
CS 540 Spring 2018

CS 540: Introduction to Artificial Intelligence
Homework Assignment # 9

Assigned: 4/16
Due: 4/23 before class

Hand in your homework:

If a homework has programming questions, please hand in the Java program. If a homework has written
questions, please hand in a PDF file. Regardless, please zip all your files into hwX.zip where X is the
homework number. Go to UW Canvas, choose your CS540 course, choose Assignment, click on Homework
X: this is where you submit your zip file.

Late Policy:

All assignments are due at the beginning of class on the due date. One (1) day late, defined as a 24-hour
period from the deadline (weekday or weekend), will result in 10% of the total points for the assignment
deducted. So, for example, if a 100-point assignment is due on a Wednesday 9:30 a.m., and it is handed in
between Wednesday 9:30 a.m. and Thursday 9:30 a.m., 10 points will be deducted. Two (2) days late, 25%
off; three (3) days late, 50% off. No homework can be turned in more than three (3) days late. Written
questions and program submission have the same deadline.

Assignment grading questions must be raised with the instructor within one week after the assignment
is returned.

Collaboration Policy:

You are to complete this assignment individually. However, you are encouraged to discuss the general
algorithms and ideas with classmates, TAs, and instructor in order to help you answer the questions. You
are also welcome to give each other examples that are not on the assignment in order to demonstrate how
to solve problems. But we require you to:

• not explicitly tell each other the answers

• not to copy answers or code fragments from anyone or anywhere

• not to allow your answers to be copied

• not to get any code on the Web

In those cases where you work with one or more other people on the general discussion of the assignment
and surrounding topics, we suggest that you specifically record on the assignment the names of the people
you were in discussion with.

CS 540 Spring 2018

Question 1: Lake Mendota Ice [100 points]

Can you predict how harsh this Wisconsin winter will be?
The Wisconsin State Climatology Office keeps a record on the number of days Lake Mendota was covered

by ice at http://www.aos.wisc.edu/~sco/lakes/Mendota-ice.html. For this homework, we will use the
data.txt provided. Each line in the file contains two numbers, the first indicating the year and the second
indicating the number of days the lake is covered by ice.

Write a program Ice.java with the following command line format:

$java Ice FLAG [arg1 arg2]

Where the two optional arguments are real valued.
Questions 5 is 20 points; other questions 10 points each.

1. As with any real problems, the data is not as clean or as organized as one would like for machine
learning. Curate a clean data set starting from 1855-56 and ending in 2016-17. Let x be the year: for
1855-56, x = 1855; for 2016-17, x = 2016; and so on. Let y be the ice days in that year: for 1855-56,
y = 118; for 2016-17, y = 65; and so on. Some years have multiple freeze thaw cycles such as 2001-02,
that one should be x = 2001, y = 21. Although we do not ask you to hand in any visualization code
or figures, we strongly advise you to plot the data (using any plotting tool inside or outside Java) and
see what it is like.

For simplicity, hard code the data set in your program. When FLAG=100, print out the data set. One
year per line with the x value first, a space, then the y value. For example,

$java Ice 100

1855 118

...

2001 21

...

2016 65

2. When FLAG=200, print n the number of data points, the sample mean ȳ = 1
n

∑n
i=1 yi, and the sample

standard deviation
√

1
n−1

∑n
i=1(yi − ȳ)2, on three lines. For real values in this homework, keep two

digits after decimal point. For example (the numbers are made-up):

$java Ice 200

162

123.45

32.10

3. We will perform linear regression with the model

f(x) = β0 + β1x.

We first define the mean squared error as a function of β0, β1:

MSE(β0, β1) =
1

n

n∑
i=1

(β0 + β1xi − yi)2.

http://www.aos.wisc.edu/~sco/lakes/Mendota-ice.html

CS 540 Spring 2018

When FLAG=300, arg1=β0 and arg2=β1. Print the corresponding MSE.

$java Ice 300 0 0

10897.85

$java Ice 300 100.00 0

386.74

$java Ice 300 300.00 -0.10

333.08

$java Ice 300 400 0.1

241561.79

$java Ice 300 200 -0.2

84199.70

4. We perform gradient descent on MSE. At current parameter (β0, β1), the gradient is defined by the
vector of partial derivatives

∂MSE(β0, β1)

∂β0
=

2

n

n∑
i=1

(β0 + β1xi − yi) (1)

∂MSE(β0, β1)

∂β1
=

2

n

n∑
i=1

(β0 + β1xi − yi)xi. (2)

When FLAG=400, arg1=β0 and arg2=β1. Print the corresponding gradient as two numbers on separate
lines.

