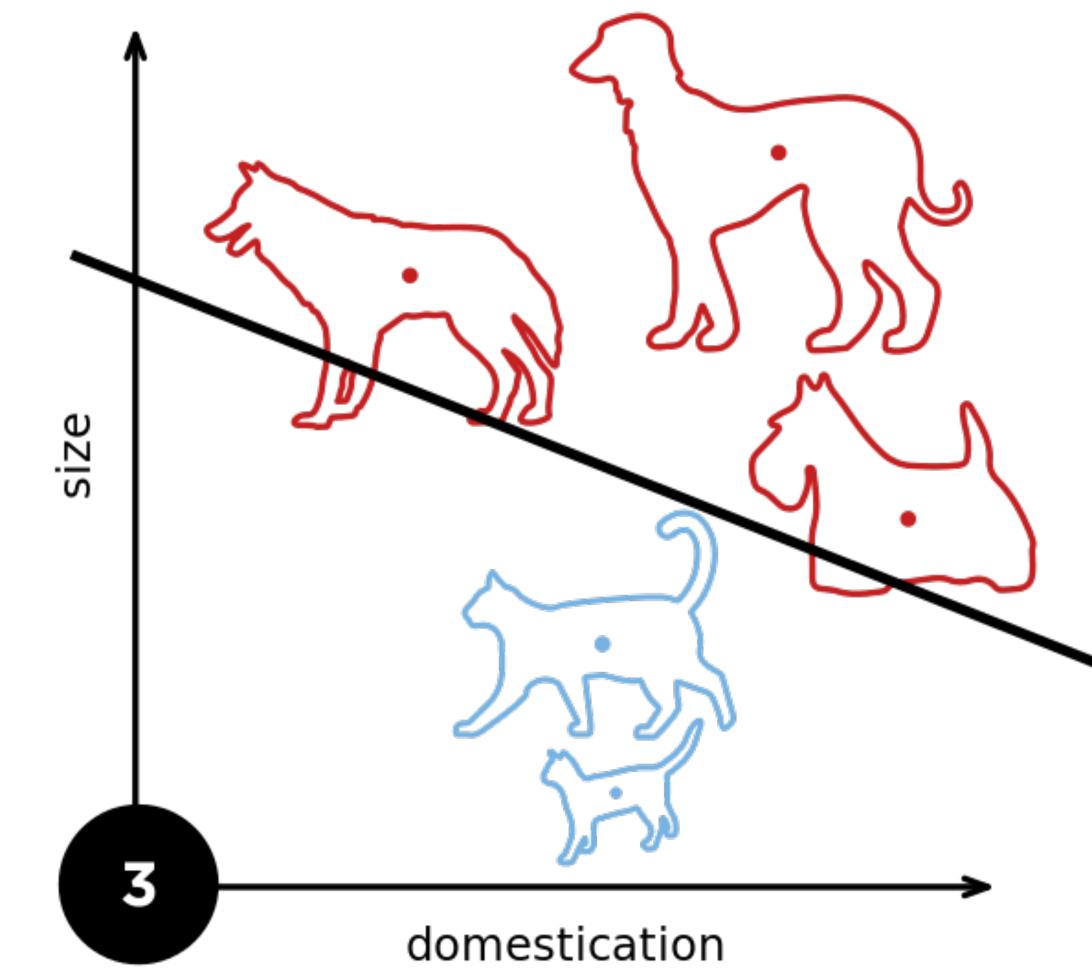
Initialize \vec{w} . $\vec{w} = \vec{0}$ misclassifies everything.

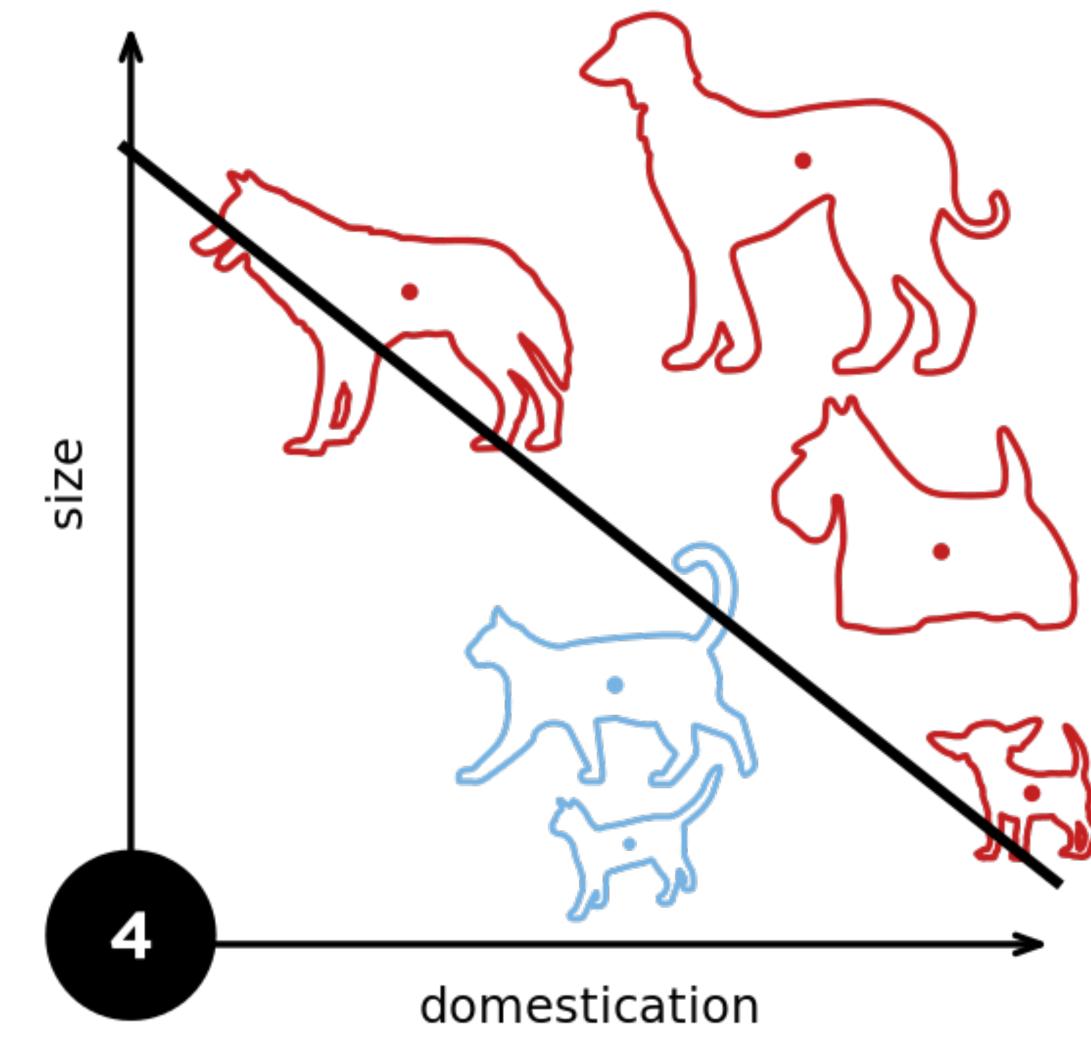
Count the number of misclassifications, mLoop over each (data, label) pair in the dataset, D

