
CS 540 Introduction to Artificial Intelligence
Neural Networks (III)

Yingyu Liang
University of Wisconsin-Madison

Oct 26, 2021

Slides created by Sharon Li [modified by Yingyu Liang]

Today’s outline
• Deep neural networks

• Computational graph (forward and backward propagation)

• Numerical stability in training

• Gradient vanishing/exploding

• Generalization and regularization

• Overfitting, underfitting

• Weight decay and dropout

Part I: Neural Networks as a
Computational Graph

Hidden layer
Input

m neurons
• Input
• Hidden
• Intermediate output

x ∈ ℝd

W(1) ∈ ℝm×d, b ∈ ℝm

Review: neural networks with one hidden layer

h = σ(W(1)x + b)

h ∈ ℝm

Each hidden neuron is a perceptron (but can be with a different activation function than the step function). Viewing the outputs of the hidden neurons in the layer as a
vector, then the layer just first does a linear transformation on the input vector and then applies an activation function on each element of the vector obtained by the linear
transformation. Note that here, we apply the activation function \sigma on the vector Wx+b; it simply means applying \sigma on each element of the vector.

m x n n x 1 m x 1

=+

m x 1m × d
d × 1

m × 1 m × 1

x ∈ ℝd

W b

Review: neural networks with one hidden layer

m x n n x 1 m x 1

=+

m x 1m × d
d × 1

m × 1 m × 1

x ∈ ℝd

W b

Element-wise

activation function

Key elements: linear operations + Nonlinear activations

Review: neural networks with one hidden layer

This is an illustration of the operations in a layer. Note the dimensions.

Review: Neural network for k-way classification

Hidden layer
Input m=3 neurons

x1

x2

•K outputs in the final layer

x ∈ ℝd

h3 = σ(
d

∑
i=1

xiw(1)
3i + b3)

h2 = σ(
d

∑
i=1

xiw(1)
2i + b2)

h1 = σ(
d

∑
i=1

xiw(1)
1i + b1)

Output
w(2)

11

w(2)
12

w(2)
13

f1 =
m

∑
i=1

hiw(2)
1i + b′ 1

Review: Neural network for k-way classification

Hidden layer
Input m=3 neurons

x1

x2

•K outputs units in the final layer

x ∈ ℝd

h3 = σ(
d

∑
i=1

xiw(1)
3i + b3)

h2 = σ(
d

∑
i=1

xiw(1)
2i + b2)

h1 = σ(
d

∑
i=1

xiw(1)
1i + b1)

Output

w(2)
k1

w(2)
k2

w(2)
k3

fk =
m

∑
i=1

hiw(2)
ki + b′ k

…

Multi-class classification (e.g., ImageNet with k=1000)

Review: Softmax

Hidden layer
Input m=3 neurons

x1

x2

Turns outputs f into probabilities (sum up to 1 across k classes)

x ∈ ℝd

Output

fk

…
f1

p(y |x) = softmax(f)

=
exp fy(x)

∑k
i exp fi(x)

For multiple-class classification, the output layer first applies a linear transformation to get a k dim vector f=(f_1,…,f_k). Then apply the softmax activation to turn f into a
probabilistic vector (a distribution) over the k classes. This is typically used to modeled the conditional probabilities of y over the k classes conditioned on the input x.

Note that

1. after softmax, the entries are nonnegative and have sum 1, ie, the vector after softmax is a probabilistic vector.

2. Larger the f_i, larger the corresponding entry after softmax.

3. Softmax can be viewed as an activation function but it’s not element-wise as each output entry depends on all entries in f.

Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Normalized

Deep neural networks (DNNs)
f1 f2 h1 = σ(W1x + b1)

h2 = σ(W2h1 + b2)
h3 = σ(W3h2 + b3)

f = W4h3 + b4
y = softmax(f)

NNs are composition
of nonlinear

functions

A standard deep network is simply stacking multiple layers of computation; each layer is linear transformation+activation (typically nonlinear). For regression, we can
simply use the linear transformation result f in the output layer as the final output of the network. For classification, we apply softmax on f to get the probabilities over k
classes (or apply sigmoid for binary classification).

Neural networks as variables + operations
a = sigmoid(Wx + b)

• Decompose functions into atomic operations

• Separate data (variables) and computing (operations)
• Known as a computational graph

In general, we can draw a computational graph (introducing intermediate variables after each computational operation).