$java Ice 400 0 0

-205.11

-396150.93

$java Ice 400 100 0

-5.11

-9050.93

$java Ice 400 300 -0.1

7.79

15479.64

$java Ice 400 400 0.1

981.99

1901918.51

$java Ice 400 200 -0.2

-579.31

-1121289.79

5. Gradient descent starts from initial parameter (β
(0)
0 , β

(0)
1), and iterates the following updates at time

t = 1, 2, . . . , T :

β
(t)
0 = β

(t−1)
0 − η ∂MSE(β

(t−1)
0 , β

(t−1)
1)

∂β0
(3)

β
(t)
1 = β

(t−1)
1 − η ∂MSE(β

(t−1)
0 , β

(t−1)
1)

∂β1
. (4)

CS 540 Spring 2018

When FLAG=500, arg1=η and arg2=T . Start from initial parameter (β
(0)
0 , β

(0)
1) = (0, 0). Perform

T iterations of gradient descent. Print the following in each iteration on a line, separated by space:

t, β
(t)
0 , β

(t)
1 ,MSE(β

(t)
0 , β

(t)
1). For example,

$java Ice 500 1e-7 5

1 0.00 0.04 1086.78

2 0.00 0.05 471.97

3 0.00 0.05 433.44

4 0.00 0.05 431.03

5 0.00 0.05 430.88

$java Ice 500 1e-8 5

1 0.00 0.00 9387.32

2 0.00 0.01 8094.78

3 0.00 0.01 6988.77

4 0.00 0.01 6042.37

5 0.00 0.02 5232.56

$java Ice 500 1e-9 5

1 0.00 0.00 10741.50

2 0.00 0.00 10587.49

3 0.00 0.00 10435.78

4 0.00 0.00 10286.34

5 0.00 0.00 10139.12

$java Ice 500 1e-6 5

1 0.00 0.40 442211.52

2 -0.00 -2.18 18646694.58

3 0.01 14.54 787004462.48

4 -0.05 -94.08 33217129357.42

5 0.32 611.63 1401997461432.22

Note with η = 1e− 6 gradient descent is diverging.

The following is not required for hand in, but try different initial parameters, η, and much larger T
and see how small you can make MSE.

6. Instead of using gradient descent, we can compute the closed-form solution for the parameters directly.
For ordinary least squared in 1D, this is

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

β̂0 = ȳ − β̂1x̄,
where x̄ = (

∑
xi)/n and ȳ = (

∑
yi)/n. Required: When FLAG=600, print β̂0, β̂1 (note the order),

and the corresponding MSE on a single line separated by space.

The following is not required for hand in, but give it some thought: what does a negative β̂1 mean?

CS 540 Spring 2018

7. Use β̂0, β̂1 you can predict the number of ice days for a future year. Required: When FLAG=700,
arg1=year. Print a single real number which is the predicted ice days for that year. For example,

$java Ice 700 2020

86.30

The following is not required for hand in, but give it some thought:

• What’s the prediction for this winter?

• Which year will the predicted ice day become negative?

• What does that say about the model?

8. If you are agonizing over your inability to get gradient descent to match the closed-form solution in
question 5, you are not alone. The culprit is the scale of input x compared to the scale of the implicit
offset value 1 (think β0 = β0 · 1). Gradient descent converges slowly when these scales differ greatly,
a situation known as bad condition number in optimization. When FLAG=800, we ask you to first
normalize the input x (note: not the labels y):

x̄ =
1

n

n∑
i=1

xi (5)

stdx =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (6)

xi ← (xi − x̄)/stdx. (7)

Then proceed exactly as when FLAG=500. The two arguments are again arg1=η and arg2=T . For
example,

$java Ice 800 0.1 5

1 20.51 -1.79 7082.51

2 36.92 -3.23 4640.63

3 50.05 -4.38 3077.80

4 60.55 -5.31 2077.56

5 68.95 -6.05 1437.39

$java Ice 800 1 5

1 205.11 -17.94 10895.86

2 0.00 -0.22 10893.93

3 205.11 -17.72 10892.04

4 -0.00 -0.44 10890.19

5 205.11 -17.51 10888.39

$java Ice 800 0.01 5

1 2.05 -0.18 10478.17

2 4.06 -0.36 10075.10

CS 540 Spring 2018

3 6.03 -0.53 9687.99

4 7.96 -0.70 9316.22

5 9.85 -0.86 8959.16

With η = 0.1 you should get convergence within 100 iterations.

(Note the β’s are now for the normalized version of x, but you can easily translate them back for the
original x with a little algebra. This is not required for the homework.)

9. Now we implement Stochastic Gradient Descent (SGD). With everything the same as part 8 (including
x normalization), we modify the definition of gradient in equations (1) and (2) as follows. In iteration
t we randomly pick one of the n items. Say we picked (xjt , yjt). We approximate the gradient using
that item only:

∂MSE(β0, β1)

∂β0
≈ 2(β0 + β1xjt − yjt) (8)

∂MSE(β0, β1)

∂β1
≈ 2(β0 + β1xjt − yjt)xjt . (9)

When FLAG=900, print the same information as in part 8. For example (your results will differ
because of randomness in the items picked):

$java Ice 900 0.1 5

1 24.60 -36.45 7123.53

2 42.85 -40.53 4850.61

3 49.01 -47.42 4631.96

4 45.74 -42.09 4614.13

5 67.18 -8.49 1550.91

With η = 0.1 you should approximately converge within a few hundred iterations.

Since n is small in our data set, there is little advantage of SGD over gradient descent. However, on
large data sets SGD becomes more desirable.

10. Hints:

1. Update β0, β1 simultaneously in an iteration. Don’t use a new β0 to calculate β1.

2. Use double instead of float in Java.

3. Don’t round the variables themselves to 2 digits in the middle stages. That is for printing only.