/ If the most recent \vec{w} gave 0 misclassifications

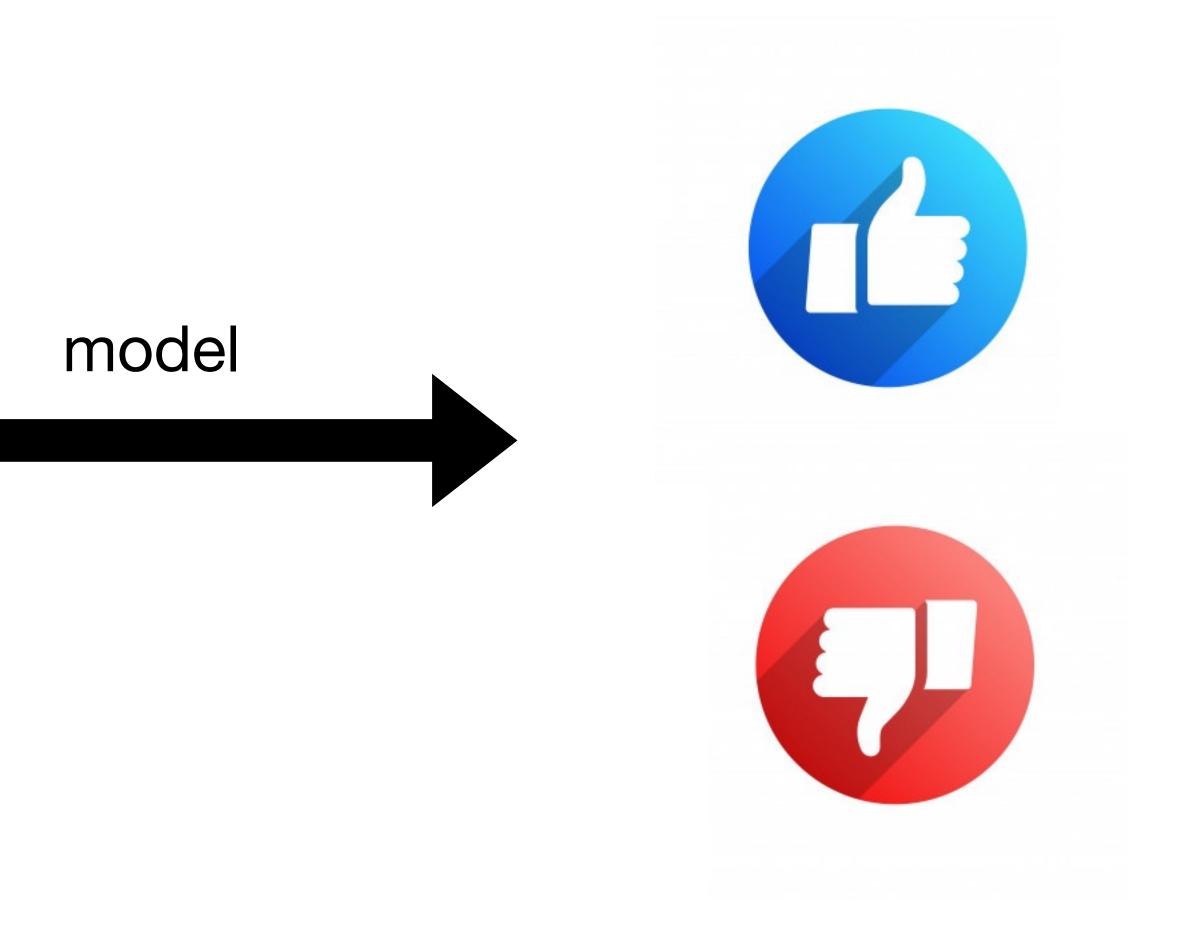




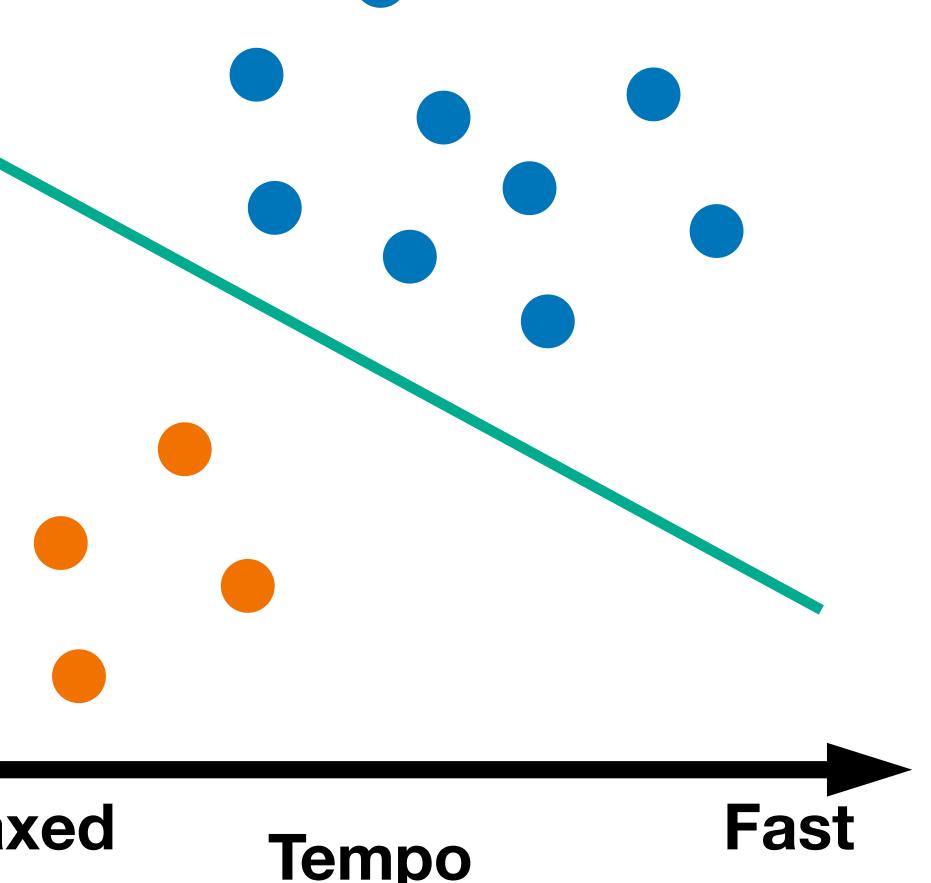




Example 2: Predict whether a user likes a song or not



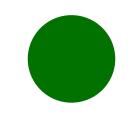
Example 2: Predict whether a user likes a song or not Using Perceptron Intensity **User Sharon** DisLike Like Fast Relaxed Tempo