Backpropagtion is going from the output backward to the input. Each time we go backward one step and compute the derivative of the loss w.r.t. some variable; apply
chain rule so that we can reuse the derivative computed in previous steps.

Note: Here the notations like \partial L /\partial W are vector/matrix notations. You can think of \partial L /\partial W as concatenating the derivative of the loss w.r.t. each
parameter. Another example is \partial z_1 /\partial W: you can think of it as a matrix, where the rows correspond to dimension in z_1 and columns corresponds to
parameters in W, and each entry is the derivative of the corresponding dimension in z_1 w.r.t. the corresponding parameter in W. So the chain rule now is a product of
multiple matrices (it can contain vectors which can also be viewed as a special kind of matrices).

In this course we don’t require to handle chain rule in this matrix form. We present it here only for

1. demonstrating how backpropagation is done in general (the matrix form can compactly represent this).

2. showing the reason for vanishing gradients: when each matrix in the chain is small (w.r.t. certain “size” measurement of the matrix) then the product result (the

gradient) will be very small.

Neural networks as a computational graph

• A two-layer neural network

Neural networks as a computational graph

• A two-layer neural network
• Forward propagation vs. backward propagation

Neural networks: forward propagation

• A two-layer neural network
• Intermediate variables Z

z1

• A two-layer neural network

z1 z2

Neural networks: forward propagation

• Intermediate variables Z

• A two-layer neural network

z1 z2 z3

Neural networks: forward propagation

• Intermediate variables Z

• A two-layer neural network

z1 z2 z3 z4

Neural networks: forward propagation

• Intermediate variables Z

• A two-layer neural network

z1 z2 z3 z4 z5

Neural networks: forward propagation

• Intermediate variables Z

• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Minimize a loss function L

• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Minimize a loss function L

• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Minimize a loss function L

• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Define a neural network as a computational graph
• Must be a directed graph

Backward propagation: A modern treatment

• Nodes as variables and operations
• All operations must be differentiable

Hidden layer

Input
m=3 neurons

x1

x2

Q1. Suppose we want to solve the following k-class classification problem with cross entropy loss

 , where the ground truth and predicted probabilities . Recall that the

softmax function turns output into probabilities: . What is the partial derivative

?

ℓ(y, ŷ) = −
k

∑
j=1

yj log ̂yj y, ŷ ∈ ℝk

̂yj =
exp fj(x)

∑k
i exp fi(x)

∂fjℓ(y, ŷ)

x ∈ ℝd

Output

fk

…
f1

• For notational simplicity, we use to denote , and as yi 1{yi = 1} ̂yi p(yi = 1 |x; θ)

A.

B.

C.

̂yj − yj

exp(yj) − yj

yj − ̂yj

Q1. Suppose we want to solve the following k-class classification problem with cross entropy loss

 , where . Recall that the softmax function turns output into

probabilities: . What is the partial derivative ?

ℓ(y, ŷ) = −
k

∑
j=1

yj log ̂yj y, ŷ ∈ ℝk

̂yj =
exp fj(x)

∑k
i exp fi(x)

∂fjℓ(y, ŷ)

ℓ(y, ŷ) = −
k

∑
j=1

yj log
exp(fj)

∑k
i=1 exp(fi)

=
k

∑
j=1

yj log
k

∑
i=1

exp(fi) −
k

∑
j=1

yj fj

= log
k

∑
i=1

exp(fi) −
k

∑
j=1

yj fj .

Rewrite

∂fjℓ(y, ŷ) =
exp(fj)

∑k
i=1 exp(fk)

− yj = ̂yj − yj .We have

Hidden layer

Input
m=3 neurons

x1

x2

x ∈ ℝd

Output

fk

…
f1

Part II: Numerical Stability

Gradients for Neural Networks

• Compute the gradient of the loss w.r.t.

∂ℓ
∂Wt

=
∂ℓ
∂hd

∂hd

∂hd−1
…

∂ht+1

∂ht

∂ht

∂Wt

ℓ Wt

Multiplication of many matrices

{

Wikipedia

Two Issues for Deep Neural Networks d−1

∏
i=t

∂hi+1

∂hi

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10

Issues with Gradient Exploding

• Value out of range: infinity value (NaN)
• Sensitive to learning rate (LR)

• Not small enough LR -> larger gradients
• Too small LR -> No progress
• May need to change LR dramatically during training

Gradient Vanishing

• Use sigmoid as the activation function

σ(x) =
1

1 + e−x σ′ (x) = σ(x)(1 − σ(x))

Small
gradients

Small
gradients

Issues with Gradient Vanishing

• Gradients with value 0
• No progress in training

• No matter how to choose learning rate
• Severe with bottom layers

• Only top layers are well trained
• No benefit to make networks deeper

How to
stabilize
training?

