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Today’s outline
• Deep neural networks


• Computational graph (forward and backward propagation)


• Numerical stability in training


• Gradient vanishing/exploding


• Generalization and regularization


• Overfitting, underfitting


• Weight decay and dropout



Part I: Neural Networks as a 
Computational Graph



Hidden layer 
Input 

m neurons
• Input 
• Hidden 
• Intermediate output   

x ∈ ℝd

W(1) ∈ ℝm×d, b ∈ ℝm

Review: neural networks with one hidden layer

h = σ(W(1)x + b)

h ∈ ℝm

Each hidden neuron is a perceptron (but can be with a different activation function than the step function). Viewing the outputs of the hidden neurons in the layer as a 
vector, then the layer just first does a linear transformation on the input vector and then applies an activation function on each element of the vector obtained by the linear 
transformation. Note that here, we apply the activation function \sigma on the vector Wx+b; it simply means applying \sigma on each element of the vector. 




m x n n x 1 m x 1

=+

m x 1m × d
d × 1

m × 1 m × 1

x ∈ ℝd

W b

Review: neural networks with one hidden layer



m x n n x 1 m x 1

=+

m x 1m × d
d × 1

m × 1 m × 1

x ∈ ℝd

W b

Element-wise 

activation function

Key elements: linear operations + Nonlinear activations

Review: neural networks with one hidden layer

This is an illustration of the operations in a layer. Note the dimensions. 



Review: Neural network for k-way classification

Hidden layer 
Input m=3 neurons

x1

x2

•K outputs in the final layer

x ∈ ℝd

h3 = σ(
d

∑
i=1

xiw(1)
3i + b3)

h2 = σ(
d

∑
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xiw(1)
2i + b2)

h1 = σ(
d

∑
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xiw(1)
1i + b1)

Output 
w(2)

11

w(2)
12

w(2)
13

f1 =
m

∑
i=1

hiw(2)
1i + b′ 1



Review: Neural network for k-way classification

Hidden layer 
Input m=3 neurons

x1

x2

•K outputs units in the final layer

x ∈ ℝd

h3 = σ(
d

∑
i=1

xiw(1)
3i + b3)

h2 = σ(
d

∑
i=1

xiw(1)
2i + b2)

h1 = σ(
d

∑
i=1

xiw(1)
1i + b1)

Output 

w(2)
k1

w(2)
k2

w(2)
k3

fk =
m

∑
i=1

hiw(2)
ki + b′ k

…

Multi-class classification (e.g., ImageNet with k=1000)



Review: Softmax

Hidden layer 
Input m=3 neurons

x1

x2

Turns outputs f into probabilities (sum up to 1 across k classes)

x ∈ ℝd

Output 

fk

…
f1

p(y |x) = softmax( f )

=
exp fy(x)

∑k
i exp fi(x)

For multiple-class classification, the output layer first applies a linear transformation to get a k dim vector f=(f_1,…,f_k). Then apply the softmax activation to turn f into a 
probabilistic vector (a distribution) over the k classes. This is typically used to modeled the conditional probabilities of y over the k classes conditioned on the input x. 


Note that 

1. after softmax, the entries are nonnegative and have sum 1, ie, the vector after softmax is a probabilistic vector.

2. Larger the f_i, larger the corresponding entry after softmax. 

3. Softmax can be viewed as an activation function but it’s not element-wise as each output entry depends on all entries in f. 



Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Normalized



Deep neural networks (DNNs)
f1 f2 h1 = σ(W1x + b1)

h2 = σ(W2h1 + b2)
h3 = σ(W3h2 + b3)

f = W4h3 + b4
y = softmax(f)

NNs are composition 
of nonlinear 

functions

A standard deep network is simply stacking multiple layers of computation; each layer is linear transformation+activation (typically nonlinear). For regression, we can 
simply use the linear transformation result f in the output layer as the final output of the network. For classification, we apply softmax on f to get the probabilities over k 
classes (or apply sigmoid for binary classification). 



Neural networks as variables + operations
a = sigmoid(Wx + b)

• Decompose functions into atomic operations

• Separate data (variables) and computing (operations)
• Known as a computational graph

In general, we can draw a computational graph (introducing intermediate variables after each computational operation). 


Backpropagtion is going from the output backward to the input. Each time we go backward one step and compute the derivative of the loss w.r.t. some variable; apply 
chain rule so that we can reuse the derivative computed in previous steps. 