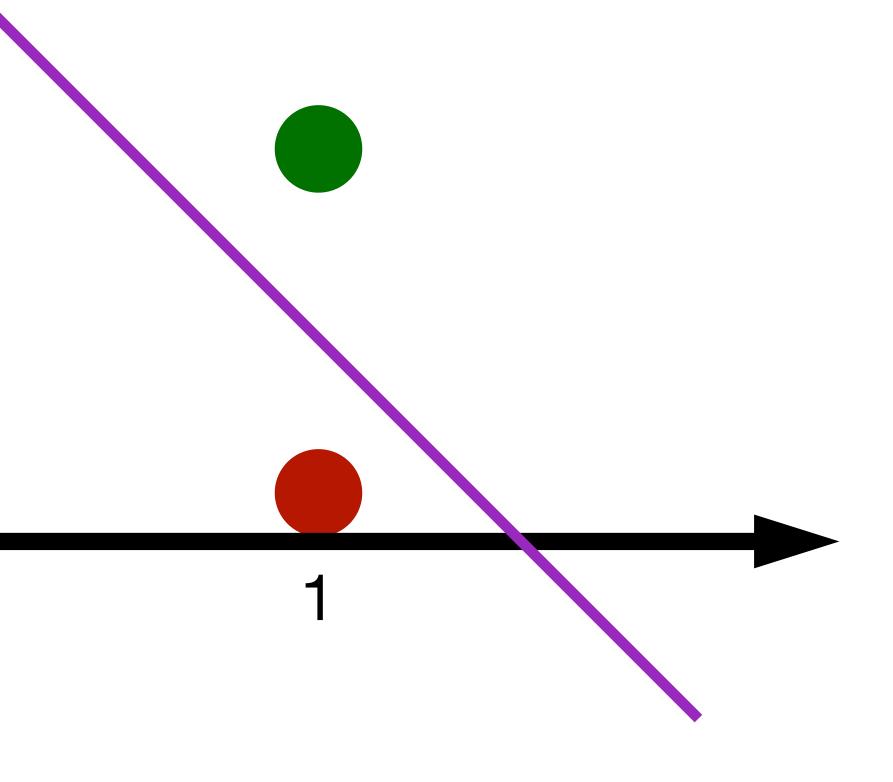


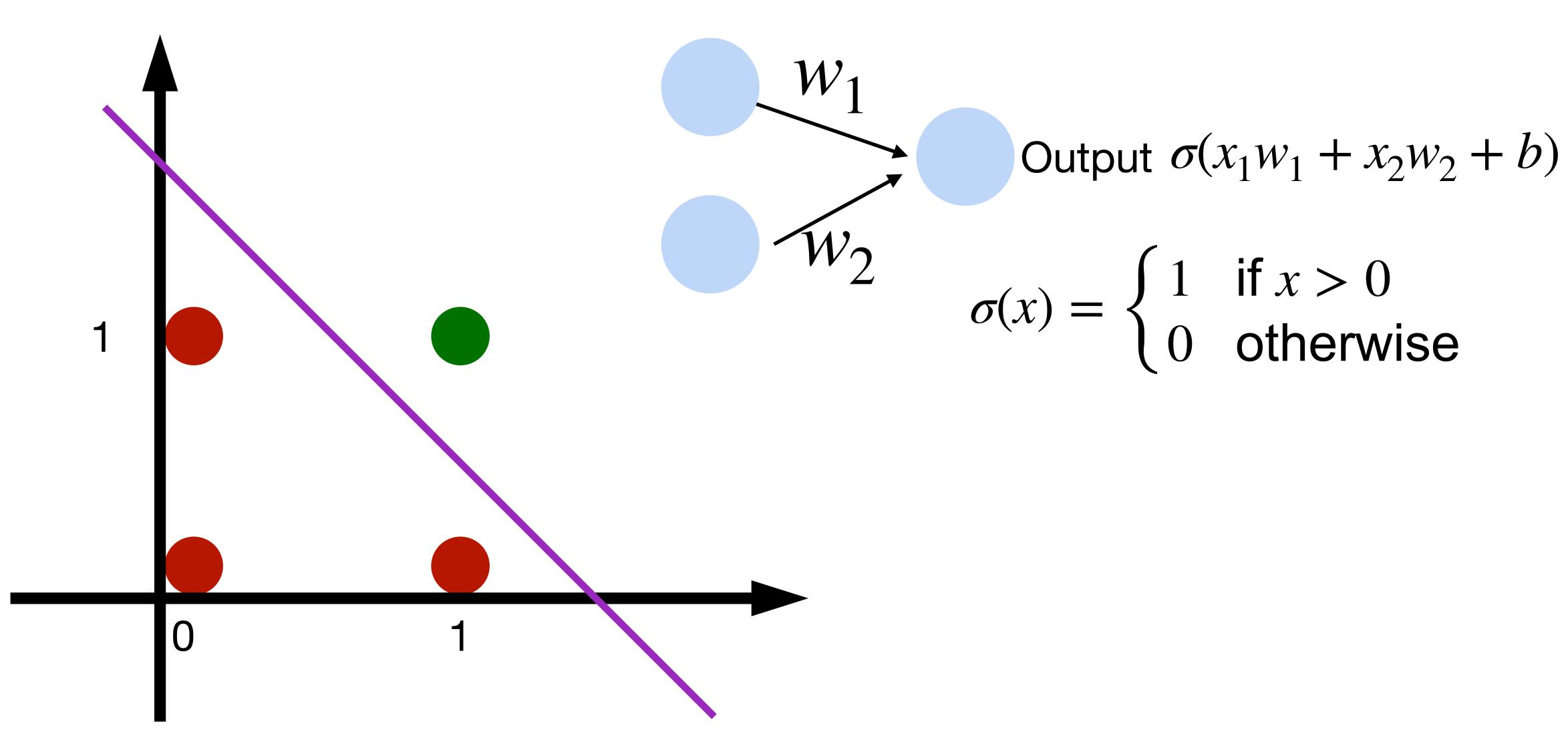
Learning AND function using perceptron

The perceptron can learn an AND function

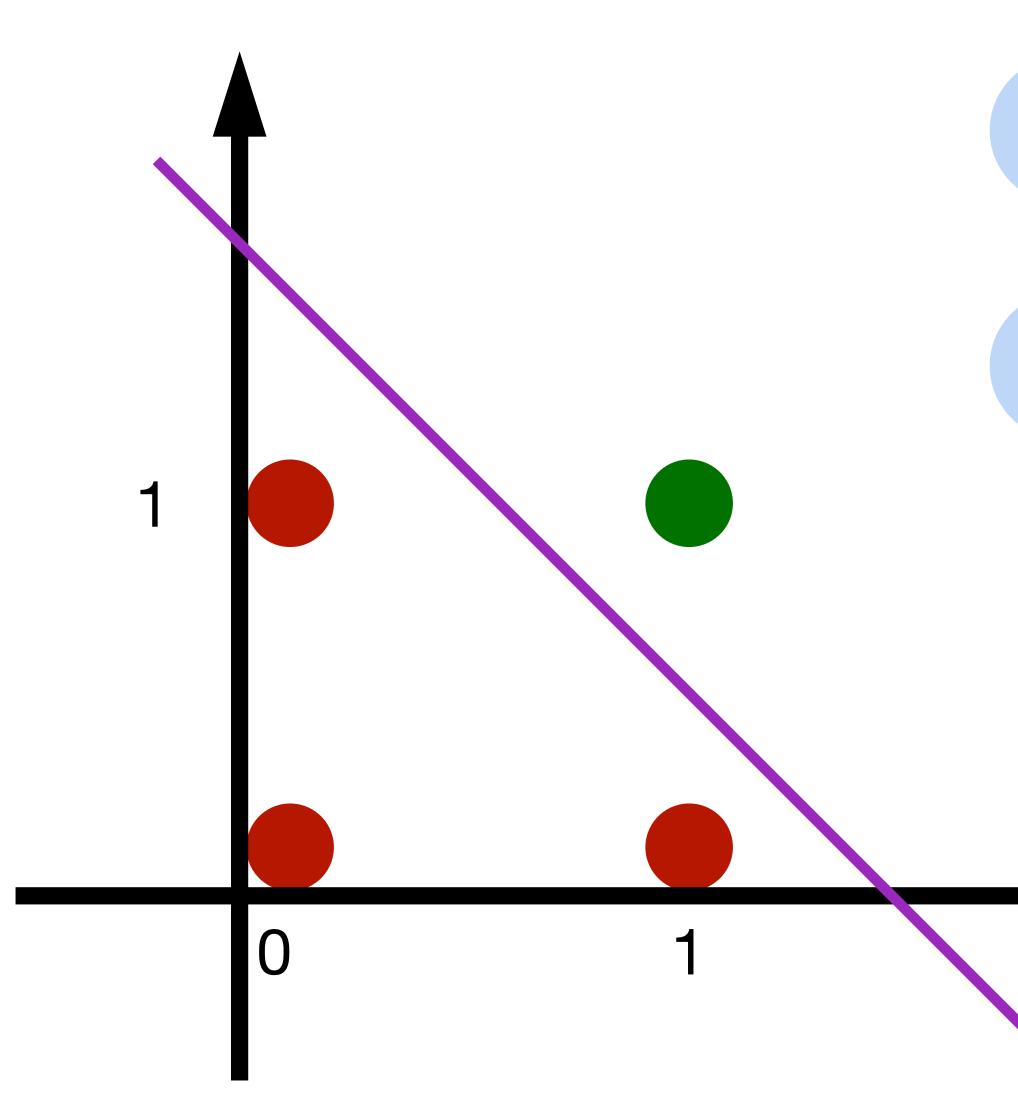
 $x_{1} = 1, x_{2} = 1, y = 1$ $x_{1} = 1, x_{2} = 0, y = 0$ $x_{1} = 0, x_{2} = 1, y = 0$ $x_{1} = 0, x_{2} = 0, y = 0$





