Advanced Search
Hill climbing

Yingyu Liang
yliang@cs.wisc.edu

Computer Sciences Department
University of Wisconsin, Madison

[Based on slides from Jerry Zhu, Andrew Moore http://www.cs.cmu.edu/~awm/tutorials]
Optimization problems

• Previously we want a path from start to goal
 ▪ Uninformed search: \(g(s) \): Iterative Deepening
 ▪ Informed search: \(g(s) + h(s) \): A*

• Now a different setting:
 ▪ Each state \(s \) has a score \(f(s) \) that we can compute
 ▪ The goal is to find the state with the highest score, or a reasonably high score
 ▪ Do not care about the path
 ▪ This is an optimization problem
 ▪ Enumerating the states is intractable
 ▪ Even previous search algorithms are too expensive
Examples

• N-queen: \(f(s) = \) number of conflicting queens in state \(s \)

Note we want \(s \) with the lowest score \(f(s)=0 \). The techniques are the same. Low or high should be obvious from context.
Examples

• N-queen: $f(s) =$ number of conflicting queens in state s

Note we want s with the lowest score $f(s)=0$. The techniques are the same. Low or high should be obvious from context.

• Traveling salesperson problem (TSP)
 ▪ Visit each city once, return to first city
 ▪ State = order of cities, $f(s) =$ total mileage
Examples

• N-queen: \(f(s) = \) number of conflicting queens in state \(s \)

 Note we want \(s \) with the lowest score \(f(s)=0 \). The techniques are the same. Low or high should be obvious from context.

• Traveling salesperson problem (TSP)
 ▪ Visit each city once, return to first city
 ▪ State = order of cities, \(f(s) = \) total mileage

• Boolean satisfiability (e.g., 3-SAT)
 ▪ State = assignment to variables
 ▪ \(f(s) = \) # satisfied clauses

\[
\begin{align*}
A & \lor \neg B \lor C \\
\neg A & \lor C \lor D \\
B & \lor D \lor \neg E \\
\neg C & \lor \neg D \lor \neg E \\
\neg A & \lor \neg C \lor E \\
\end{align*}
\]
1. HILL CLIMBING
Hill climbing

- Very simple idea: Start from some state \(s \),
 - Move to a neighbor \(t \) with better score. Repeat.
- **Question**: what’s a neighbor?
 - You have to define that!
 - The *neighborhood* of a state is the set of neighbors
 - Also called ‘move set’
 - Similar to successor function
Neighbors: N-queen

- Example: N-queen (one queen per column). One possibility:

\[f(s) = 1 \]

Neighborhood of \(s \)
Neighbors: N-queen

- Example: N-queen (one queen per column). One possibility:
 - Pick the right-most conflicting column;
 - Move the queen in that column vertically to a different location.

\[f(s) = 1 \]

\[f=1 \] \hspace{1cm} \text{Neighborhood of } s \hspace{1cm} f=2 \]

\[s \]

Tie breaking? More promising?
Neighbors: TSP

- state: A-B-C-D-E-F-G-H-A
- $f =$ length of tour
Neighbors: TSP

- state: A-B-C-D-E-F-G-H-A
- $f =$ length of tour
- One possibility: 2-change

A-B-C-D-E-F-G-H-A

flip

A-E-D-C-B-F-G-H-A
Neighbors: SAT

• State: (A=T, B=F, C=T, D=T, E=T)
• $f =$ number of satisfied clauses
• Neighbor:

\[
\begin{align*}
A & \lor \neg B \lor C \\
\neg A & \lor C \lor D \\
B & \lor D \lor \neg E \\
\neg C & \lor \neg D \lor \neg E \\
\neg A & \lor \neg C \lor E
\end{align*}
\]
Neighbors: SAT

- State: \((A=T, B=F, C=T, D=T, E=T)\)
- \(f\) = number of satisfied clauses
- Neighbor: flip the assignment of one variable

\[
\begin{align*}
(A=F, B=F, C=T, D=T, E=T) \\
(A=T, B=T, C=T, D=T, E=T) \\
(A=T, B=F, C=F, D=T, E=T) \\
(A=T, B=F, C=T, D=F, E=T) \\
(A=T, B=F, C=T, D=T, E=F)
\end{align*}
\]
Hill climbing

- **Question**: What’s a neighbor?
 - (vaguely) Problems tend to have structures. A small change produces a neighboring state.
 - The neighborhood must be small enough for efficiency
 - Designing the neighborhood is critical. This is the real ingenuity – not the decision to use hill climbing.

