
CS 540 Spring 2018

CS 540: Introduction to Artificial Intelligence
Homework Assignment # 7

Assigned: 3/19
Due: 4/9 before class

Hand in your homework:

If a homework has programming questions, please hand in the Java program. If a homework has written
questions, please hand in a PDF file. Regardless, please zip all your files into hwX.zip where X is the
homework number. Go to UW Canvas, choose your CS540 course, choose Assignment, click on Homework
X: this is where you submit your zip file.

Late Policy:

All assignments are due at the beginning of class on the due date. One (1) day late, defined as a 24-hour
period from the deadline (weekday or weekend), will result in 10% of the total points for the assignment
deducted. So, for example, if a 100-point assignment is due on a Wednesday 9:30 a.m., and it is handed in
between Wednesday 9:30 a.m. and Thursday 9:30 a.m., 10 points will be deducted. Two (2) days late, 25%
off; three (3) days late, 50% off. No homework can be turned in more than three (3) days late. Written
questions and program submission have the same deadline.

Assignment grading questions must be raised with the instructor within one week after the assignment
is returned.

Collaboration Policy:

You are to complete this assignment individually. However, you are encouraged to discuss the general
algorithms and ideas with classmates, TAs, and instructor in order to help you answer the questions. You
are also welcome to give each other examples that are not on the assignment in order to demonstrate how
to solve problems. But we require you to:

• not explicitly tell each other the answers

• not to copy answers or code fragments from anyone or anywhere

• not to allow your answers to be copied

• not to get any code on the Web

In those cases where you work with one or more other people on the general discussion of the assignment
and surrounding topics, we suggest that you specifically record on the assignment the names of the people
you were in discussion with.

CS 540 Spring 2018

Question 1: An n-gram Chatbot [100 points]

In this question you will implement a chatbot by generating random sentences from your HW1 corpus using
n-gram language models.

We have created a vocabulary file vocabulary.txt for you to interpret the data, though you do not need it
for programming. The vocabulary is created by tokenizing the corpus, converting everything to lower case,
and keeping word types that appears three times or more. There are 4699 lines in the vocabulary.txt file.

Download the corpus WARC201709 wid.txt from the homework website (note: this is a processed and
different file than the corpus we used in earlier HW). This file has one word token per line, and we have
already converted the word to its index (line number) in vocabulary.txt. Thus you will see word indices from
1 to 4699. In addition, we have a special word type OOV (out of vocabulary) which has index 0. All word
tokens that are not in the vocabulary map to OOV. For example, the first OOV in the corpus appears as

392 are

1512 entirely

0 undermined

12 .

The words on the right are provided from the original essays for readability, they are not in the corpus. The
word “undermined” is not in the vocabulary, therefore it is mapped to OOV and have an index 0. OOV
represents a set of out-of-vocabulary words such as “undermined, extra-developed, metro, customizable,
optimizable” etc. But for this homework you can treat OOV as a single special word type. Therefore, the
vocabulary has v = 4700 word types. The corpus has 228548 tokens.

Write a program Chatbot.java with the following command line format, where the commandline input
has variable length1 and the numbers are integers:

$java Chatbot FLAG number1 [number2 number3 number4]

(Part a, 10 points) Denote the vocabulary by the v word types w0, w1, . . . , wv−1 in the order of their index (so w0 has
index 0 and represents OOV, and so on). For this homework it is important that you keep this order
so that we can automatically grade your code.

You will first create a unigram language model. This is a probability distribution over the vocabulary,
for word type w ∈ {0, . . . , v − 1} the estimated probability is

pi ≡ p(w = i) =
c(w = i)

n
,

where c(w = i) is the count of word type i in the corpus (i.e. how many times wi appeared). Note you
need to estimate and store pi for all v word types, including OOV: p(w = OOV) is the fraction of 0’s
in the corpus. Your p(w) should sum to 1 over the vocabulary, including OOV.

When FLAG=100, number1 specifies the word type index i for wi. You should print out two numbers
on two lines: c(w = i) and p(w = i). When printing the probabilities for this homework, keep 7 digits
after the decimal point and perform rounding. For example,

$java Chatbot 100 0

7467

1We provide code skeleton that already handles variable length input.