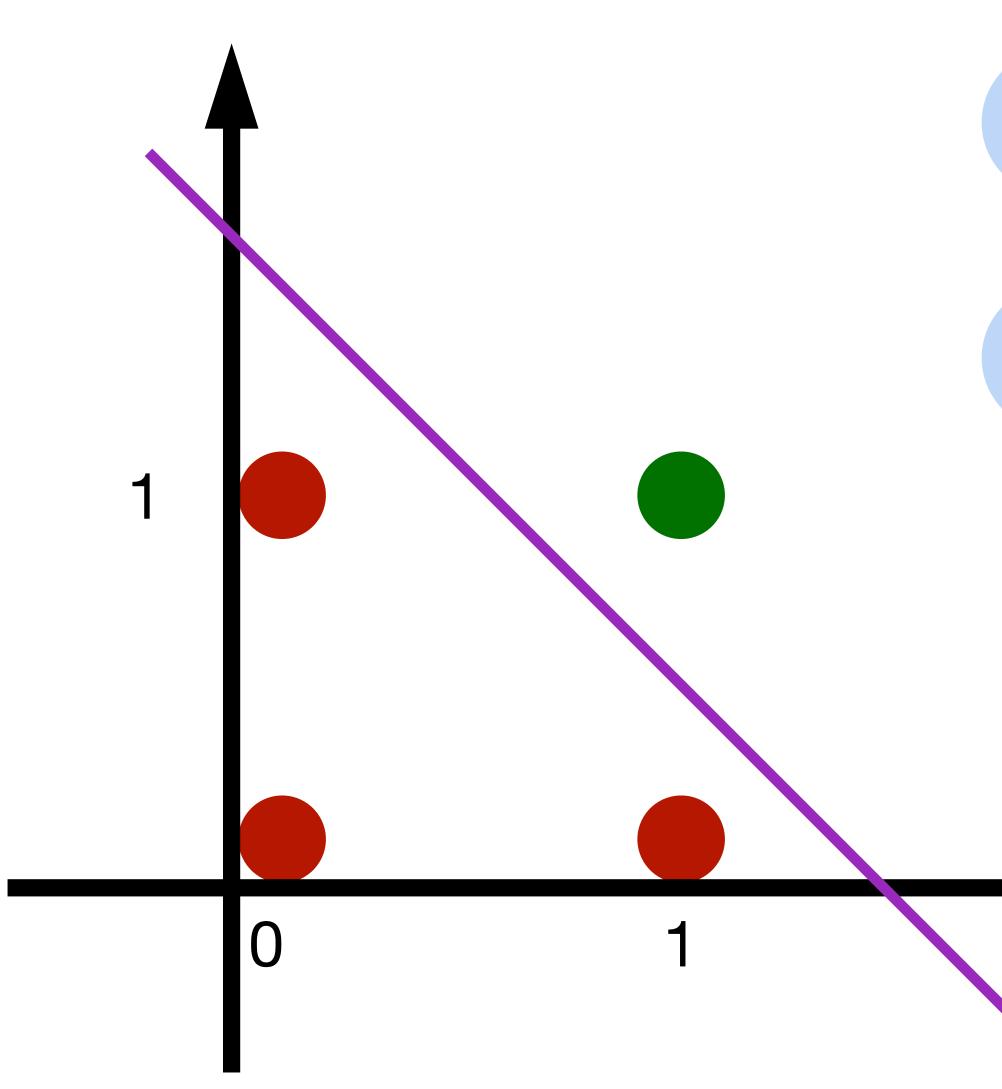


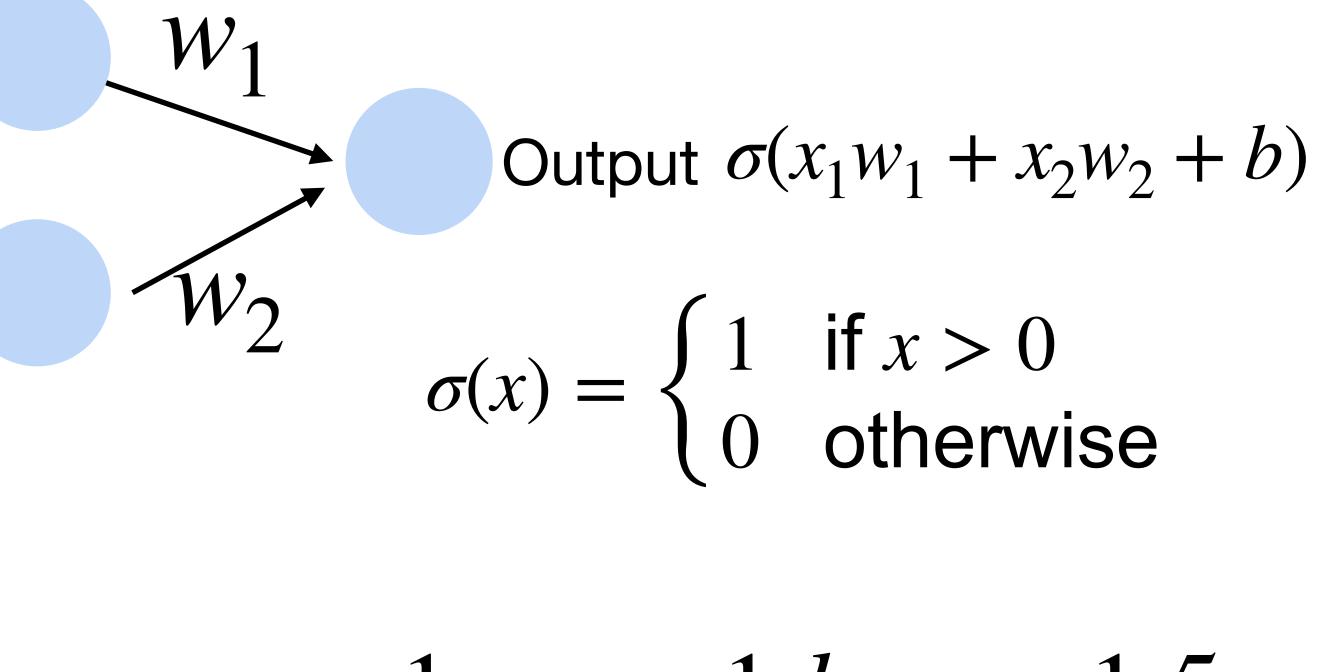
 W_1



Output $\sigma(x_1w_1 + x_2w_2 + b)$ $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$

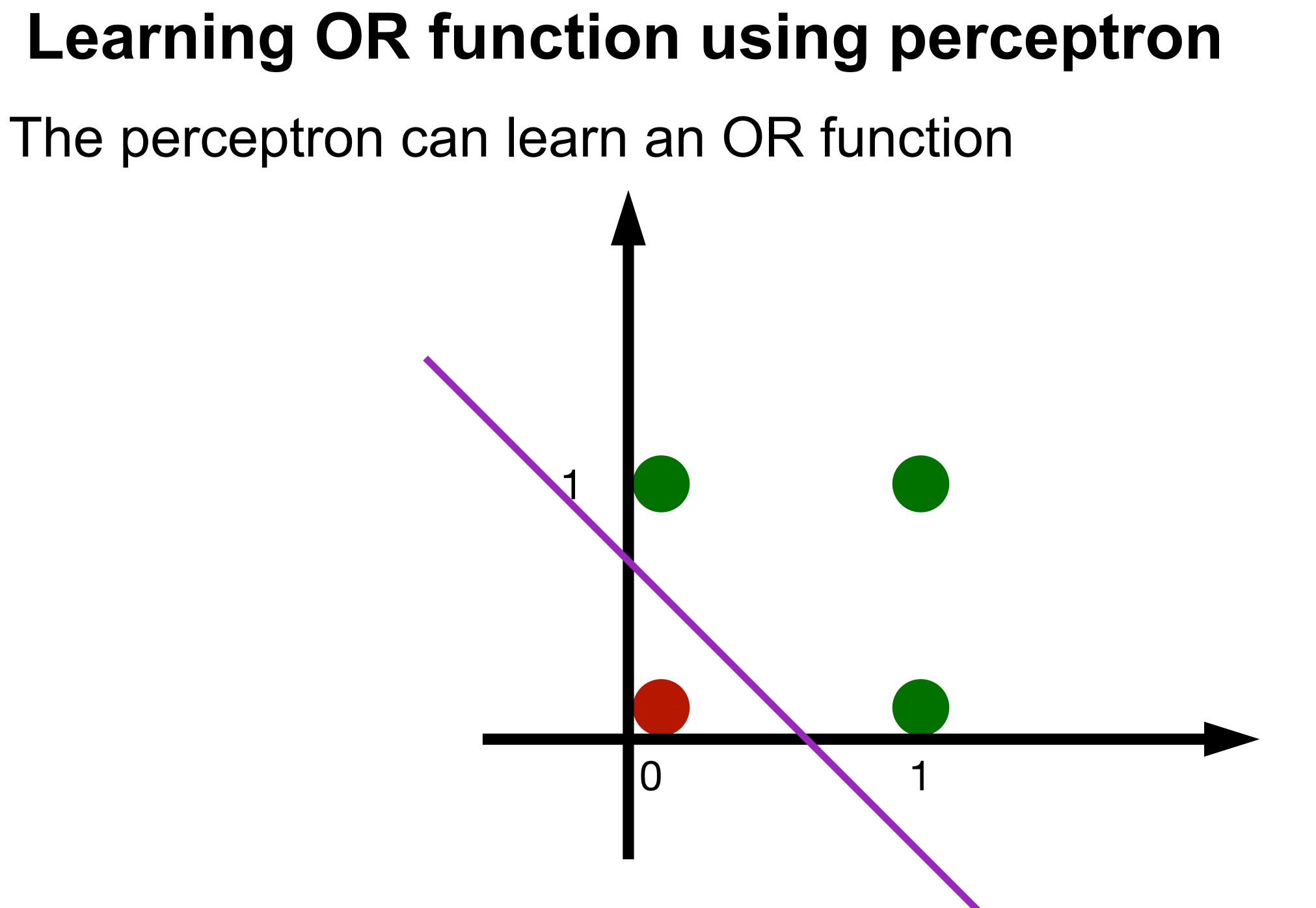
What's w and b?

