CS 540 Spring 2018

CS 540: Introduction to Artificial Intelligence
Homework Assignment # 3

Assigned: 2/19
Due: 2/26 before class

Hand in your homework:

If a homework has programming questions, please hand in the Java program. If a homework has written
questions, please hand in a PDF file. Regardless, please zip all your files into hwX.zip where X is the
homework number. Go to UW Canvas, choose your CS540 course, choose Assignment, click on Homework
X: this is where you submit your zip file.

Late Policy:

All assignments are due at the beginning of class on the due date. One (1) day late, defined as a 24-hour
period from the deadline (weekday or weekend), will result in 10% of the total points for the assignment
deducted. So, for example, if a 100-point assignment is due on a Wednesday 9:30 a.m., and it is handed in
between Wednesday 9:30 a.m. and Thursday 9:30 a.m., 10 points will be deducted. Two (2) days late, 25%
off; three (3) days late, 50% off. No homework can be turned in more than three (3) days late. Written
questions and program submission have the same deadline.

Assignment grading questions must be raised with the instructor within one week after the assignment
is returned.

Collaboration Policy:

You are to complete this assignment individually. However, you are encouraged to discuss the general
algorithms and ideas with classmates, TAs, and instructor in order to help you answer the questions. You
are also welcome to give each other examples that are not on the assignment in order to demonstrate how
to solve problems. But we require you to:

e not explicitly tell each other the answers

e not to copy answers or code fragments from anyone or anywhere
e not to allow your answers to be copied

e not to get any code on the Web

In those cases where you work with one or more other people on the general discussion of the assignment
and surrounding topics, we suggest that you specifically record on the assignment the names of the people
you were in discussion with.

CS 540 Spring 2018

Question 1: Torus 8-Puzzle [100 points]

This is a programming question. The solution to the programming problem should be coded in Java, and
you are required to use only built-in libraries to complete this homework. Please submit a single zip
file named hw3.zip, which should contain a source code file named Torus.java with no package statements,
and make sure your program is runnable from command line on a department Linux machine. We provide
a skeleton Torus.java code that you can optionally use, or you can write your own.

The goal of this assignment is to become familiar with iterative deepening depth-first search (DFS). The
assignment tests your understanding of AI concepts, and your ability to turn conceptual understanding into
a computer program. All concepts needed for this homework have been discussed in class, but there may
not be existing pseudo-code for you to directly follow. We ask you to implement your own stack for DFS as
we did in class, rather than writing a recursive DFS program.

Recall the standard 8-puzzle is a sliding game, where the top, bottom, left, or right neighboring tile can
slide into the empty square. However, if the empty square is not in the middle, not all four neighbors exist.

A torus 8-puzzle is a variant with the following change: when the empty square is at the border, the tile
at the opposite end can slide into it, too. Here is an example:

11213
415
6|78
This state has four successors in torus 8-puzzle. Three of them are the standard:
112 1123|1123
41513114584 5
6|7 (8||6]|7 6|78
However, the fourth successor allows the tile 4 to slide out to the left and re-enter from the right into the

empty square:

(1[2]3
5| 4
6|78

You can think of that row as a ring, where a tile going out of the board from one end automatically
enters from the other end. This is true for all rows and all columns. Technically (in topology), this is known
as a torus — hence the name. (Caution: If you search torus puzzle online, you may come across the paper
“How to Solve the Torus Puzzle.” That game is different.)

Here is another example state:

112
'3[41(5
718
It has four successor states. Two are standard:
1 21031112
31415 415
6|7 (8||6]|7]|8
The third one comes from the torus row ring movement:
2|1
31415
6|78

And the fourth one comes from the torus column ring movement:

CS 540 Spring 2018

(6[1]2]
3[4]5
718

It is easy to see that any state has exactly four successors in the torus 8-puzzle.
For this question, you will use iterative deepening depth-first search to find the shortest path from an
input state to the goal state (which will always be this state):

11213
41516
718

Write a program Torus.java with the following command line format:
$java Torus FLAG tilel tile2 tile3 tile4 tileb tile6 tile7 tile8 tile9
where FLAG is an integer that specifies the output of the program (see below). Tilel — tile9 specify the
initial state in the natural reading order (left to right, top to bottom). These take values in integer 1-8
for the 8 tiles, plus 0 for the empty space. For example, if the initial state is our very first example and
FLAG=100, the command line would be
$java Torus 100 1 2 34506 7 8

(Part a, 20 points) When FLAG=100, print out the four successor states of the initial state, in the order they are pushed
into the stack (see below). Each successor state should be printed as 9 numbers on a single line. For
example,

J orus 100 1 23450678

va

[= =

a T
204
230
2314
234

wwwo
oo o ;
0 o W
oo oo
~ NN
© 0 0

Important: We ask you to implement the following order among successors. If we view the 9 numbers
as a 9-digit integer, then there is a natural order among states. Whenever you push successors into
the stack, push them from small 9-digit to large 9-digit. This means that when we later pop them out,
the largest 9-digit successor will be goal-checked before the other successors. This order will be used
throughout this program, so that the output is well-defined.

(Part b, 20 points) When FLAG=2XX, perform a depth-limited depth-first search with cutoff depth XX (i.e. this is one
outer-loop of iterative deepening). For example, if FLAG=200, the cutoff depth is 0. In DFS you will
push the initial state in the stack, pop it out, do a goal test, but will NOT expand it. If FLAG=201,
the cutoff depth is one. In DFS you will expand the initial state (i.e. put its four successors into
the stack in the order we specified in Part a). You will pop each successor out, print it, and perform
goal-check (and terminate the program if goal-check succeeds). But you will not expand any of these
SUCCESSOrs.