CS 540 Spring 2018

0.0326715

$java Chatbot 100 1

36

0.0001575

$java Chatbot 100 2000

3

0.0000131

$java Chatbot 100 3001

140

0.0006126

$java Chatbot 100 4699

8

0.0000350

(Part b, 10 points) Now you implement random sampling from a probability distribution. That is, you will generate a
random word type according to its unigram probability. Here is how you do it:

1. Given the multinomial distribution parameter (p0, p1, . . . , pv−1), you split the interval [0, 1] into
v segments. Segment 0 is [l0 = 0, r0 = p0]. Note it is closed on the left. Segment i (for
i = 1, . . . , v − 1) is li =

i−1∑
j=0

pj , ri =

i∑
j=0

pj

 .

Note these segments are open on the left but closed on the right. Also recall that we want you to
order these segments by their word type index.

2. You generate a random number r uniformly in [0, 1].

3. You check which segment r falls into, and output the index of that segment.

A word on sparse storage: this is not an issue for unigrams, but soon you will have many pi’s being zero
in bigrams and trigrams. When you implement the segments above, you should not create segments
for any pi = 0. Mathematically, such segments are empty and will never get selected. Storage-wise,
you do not want to waste space on them. Instead, the suggested data structure is to record the the
triple (i, li, ri) in increasing order of i but only for nonzero pi’s. This is known as sparse storage format.
Again, be sure to arrange the segments in increasing order of word type index.

However, in order to test your code in a reproducible way, we will specify the random number r from
commandline. Specifically, When FLAG=200, we provide number1 and number2 (we guarantee that
number2 ≥ number1), and you should let r = number1/number2 (remember to use Java ‘double’ here
so you don’t get an integer zero!) instead of a random r. Your code should output three numbers on
three lines: the word type index i that this r selects, li the left end of wi’s interval, and ri the right
end of wi’s interval.

CS 540 Spring 2018

$java Chatbot 200 326 10000

0

0.0000000

0.0326715

$java Chatbot 200 327 10000

1

0.0326715

0.0328290

$java Chatbot 200 329 10000

2

0.0328290

0.0344873

$java Chatbot 200 5000 10000

2364

0.4998906

0.5147278

$java Chatbot 200 99997 100000

4699

0.9999650

1.0000000

(Part c, 20 points) Now you will create a bigram language model of the form p(w | h), where both w and h (the history)
are word types in the vocabulary. Fixing h, p(w | h) is a multinomial distribution over word types
w = 0, . . . , v − 1, and is estimated as follows:

p(w | h) =
c(h,w)∑v−1
u=0 c(h, u)

,

where c(h,w) is the count of the bigram (adjacent word pair) h,w in the corpus. These counts are
obtained by letting the history start at the first word position in the corpus, then gradually moving
the history one position later, until finally the (history, word) pair “use up” the corpus. For bigrams,
that means history stops at the 2nd to last word position in the corpus. For example, if the corpus
is “cake cake cake you want cake cake” then c(cake, you) = 1, c(cake, cake) = 3, c(cake, want) = 0.
Note it is perfectly fine to estimate p(w = i | h = i) for the same word type i. It is also perfectly fine
if either w or h or both are OOV.

It is possible that c(h,w) = 0 for some history, word combinations. As long as the history appears in
the corpus (which is the case for our bigrams), we naturally have the estimate p(w | h) = 0.

The above discussion is for a fixed h, where p(w | h) is a multinomial distribution. You will need to
do so for all possible h = 0, . . . , v − 1, so that you will end up with v multinomial distributions. This
is where the sparse storage becomes important.

CS 540 Spring 2018

When FLAG=300, number1 specifies the history word type index h, and number2 specifies the word
type index w. You should print out three numbers on three lines: c(h,w),

∑v−1
u=0 c(h, u), and p(w | h).

For example,

$java Chatbot 300 414 2297

1054

1082

0.9741220

$java Chatbot 300 0 0

406

7467

0.0543726

$java Chatbot 300 0 1

0

7467

0.0000000

$java Chatbot 300 2110 4240

115

917

0.1254089

$java Chatbot 300 4247 0

41

1435

0.0285714

(Part d, 10 points) Now you will use the same function in Part b to sample from a bigram given h. That is, instead of
using the unigram probability p(w), we fix some h and you will generate a random word type from
p(w | h). The method is the same, you just need to do more bookkeeping and record the segments
separately for each history h. Specifically, for history h the segments are:

[lh0 = 0, rh0 = p(w = 0 | h)]lhi =

i−1∑
j=0

p(w = j | h), rhi =

i∑
j=0

p(w = j | h)

 , i = 1, . . . , v − 1.