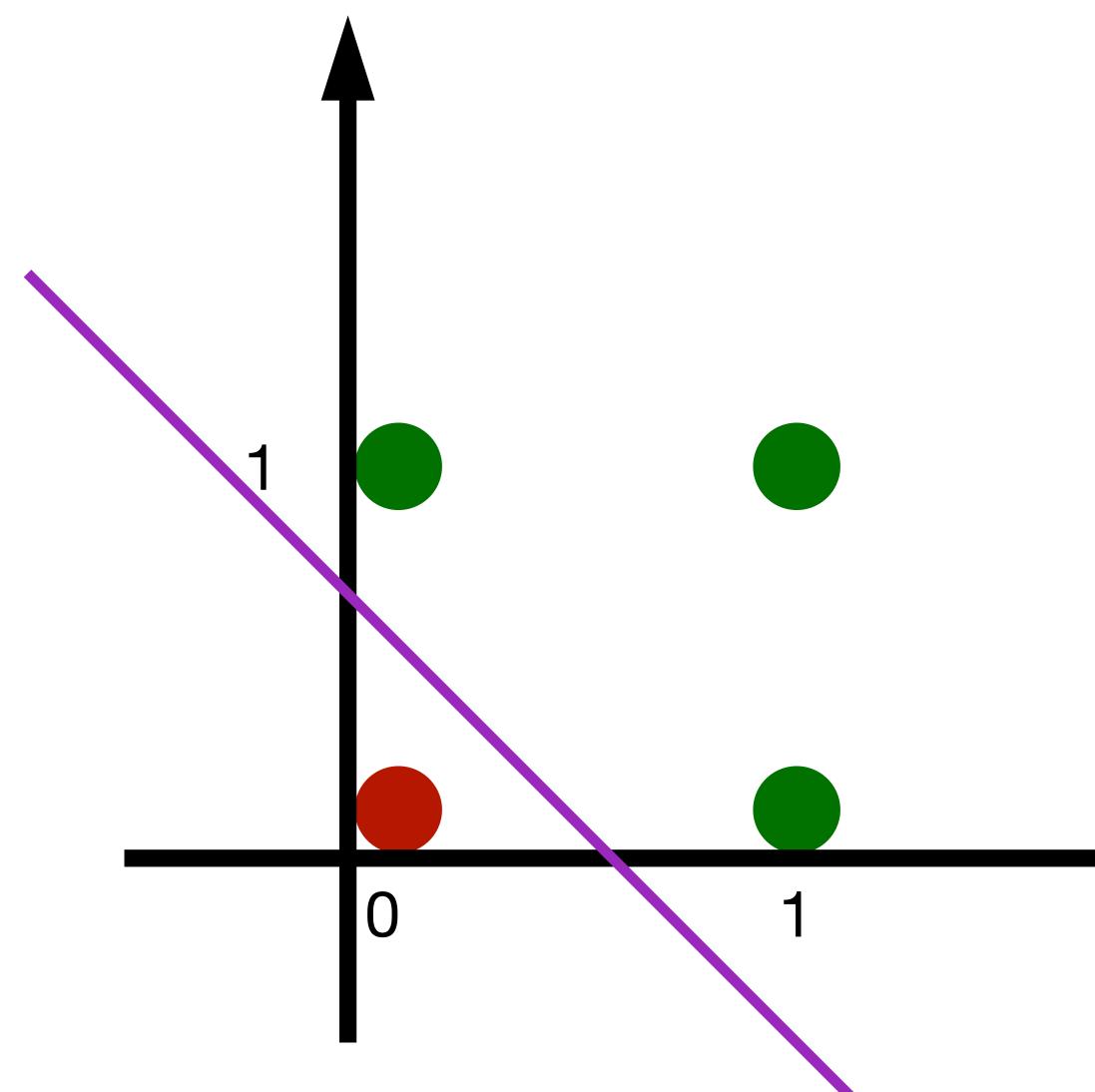




 $w_1 = 1, w_2 = 1, b = -1.5$

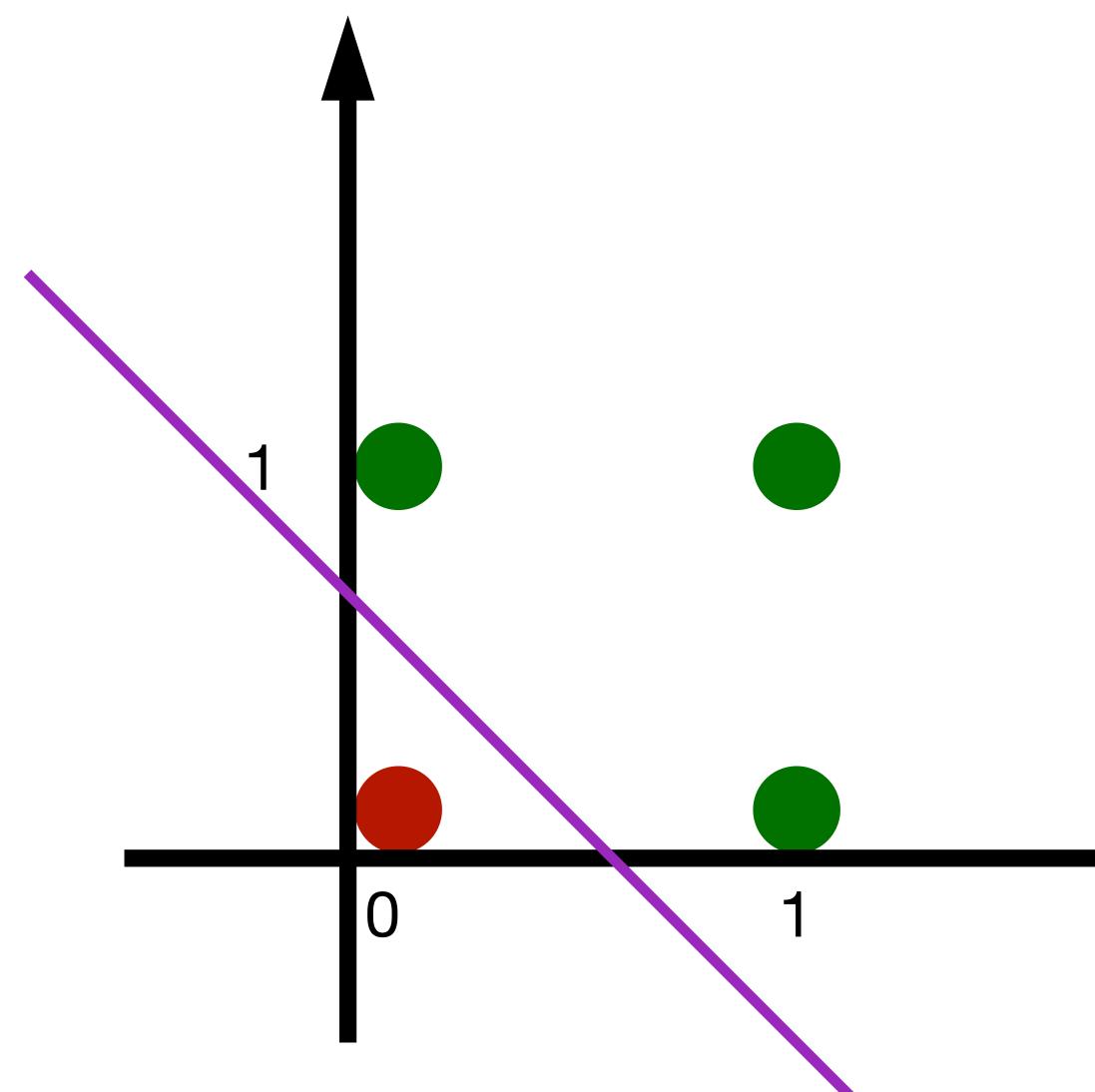
Learning OR function using perceptron The perceptron can learn an OR function $x_1 = 1, x_2 = 1, y = 1$ $x_1 = 1, x_2 = 0, y = 1$ $x_1 = 0, x_2 = 1, y = 1$ $x_1 = 0, x_2 = 0, y = 0$