Note: Here the notations like   \partial L /\partial W are vector/matrix notations. You can think of \partial L /\partial W as concatenating the derivative of the loss w.r.t. each 
parameter. Another example is \partial z_1 /\partial W: you can think of it as a matrix, where the rows correspond to dimension in z_1 and columns corresponds to 
parameters in W, and each entry is the derivative of the corresponding dimension in z_1 w.r.t. the corresponding parameter in W. So the chain rule now is a product of 
multiple matrices (it can contain vectors which can also be viewed as a special kind of matrices). 


In this course we don’t require to handle chain rule in this matrix form. We present it here only for 

1. demonstrating how backpropagation is done in general (the matrix form can compactly represent this). 

2. showing the reason for vanishing gradients: when each matrix in the chain is small (w.r.t. certain “size” measurement of the matrix) then the product result (the 

gradient) will be very small.   



Neural networks as a computational graph

• A two-layer neural network



Neural networks as a computational graph

• A two-layer neural network
• Forward propagation vs. backward propagation



Neural networks: forward propagation

• A two-layer neural network
• Intermediate variables Z

z1



• A two-layer neural network

z1 z2

Neural networks: forward propagation

• Intermediate variables Z



• A two-layer neural network

z1 z2 z3

Neural networks: forward propagation

• Intermediate variables Z



• A two-layer neural network

z1 z2 z3 z4

Neural networks: forward propagation

• Intermediate variables Z



• A two-layer neural network

z1 z2 z3 z4 z5

Neural networks: forward propagation

• Intermediate variables Z



• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Minimize a loss function L
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Neural networks: backward propagation

• Minimize a loss function L



• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation



• Define a neural network as a computational graph
• Must be a directed graph

Backward propagation: A modern treatment

• Nodes as variables and operations
• All operations must be differentiable



Hidden layer 

Input 
m=3 neurons

x1

x2

Q1. Suppose we want to solve the following k-class classification problem with cross entropy loss 

 , where the ground truth and predicted probabilities . Recall that the 

softmax function turns output into probabilities: . What is the partial derivative 

?

ℓ(y, ŷ) = −
k

∑
j=1

yj log ̂yj y, ŷ ∈ ℝk

̂yj =
exp fj(x)

∑k
i exp fi(x)

∂fjℓ(y, ŷ)

x ∈ ℝd

Output 

fk

…
f1

• For notational simplicity, we use  to denote , and  as   yi 1{yi = 1} ̂yi p(yi = 1 |x; θ)

A. 


B. 


C.

̂yj − yj

exp(yj) − yj

yj − ̂yj



Q1. Suppose we want to solve the following k-class classification problem with cross entropy loss 

 , where . Recall that the softmax function turns output into 

probabilities: . What is the partial derivative ?

ℓ(y, ŷ) = −
k

∑
j=1

yj log ̂yj y, ŷ ∈ ℝk

̂yj =
exp fj(x)

∑k
i exp fi(x)

∂fjℓ(y, ŷ)

ℓ(y, ŷ) = −
k

∑
j=1

yj log
exp( fj)

∑k
i=1 exp( fi)

=
k

∑
j=1

yj log
k

∑
i=1

exp( fi) −
k

∑
j=1

yj fj

= log
k

∑
i=1

exp( fi) −
k

∑
j=1

yj fj .

Rewrite

∂fjℓ(y, ŷ) =
exp( fj)

∑k
i=1 exp( fk)

− yj = ̂yj − yj .We have

Hidden layer 

Input 
m=3 neurons

x1

x2

x ∈ ℝd

Output 

fk

…
f1



Part II: Numerical Stability



Gradients for Neural Networks

• Compute the gradient of the loss    w.r.t. 

∂ℓ
∂Wt

=
∂ℓ
∂hd

∂hd

∂hd−1
…

∂ht+1

∂ht

∂ht

∂Wt

ℓ Wt

Multiplication of many matrices

{

Wikipedia



Two Issues for Deep Neural Networks d−1

∏
i=t

∂hi+1

∂hi

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10



Issues with Gradient Exploding

• Value out of range: infinity value (NaN) 
• Sensitive to learning rate (LR) 

• Not small enough LR -> larger gradients 
• Too small LR -> No progress  
• May need to change LR dramatically during training



Gradient Vanishing 

• Use sigmoid as the activation function  

σ(x) =
1

1 + e−x σ′ (x) = σ(x)(1 − σ(x))

Small 
gradients

Small 
gradients



Issues with Gradient Vanishing

• Gradients with value 0 
• No progress in training 

• No matter how to choose learning rate 
• Severe with bottom layers 

• Only top layers are well trained 
• No benefit to make networks deeper



How to 
stabilize 
training?