XX can be 00 to 99. If depth-limited DFS finds a goal before the cutoff, it should stop.

You will need to implement both backpointers and path-checking cycle prevention. Note: do not use
the whole CLOSED set for cycle prevention, which is not memory efficient for DFS. Use a “prefix
path” instead. Recall in the prefix path you only need to record the path from the initial state to the
current state being goal-checked. Specifically, you can implement the prefix path-checking as follows:

CS 540

Spring 2018

(Part ¢, 20 points)

(Part d, 20 points)

(Part e, 20 points)

Use a data structure that supports linear ordering of states, such as a list.

When you pop out a state s for goal-checking, it comes with a parent backpointer. Say its parent

state is p. Look into the prefix list, it should contain p somewhere as in initial, ..., p,.... Remove
everything after p and put s there, so your prefix list now looks like initial, ..., p,s.

— At the very beginning when s is the initial state, just put it in the empty prefix data structure.

— Whenever you generate a successor t, you want to check if ¢ is in the current prefix list. If no,
push ¢ to the DFS stack; if yes, do not push it. This is path-checking cycle prevention.

For this part, print out the states in the order of goal-test (i.e. when you pop them out of the stack).

For example:

java Torus

e e -]
NN NDNDDNDE
O W W ww
Do s
[$2 ¢ BN @ TN
w > 010

201

6
6
6
6
6

~N NN NN

23450678

1
8
0
8
8
8

When FLAG=3XX, perform a depth-limited depth-first search with cutoff depth XX like in part b.
But this time, also print out the backpointers. That is, each printed state should be followed by the
word “parent,” then the parent state (all space-separated). Use all-zero for the parent of the initial
state. For example,

java Torus

N e S Y
NN DNDDNDNDE
O W W ww
S oA
o o1 O ;
w P 010

301

6
6
6
6
6

~N NN NN

123450678

8 parent 0 0 0 0 00000
O parent 1 23450678
8 parent 1 23450678
8 parent 1 23450678
8 parent 1 23450678

When FLAG=4XX, perform a depth-limited depth-first search with cutoff depth XX like in part b.
But this time, only print out the prefix path (starting from the initial state) for the very first state you
goal-check at depth XX+1 (recall the initial state is goal-checked at depth 1). For example,

$java Torus
123450
$java Torus
123450
123458
java Torus
450

N = -
NN P
w w w

458
458

400

6

7

23450678

23450678

1
8
1
8
0
123450678
8
0
7

When FLAG=500, perform iterative deepening (which can go beyond depth cutoff 99 if necessary).
Print out the following output:

CS 540

Spring 2018

1. The solution path from the initial state to the goal state (one state per line)

For

. The phrase Goal-check followed by the total number of times you perform goal-check. A state can

be goal-checked multiple times as you gradually increase the depth cutoff, and should be counted
multiple times.

. The phrase Max-stack-size followed by the maximum number of states in your DFS stack (N.B.

not the prefix) at any moment in your search.

example,

java Torus 500 1 2 3 45 06 7 8

2

[T = T = T = T S NSNS
NN DNDDNDNDNDNDN
W W wWwwwwwww
DO oo OO O

2

4506

OO > O oo,
D OO DD PdO
N ~N~NNNNO O
O oo ol © NN N
O 00 00 00 00 0 00 00 00 0o

3 4

(%]

7 8

Goal-check 40517

Max

-stack-size 19

Finally, we provide two additional examples to help you develop your code.

Extra Example 1:

Part A)

Input:

$java Torus 100 8 76 5643210
Output:

870543216
876540213
876543012
876543201

Part B)

Input:

$java Torus 201 8 76 543210
OQutput:

876543210
876543201
876543012
876540213
870543216

Spring 2018

CS 540

Part C)

$java Torus 301 8 76 543210

Input:
Output:

876543210parent 0000000O0O0

876543201parent 876543210

87654301 2parent 876543210

876540213 parent 876543210

870543216parent 876543210

Part D)
Input:

$java Torus 401 8 76 543210

Output:

876543210
876543201

Part E)
Input:

$java Torus 500 8 76 543210

Output:

876543210
876543201
876543021
876543120
876540123
876504123
876524103
806524173
086524173
186524073
186524703
106524783
126504783
126054783
126450783
120456783
123456780

Goal-check 42689480

Max-stack-size 32

Extra Example 2:

Part A)

Spring 2018

CS 540

$java Torus 100 4 385167 20

Input:
Output:

430516728
438510726
438516027
438516702

Part B)
Input:

$java Torus 202 4 385167 20

OQutput:

438516720
438516702
438516072
438506712
408516732
438516027
438516207
438016527
038516427
438510726
438501726
438015726
430518726
430516728
436510728
403516728
034516728

Part C)
Input:

$java Torus 302438516720

Output:

438516720parent 000000000

438516702parent 438516720

43851607 2parent 438516702

4385067 12parent 438516702

4085167 32parent 4385167202

438516027parent 438516720

438516207 parent 438516027

438016527parent 438516027

038516427parent 438516027

4385107 26parent 438516720

4385017 26parent 438510726

Spring 2018

CS 540

4380157 26parent 438510726

4305187 26parent 438510726

4305167 28parent 438516720

4365107 28parent 4305167238

4035167 28parent 4305167238

0345167 28parent 430516728

Part D)
Input:

$java Torus 402 4 38516720

OQutput:

438516720
438516702
438516072

Part E)
Input:

$java Torus 500 4 385167 20

Output:

438516720
430516728
403516728
413506728
413056728
013456728
103456728
123456708
123456780
Goal-check 18088

Max-stack-size 17