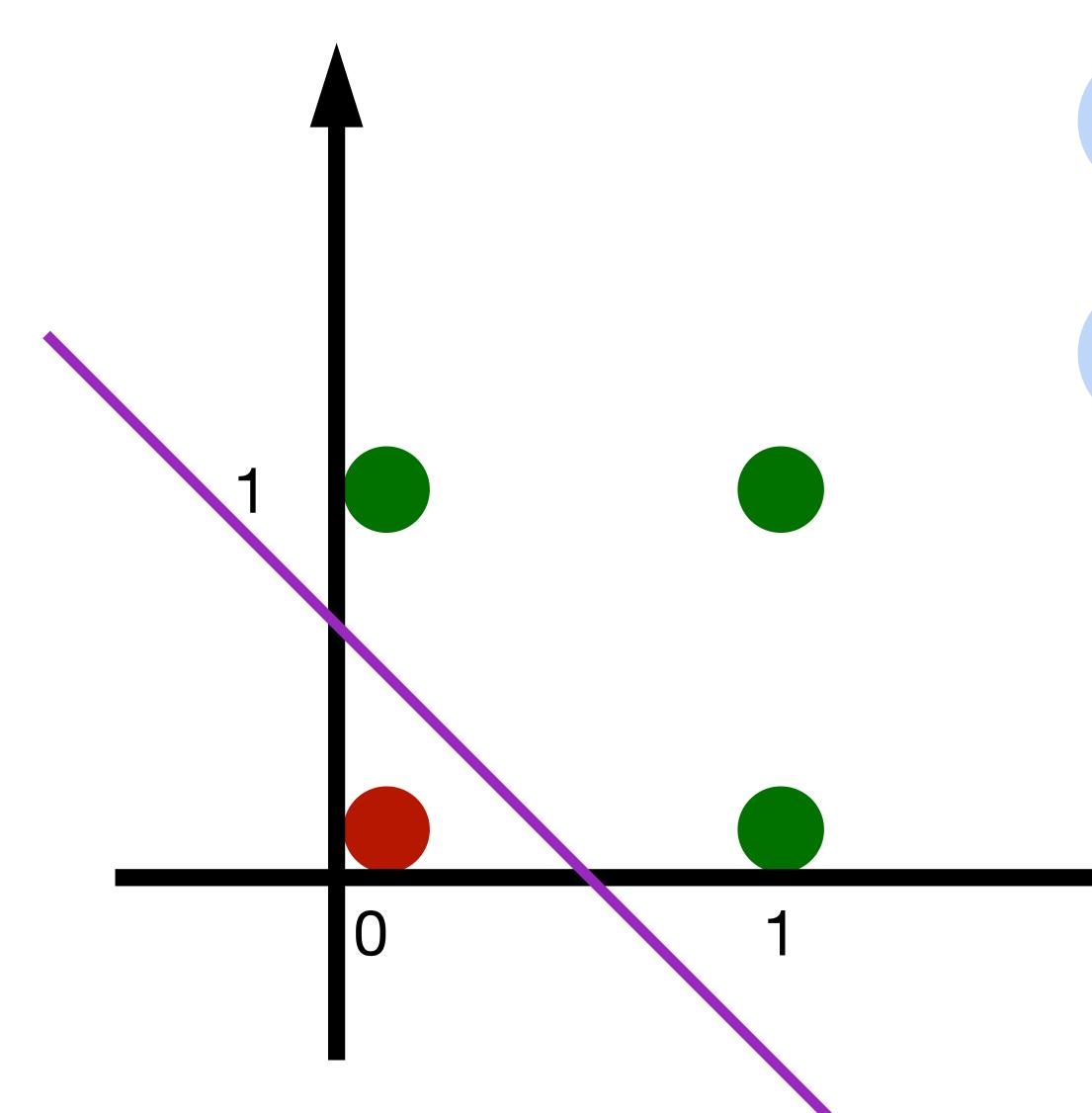
 W_1 Output $\sigma(x_1w_1 + x_2w_2 + b)$ $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$

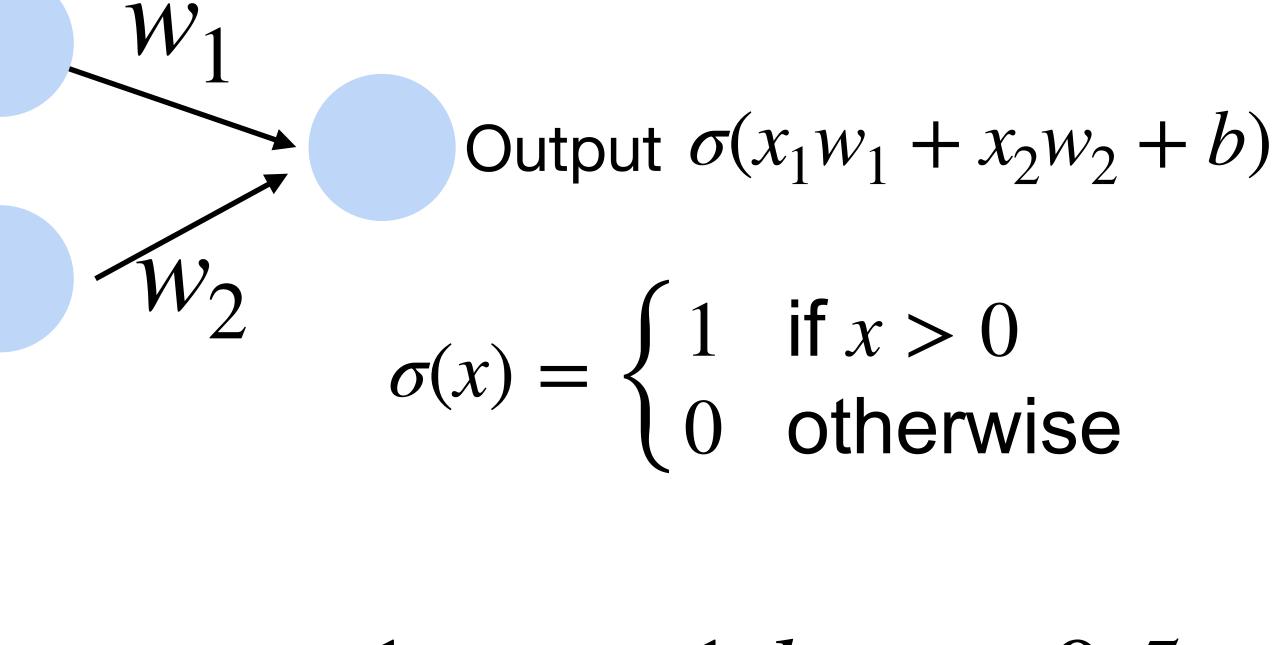
 W_1



Output $\sigma(x_1w_1 + x_2w_2 + b)$ $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$

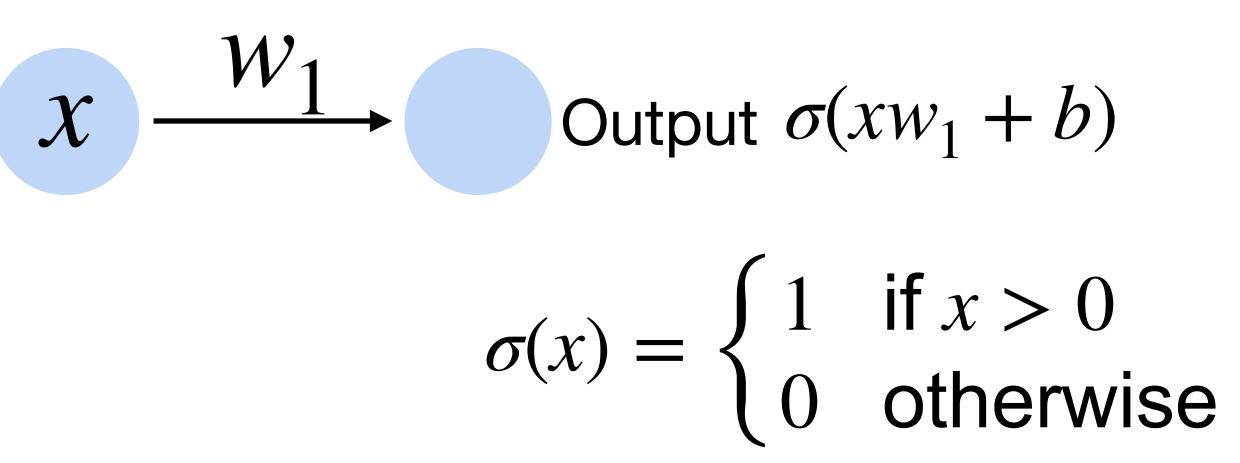
What's w and b?