- **Question**: Pick which neighbor?
- **Question**: What if no neighbor is better than the current state?
Hill climbing

- **Question:** What’s a neighbor?
 - (vaguely) Problems tend to have structures. A small change produces a neighboring state.
 - The neighborhood must be small enough for efficiency
 - Designing the neighborhood is critical. This is the real ingenuity – not the decision to use hill climbing.

- **Question:** Pick which neighbor? **The best one (greedy)**

- **Question:** What if no neighbor is better than the current state? **Stop. (Doh!)**
Hill climbing algorithm

1. Pick initial state s
2. Pick t in neighbors(s) with the largest $f(t)$
3. IF $f(t) \leq f(s)$ THEN stop, return s
4. $s = t$. GOTO 2.

• Not the most sophisticated algorithm in the world.
• Very greedy.
• Easily stuck.
Hill climbing algorithm

1. Pick initial state \(s \)
2. Pick \(t \) in \(\text{neighbors}(s) \) with the largest \(f(t) \)
3. IF \(f(t) \leq f(s) \) THEN stop, return \(s \)
4. \(s = t \). GOTO 2.

- Not the most sophisticated algorithm in the world.
- Very greedy.
- Easily stuck.

your enemy:

local optima
Local optima in hill climbing

- Useful conceptual picture: \(f \) surface = ‘hills’ in state space

- But we can’t see the landscape all at once. Only see the neighborhood. Climb in fog.
Local optima in hill climbing

• Local optima (there can be many!)

• Plateaux

Declare top-of-the-world?

Where shall I go?
Local optima in hill climbing

- Local optima (there can be many!)
- Plateaus

Declare the top of the world?

Where shall I go?

The rest of the lecture is about

Escaping local optima
Not every local minimum should be escaped
Repeated hill climbing with random restarts

• Very simple modification

1. When stuck, pick a random new start, run basic hill climbing from there.
2. Repeat this \(k \) times.
3. Return the best of the \(k \) local optima.

• Can be very effective
• Should be tried whenever hill climbing is used
Variations of hill climbing

• **Question**: How do we make hill climbing less greedy?
Variations of hill climbing

- **Question**: How do we make hill climbing less greedy?
 - Stochastic hill climbing
 - Randomly select among better neighbors
 - The better, the more likely
 - Pros / cons compared with basic hill climbing?
Variations of hill climbing

• **Question**: How do we make hill climbing less greedy?
 ▪ Stochastic hill climbing
 • Randomly select among better neighbors
 • The better, the more likely
 • Pros / cons compared with basic hill climbing?

• **Question**: What if the neighborhood is too large to enumerate? (e.g. N-queen if we need to pick both the column and the move within it)

Variations of hill climbing

• **Question**: How do we make hill climbing less greedy?
 - **Stochastic hill climbing**
 • Randomly select among better neighbors
 • The better, the more likely
 • Pros / cons compared with basic hill climbing?

• **Question**: What if the neighborhood is too large to enumerate? (e.g. N-queen if we need to pick both the column and the move within it)
 - **First-choice hill climbing**
 • Randomly generate neighbors, one at a time
 • If better, take the move
 • Pros / cons compared with basic hill climbing?
Variations of hill climbing

• We are still greedy! Only willing to move upwards.
• Important observation in life:

 Sometimes one needs to temporarily step back in order to move forward.

 Sometimes one needs to move to an inferior neighbor in order to escape a local optimum.
Variations of hill climbing

WALKSAT [Selman]

- Pick a random unsatisfied clause
- Consider 3 neighbors: flip each variable
- If any improves \(f \), accept the best
- If none improves \(f \):
 - 50% of the time pick the least bad neighbor
 - 50% of the time pick a random neighbor

This is the best known algorithm for satisfying Boolean formulae.

\[
\begin{align*}
A & \lor \neg B \lor C \\
\neg A & \lor C \lor D \\
B & \lor D \lor \neg E \\
\neg C & \lor \neg D \lor \neg E \\
\neg A & \lor \neg C \lor E
\end{align*}
\]