Informed Search

Yingyu Liang
yliang@cs.wisc.edu

Computer Sciences Department
University of Wisconsin, Madison

[Based on slides from Andrew Moore, http://www.cs.cmu.edu/~awm/tutorials]
Main messages

- A*. Always be optimistic.
Uninformed vs. informed search

- **Uninformed search** (BFS, uniform-cost, DFS, ID etc.)
 - Knows the actual path cost \(g(s) \) from start to a node \(s \) in the fringe, but that’s it.

- **Informed search**
 - Also has a heuristic \(h(s) \) of the cost from \(s \) to goal. (‘\(h \)’ = heuristic, non-negative)
 - Can be much faster than uninformed search.
Recall: Uniform-cost search

- Uniform-cost search: uninformed search when edge costs are not the same.
- Complete (will find a goal). Optimal (will find the least-cost goal).
- Always expand the node with the least $g(s)$
 - Use a priority queue:
 - Push in states with their first-half-cost $g(s)$
 - Pop out the state with the least $g(s)$ first.
- Now we have an estimate of the second-half-cost $h(s)$, how to use it?
First attempt: Best-first greedy search

• Idea 1: use $h(s)$ instead of $g(s)$
• Always expand the node with the least $h(s)$
 ▪ Use a priority queue:
 • Push in states with their second-half-cost $h(s)$
 • Pop out the state with the least $h(s)$ first.
• Known as “best first greedy” search
• How’s this idea?
Best-first greedy search looking stupid

- It will follow the path $A \rightarrow C \rightarrow G$ (why?)
- Obviously not optimal
Second attempt: A search

• Idea 2: use $g(s)+h(s)$

• Always expand the node with the least $g(s)+h(s)$
 ▪ Use a priority queue:
 • Push in states with their first-half-cost $g(s)+h(s)$
 • Pop out the state with the least $g(s)+h(s)$ first.

• Known as “A” search

• How’s this idea?

• Works for this example
A search still not quite right

- A search is not optimal.
Third attempt: A* search

• Same as A search, but the heuristic function $h()$ has to satisfy $h(s) \leq h^*(s)$, where $h^*(s)$ is the true cost from node s to the goal.

• Such heuristic function $h()$ is called **admissible**.
 • An admissible heuristic never over-estimates.

It is always optimistic

• A search with admissible $h()$ is called **A* search**.
Admissible heuristic functions h

- 8-puzzle example

<table>
<thead>
<tr>
<th>Example State</th>
<th>Goal State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td>1 2 3</td>
</tr>
<tr>
<td>4 6 5</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 8</td>
<td>7 8</td>
</tr>
</tbody>
</table>

- Which of the following are admissible heuristics?
 - $h(n) =$ number of tiles in wrong position
 - $h(n) = 0$
 - $h(n) = 1$
 - $h(n) =$ sum of Manhattan distance between each tile and its goal location
Admissible heuristic functions h

- 8-puzzle example

<table>
<thead>
<tr>
<th>Example State</th>
<th>Goal State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

- Which of the following are admissible heuristics?
 - $h(n)=$number of tiles in wrong position YES
 - $h(n)=0$ YES, uninformed uniform cost search
 - $h(n)=1$ NO, goal state
 - $h(n)=$sum of Manhattan distance between each tile and its goal location YES
Admissible heuristic functions h

- In general, which of the following are admissible heuristics? $h^*(n)$ is the true optimal cost from n to goal.
 - $h(n) = h^*(n)$
 - $h(n) = \max(2, h^*(n))$
 - $h(n) = \min(2, h^*(n))$
 - $h(n) = h^*(n) - 2$
 - $h(n) = \sqrt{h^*(n)}$
Admissible heuristic functions h

- In general, which of the following are admissible heuristics? $h^*(n)$ is the true optimal cost from n to goal.

 - $h(n) = h^*(n)$ YES
 - $h(n) = \max(2, h^*(n))$ NO
 - $h(n) = \min(2, h^*(n))$ YES
 - $h(n) = h^*(n) - 2$ NO, possibly negative
 - $h(n) = \sqrt{h^*(n)}$ NO if $h^*(n) < 1$
Heuristics for Admissible heuristics

• How to construct heuristic functions?

Example State

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Goal State

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

• Often by relaxing the constraints
 • $h(n) =$ number of tiles in wrong position
 Allow tiles to fly to their destination in one step
 • $h(n) =$ sum of Manhattan distance between each tile and its goal location
 Allow tiles to move on top of other tiles
“my heuristic is better than yours”

- A heuristic function h_2 dominates h_1 if for all s
 $h_1(s) \leq h_2(s) \leq h^*(s)$
- We prefer heuristic functions as close to h^* as possible, but not over h^*.

But

- Good heuristic function might need complex computation
- Time may be better spent, if we use a faster, simpler heuristic function and expand more nodes