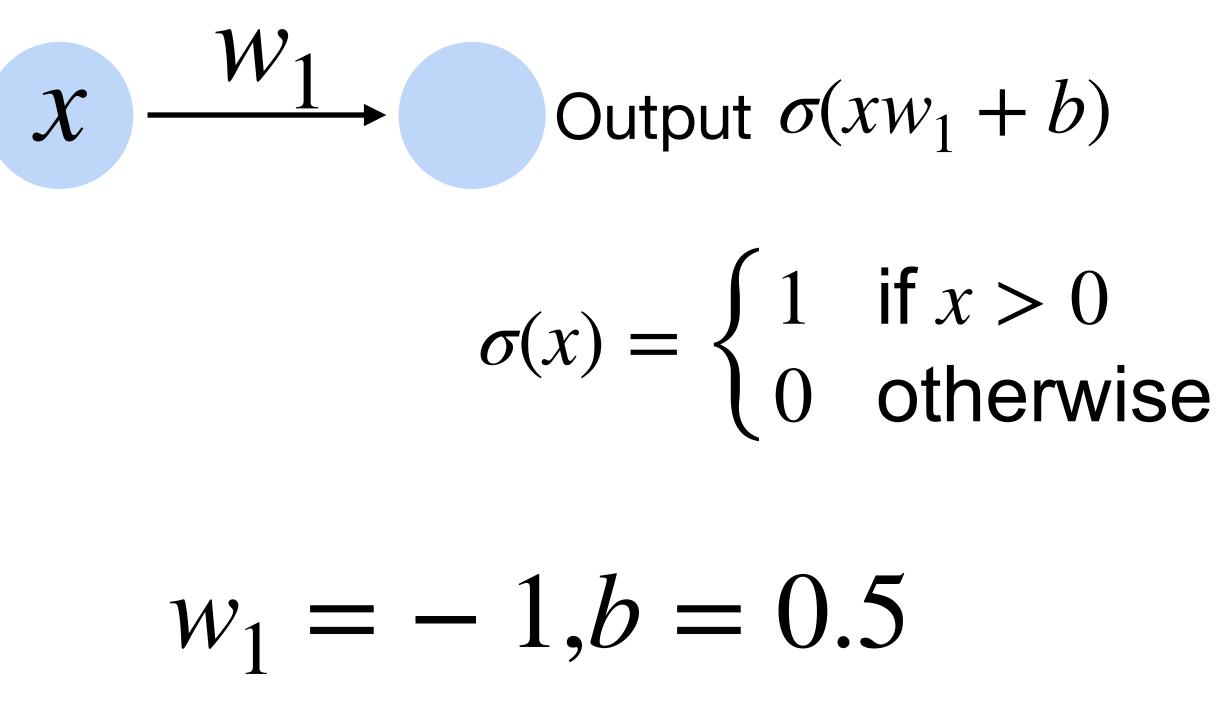


 $w_1 = 1, w_2 = 1, b = -0.5$

Learning NOT function using perceptron The perceptron can learn NOT function (single input)

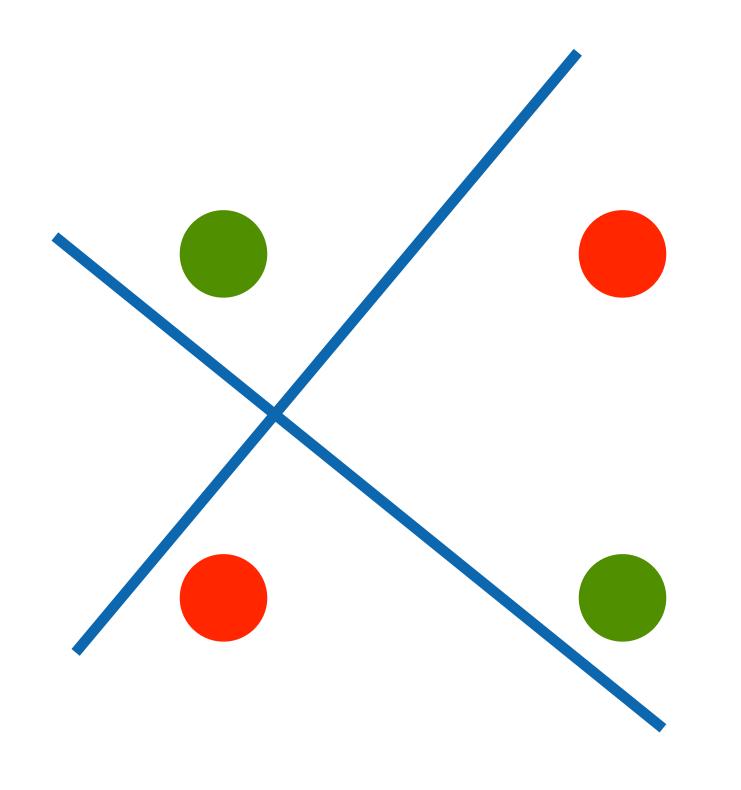


Learning NOT function using perceptron The perceptron can learn NOT function (single input)



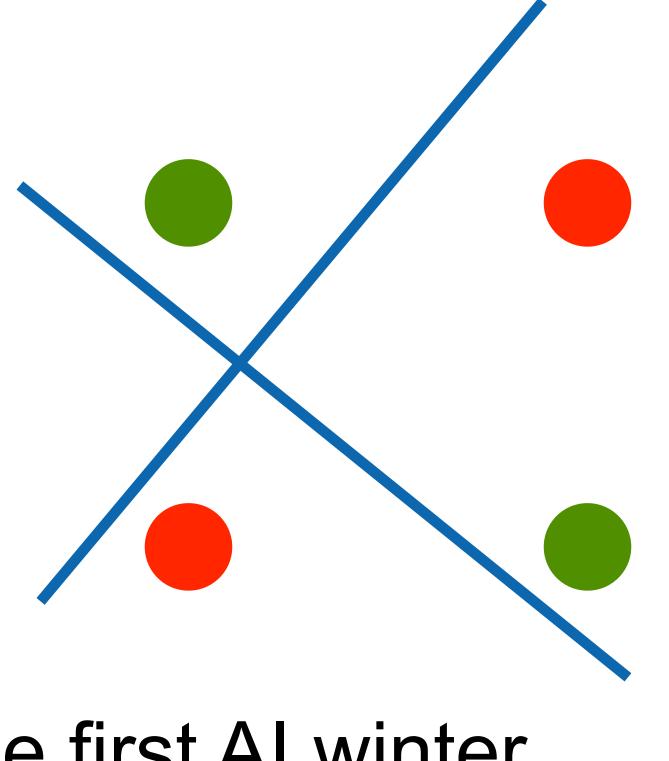
XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)



XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)



This contributed to the first AI winter



Thanks!