Stabilize Training: Practical Considerations

• Goal: make sure gradient values are in a proper range
• E.g. in [1e-6, 1e3]

• Multiplication -> plus
• Architecture change (e.g., ResNet)

• Normalize
• Batch Normalization, Gradient clipping

• Proper activation functions

Q2. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Q2. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Q3. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. No

Q3. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. No

Part III: Generalization & Regularization

How good are
the models?

Training Error and Generalization Error

• Training error: model error on the training data
• Generalization error: model error on new data
• Example: practice a future exam with past exams

• Doing well on past exams (training error) doesn’t
guarantee a good score on the future exam
(generalization error)

What we care about ultimately is generalization error, while what we know at training time is the training error/loss.

Underfitting
Overfitting

Image credit: hackernoon.com

Model Capacity

• The ability to fit variety of functions
• Low capacity models struggles to

fit training set
• Underfitting

• High capacity models can
memorize the training set
• Overfitting

Intuitively: if we use a too large family of functions to choose model from (high capacity models), then it’s easy to find a model in that family to fit the data, including fitting
the noise/spurious correlation. This leads to overfitting.

If we use a too small family of functions to choose model from (low capacity models), then there may to be a model in that family to fit the data. This leads to underfitting.

We should choose the proper capacity.

Underfitting and Overfitting

Model
capacity

Data complexity

v
Simple Complex

Low Normal Underfitting

High Overfitting Normal

Influence of Model Complexity

Also known as “Test
error”

Estimate Neural Network Capacity

• It’s hard to compare complexity
between different algorithms
• e.g. tree vs neural network

Estimate Neural Network Capacity

• It’s hard to compare complexity
between different algorithms
• e.g. tree vs neural network

• Given an algorithm family, two main
factors matter:
• The number of parameters
• The values taken by each parameter

d + 1

(d + 1)m + (m + 1)k

Data Complexity

• Multiple factors matters
• # of examples
• # of features in each example
• time/space structure
• # of labels

How to regularize the model for
better generalization?

Weight
Decay

Squared Norm Regularization as Hard Constraint

• Reduce model complexity by limiting value
range

• Often do not regularize bias b
• Doing or not doing has little difference in

practice
• A small means more regularization

min ℓ(w, b) subject to ∥w∥2 ≤ θ

θ

Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

min ℓ(w, b) +
λ
2

∥w∥2

L2 or squared norm regularization is also called weight decay. This is because the gradient of the squared norm is 2w, so in gradient descent we will subtract
\lambda*step_size *w, ie, shrink the w.

Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

• Hyper-parameter controls regularization importance
• : no effect
•

min ℓ(w, b) +
λ
2

∥w∥2

λ = 0
λ → ∞, w* → 0

λ

Illustrate the Effect on Optimal Solutions

w̃*
w*

w* = arg min ℓ(w, b) +
λ
2

∥w∥2

w̃* = arg min ℓ(w, b)

The green curve: the level set of the loss, ie, the w parameters on the same curve will have the same loss

The yellow curve: the level set of the squared norm

Consider the green curve on which the new optimizer w* after regularization lies, ie, the level set with l(w*,b)

Claim: w* will be on the touching point with some yellow curve.

Proof: If not, it will have a larger squared norm than the touch point. Contradictory to the definition of the optimizer w*.

With this claim we can see that compared to the old optimizer \tilde{w}* before regularization, w* will move towards the original: the norm of w* shrinks.

Dropout
Hinton et al.

courses.d2l.ai/berkeley-stat-157

Apply Dropout

• Often apply dropout on the output of hidden fully-
connected layers

h = σ(W1x + b1)
h′ = dropout(h)
o = W2h′ + b2

y = softmax(o)

Dropout

p: non-dropout probability

At training time, randomly and independently drop the neurons with probability 1-p.

At test time, always keep the neurons but scale the weight by p

Dropout
Hinton et al.

It leads to much improved performance.

In recent days, we use batch normalization more, instead of dropout.

What we’ve learned today…
• Deep neural networks

• Computational graph (forward and backward propagation)

• Numerical stability in training

• Gradient vanishing/exploding

• Generalization and regularization

• Overfitting, underfitting

• Weight decay and dropout

Thanks!