Stabilize Training: Practical Considerations

• Goal: make sure gradient values are in a proper range 
• E.g. in [1e-6, 1e3] 

•  Multiplication -> plus 
• Architecture change (e.g., ResNet) 

• Normalize 
• Batch Normalization, Gradient clipping  

• Proper activation functions 



Q2. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following 
statement is NOT true? 

A. Sigmoid function is more expensive to compute 

B. ReLU has non-zero gradient everywhere 

C. The gradient of Sigmoid is always less than 0.3  

D. The gradient of ReLU is constant for positive input 
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statement is NOT true? 

A. Sigmoid function is more expensive to compute 
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Q3. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero 
gradient everywhere?? 

A.Yes 

B. No 

 



Q3. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero 
gradient everywhere?? 

A.Yes 

B. No 

 



Part III: Generalization & Regularization



How good are 
the models?



Training Error and Generalization Error

• Training error: model error on the training data 
• Generalization error: model error on new data 
• Example: practice a future exam with past exams 

• Doing well on past exams (training error) doesn’t 
guarantee a good score on the future exam 
(generalization error)

What we care about ultimately is generalization error, while what we know at training time is the training error/loss.



Underfitting  
Overfitting 

Image credit: hackernoon.com



Model Capacity 

• The ability to fit variety of functions 
• Low capacity models struggles to 

fit training set 
• Underfitting 

• High capacity models can 
memorize the training set 
• Overfitting

Intuitively: if we use a too large family of functions to choose model from (high capacity models), then it’s easy to find a model in that family to fit the data, including fitting 
the noise/spurious correlation. This leads to overfitting. 


If we use a too small family of functions to choose model from (low capacity models), then there may to be a model in that family to fit the data. This leads to underfitting. 


We should choose the proper capacity.



Underfitting and Overfitting

Model 
capacity

Data complexity

v
Simple Complex

Low Normal Underfitting

High Overfitting Normal



Influence of Model Complexity

Also known as “Test 
error”



Estimate Neural Network Capacity 

• It’s hard to compare complexity 
between different algorithms 
• e.g. tree vs neural network



Estimate Neural Network Capacity 

• It’s hard to compare complexity 
between different algorithms 
• e.g. tree vs neural network 

• Given an algorithm family, two main 
factors matter: 
• The number of parameters  
• The values taken by each parameter

d + 1

(d + 1)m + (m + 1)k



Data Complexity

• Multiple factors matters 
• # of examples 
• # of features in each example 
• time/space structure 
• # of labels 



How to regularize the model for 
better generalization?



Weight 
Decay



Squared Norm Regularization as Hard Constraint

• Reduce model complexity by limiting value 
range 

• Often do not regularize bias b  
• Doing or not doing has little difference in 

practice 
• A small     means more regularization

min ℓ(w, b) subject to ∥w∥2 ≤ θ

θ



Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

min ℓ(w, b) +
λ
2

∥w∥2

L2 or squared norm regularization is also called weight decay. This is because the gradient of the squared norm is 2w, so in gradient descent we will subtract 
\lambda*step_size *w, ie, shrink the w. 



Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as 

• Hyper-parameter    controls regularization importance 
•          :   no effect 
•

min ℓ(w, b) +
λ
2

∥w∥2

λ = 0
λ → ∞, w* → 0

λ



Illustrate the Effect on Optimal Solutions

w̃*
w*

w* = arg min ℓ(w, b) +
λ
2

∥w∥2

w̃* = arg min ℓ(w, b)

The green curve: the level set of the loss, ie, the w parameters on the same curve will have the same loss

The yellow curve: the level set of the squared norm


Consider the green curve on which the new optimizer w* after regularization lies, ie, the level set with l(w*,b)

Claim: w* will be on the touching point with some yellow curve. 

Proof: If not, it will have a larger squared norm than the touch point. Contradictory to the definition of the optimizer w*.


With this claim we can see that compared to the old optimizer \tilde{w}* before regularization, w* will move towards the original: the norm of w* shrinks. 




Dropout
Hinton et al.



courses.d2l.ai/berkeley-stat-157

Apply Dropout

• Often apply dropout on the output of hidden fully-
connected layers

h = σ(W1x + b1)
h′ = dropout(h)
o = W2h′ + b2

y = softmax(o)



Dropout

p: non-dropout probability 

At training time, randomly and independently drop the neurons with probability 1-p. 

At test time, always keep the neurons but scale the weight by p



Dropout
Hinton et al.

It leads to much improved performance. 


In recent days, we use batch normalization more, instead of dropout. 



What we’ve learned today…
• Deep neural networks


• Computational graph (forward and backward propagation)


• Numerical stability in training


• Gradient vanishing/exploding


• Generalization and regularization


• Overfitting, underfitting


• Weight decay and dropout



Thanks!