Again, you should use sparse storage.

When FLAG=400, we provide number1 and number2 (we guarantee that number2 ≥ number1), num-
ber3 is the word type for history h, and you should let r = number1/number2 to pick the corresponding
word type w from p(w | h). Your code should output three numbers on three lines: the word type
index i that this r selects, lhi the left end of wi’s interval conditioned on h, and rhi the right end of
wi’s interval conditioned on h.

CS 540 Spring 2018

$java Chatbot 400 0 100 414

0

0.0000000

0.0009242

$java Chatbot 400 1 100 414

2297

0.0055453

0.9796673

$java Chatbot 400 98 100 414

2298

0.9796673

0.9861368

$java Chatbot 400 81 100 4697

4533

0.8000000

1.0000000

$java Chatbot 400 15 100 4442

4007

0.1463415

1.0000000

(Part e, 20 points) Finally you create a trigram language model of the form p(w | h1, h2), where now the history is the
pair of word types h1, h2 in that order. Fixing h1, h2, p(w | h1, h2) is a multinomial distribution over
word types w = 0, . . . , v − 1, and is estimated as follows:

p(w | h1, h2) =
c(h1, h2, w)∑v−1
u=0 c(h1, h2, u)

,

where c(h1, h2, w) is the count of the trigram (adjacent word triple) h1, h2, w in the corpus. For the cake
corpus c(cake, cake, you) = 1, c(cake, cake, cake) = 1, c(cake, cake, want) = 0, c(cake, you, want) = 1
and for u 6= want we have c(cake, you, u) = 0, c(want, cake, cake) = 1 and for u 6= cake we have
c(want, cake, u) = 0.

Now we have a new problem: the history h1, h2 may not appear in the corpus at all! For example,
h1 = you, h2 = cake never appeared. If so, you simply declare that p(w | h1, h2) is undefined for any
w. We will handle the situation later. In fact, only a small fraction of possible trigram histories appear
in the HW1 corpus. You should only store trigram probabilities for these histories. This is also part
of the sparse storage strategy.

When FLAG=500, number1 specifies the history word type index h1, number2 is h2, and number3 is
w. You should print out three numbers on three lines: c(h1, h2, w),

∑v−1
u=0 c(h1, h2, u), and p(w | h1, h2).

In the case that p(w | h1, h2) is undefined, the third line should be the text undefined. For example,

CS 540 Spring 2018

$java Chatbot 500 23 12 123

0

0

undefined

$java Chatbot 500 5 660 3425

10

402

0.0248756

$java Chatbot 500 2799 556 2364

1

3

0.3333333

$java Chatbot 500 414 2297 2364

99

1054

0.0939279

$java Chatbot 500 0 0 0

35

406

0.0862069

(Part f, 10 points) Now you will sample from the trigram model p(w | h1, h2). The method is the same, though you
will decline to generate a word if the trigram is undefined. When FLAG=600, we provide number1
and number2 (we guarantee that number2 ≥ number1), number3 is h1 and number4 is h2, and you
should let r = number1/number2 to pick the corresponding word type w from p(w | h1, h2). When
this conditional probability is defined, your code should output three numbers on three lines: the word
type index i that this r selects, lh1,h2,i the left end of wi’s interval conditioned on h1, h2, and rh1,h2,i

the right end of wi’s interval conditioned on the history. Otherwise, your code should output a single
line with text undefined.

$java Chatbot 600 2 5 660 3425

2178

0.3636364

0.4545455

$java Chatbot 600 2 5 3001 104

3083

0.3529412

0.4117647

java Chatbot 600 50 100 496 4517

CS 540 Spring 2018

540

0.4545455

0.5000000

$java Chatbot 600 33 100 2591 2473

286

0.3086420

0.4444444

$java Chatbot 600 0 100 2297 414

undefined

$java Chatbot 600 0 100 496 4517

5

0.0000000

0.0795455

(Part g, 20 points) Now the fun begins! You will generate random sentences using your n-gram language models. But for
building a chatbot, we will specify a sentence prefix s1, s2, . . . , st which are t initial words (represented
by word type indices) in the sentence. Your code will complete this sentence as follows:

1. set seed for randomizer

2. Repeat:

(a) h1 = st−1, h2 = st
(b) generate a random word st+1 from p̃(w | h1, h2)

(c) t = t + 1 // shifts the trigram history by one position in the next iteration.

3. Until the generated word is a period, or a question mark, or an exclamation mark.

Note in step 1(b) a complication arises from the sentence prefix, and we introduced a placeholder p̃:

– The sentence prefix is empty. In this case, simply let p̃(w | h1, h2) be the unigram model p(w)
which does not require any history.

– The sentence prefix has only one word s1. In this case, let p̃(w | h1, h2) = p(w | h = s1) the
bigram model.

– The sentence prefix h1 = st−1, h2 = st as history is undefined for a trigram model. If so, let
p̃(w | h1, h2) = p(w | h2) the bigram model.

– Otherwise, let p̃(w | h1, h2) = p(w | h1, h2) the trigram model.

When FLAG=700, number1=seed, which is the seed of the random number generator; number2=t
(which only needs to be 0, 1, or 2), and the next t numbers on the commandline specify the sentence
prefix s1, s2, . . . , st. We will guarantee that si is not period, or a question mark, or an exclamation
mark.

If seed = −1, you actually do not set the seed (this allows you to generate different random sentences).
Otherwise you should set the seed to seed. To set the seed in Java, use the following code:

CS 540 Spring 2018

Random rng = new Random();

if (seed != -1) rng.setSeed(seed);

In step 1(b) each time you should generate a new random number r ∈ [0, 1] in order to generate the
random word. This should be done with

rng.nextDouble();

You should try your code multiple times with the same sentence prefix: when seed = −1 your code
should complete the sentence in different ways; otherwise it should be the same completion.

Your code will output the completed sentence (starting at st+1), one word index per line.

$java Chatbot 700 0 0

3696

12

$java Chatbot 700 1 0

3694

5

20

0

4683

0

3679

12

$java Chatbot 700 0 1 414

2297

334

2511

2178

60

12

$java Chatbot 700 3 2 2110 311

2869

0

12

$java Chatbot 700 1 1 523

2565

539

4237

557

CS 540 Spring 2018

4670

2042

1876

3364

4369

4633

533

1057

665

255

5

4223

3298

2364

104

588

617

4281

533

2159

2328

1252

2438

4642

104

957

3905

322

2904

1110

12

That last sentence is a little jarring to this professor because it is:

barely loopholes because they believe would hinder gaining public trust will be created by ai
, the professor is a black box to be implemented into different languages with a considerably
smaller amount of data .

(Part h, no points) For this part you do not need to develop your code any further, but you will test out the Chatbot that
you have developed by actually “talking” to it.

Please download ChatbotDriver.java and place this file together with your Chatbot.java in the same
directory. This driver class basically takes the user input, apply some rules to generate a prefix based
on the input (or just use the input itself as the prefix), and call “java Chatbot 700 -1 prefix” to
generate a response and visualize it as actual words (“OOV” will be displayed for OOV indices). You
can compile both files and try chatting with your Chatbot. Also make sure you have the txt files in
the directory as well.

CS 540 Spring 2018

Note: because of randomness, your results will differ.

$javac Chatbot.java ChatbotDriver.java

$java ChatbotDriver

You: What’s your opinion on self-driving cars?

Chatbot: self-driving cars right now , tesla still received plenty of OOV and

needed some more focus towards intellectual fields .

You: healthcare system

Chatbot: healthcare system can be useful .

You: tell me a joke

Chatbot: to assume that those personal information exposure or government

website being hacked can bring down an interstate .

You: say anything

Chatbot: politicians into supporting their control over your life would be

an ideal way of monitoring the physical hardware is not yet implemented

technology in terms of employment market .

You: what is your idea of an ideal world?

Chatbot: my idea of an ideal world we live our everyday lives .

Have fun and try to make it more intelligent by modifying ChatbotDriver.java! (e.g. adding more
rules to the generateCommand method.)

