Informed Search

Yingyu Liang
yliang@cs.wisc.edu

Computer Sciences Department
University of Wisconsin, Madison

[Based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials]
Main messages

• A*. Always be optimistic.
A* search

• Same as A search, but the heuristic function $h()$ has to satisfy $h(s) \leq h^*(s)$, where $h^*(s)$ is the true cost from node s to the goal.

• Such heuristic function $h()$ is called admissible.
 • An admissible heuristic never over-estimates

• A search with admissible $h()$ is called A* search.

It is always optimistic
Q1: When should A* stop?

- Idea: as soon as it generates the goal state?
- $h()$ is admissible
- The goal G will be generated as path $A \rightarrow B \rightarrow G$, with cost 1000.
Q1: The correct A* stop rule

• A* should terminate only when a goal is popped from the priority queue.

• If you have exceedingly good memory, you’ll remember this is the same rule for uniform cost search on cyclic graphs.

• Indeed A* with \(h() = 0 \) is exactly uniform cost search!
Q2: A* revisiting expanded states

• **One more complication**: A* can revisit an expanded state, and discover a shorter path

![Graph](image-url)

• Can you find the state in question?
Q2: A* revisiting expanded states

- One more complication: A* can revisit an expanded state, and discover a shorter path

We shall put D back into the priority queue, with the smaller \(g + h \)

- Can you find the state in question?
Q3: What if A* revisits a state in the PQ?

We’ve seen this before, with uniform cost search

‘promote’ D in the queue with the smaller cost
The A* algorithm

1. Put the start node S on the priority queue, called OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which $f(n)$ is minimum
4. If n is a goal node, exit (trace back pointers from n to S)
5. Expand n, generating all its successors and attach to them pointers back to n. For each successor n' of n
 1. If n' is not already on OPEN or CLOSED estimate $h(n'), g(n') = g(n) + c(n,n')$, $f(n') = g(n') + h(n')$, and place it on OPEN.
 2. If n' is already on OPEN or CLOSED, then check if $g(n')$ is lower for the new version of n'. If so, then:
 1. Redirect pointers backward from n' along path yielding lower $g(n')$.
 2. Put n' on OPEN.
 3. If $g(n')$ is not lower for the new version, do nothing.
A*: the dark side

• A* can use lots of memory.
 \[O(\text{number of states}) \]
• For large problems A* will run out of memory
• We’ll look at two alternatives:
 ▪ IDA*
 ▪ Beam search
IDA*: iterative deepening A*

- Memory bounded search. Assume integer costs
 - Do path checking DFS, do not expand any node with \(f(n) > 0 \). Stop if we find a goal.
 - Do path checking DFS, do not expand any node with \(f(n) > 1 \). Stop if we find a goal.
 - Do path checking DFS, do not expand any node with \(f(n) > 2 \). Stop if we find a goal.
 - Do path checking DFS, do not expand any node with \(f(n) > 3 \). Stop if we find a goal.

 ... repeat this, increase threshold by 1 each time until we find a goal.

- This is complete, optimal, but more costly than A* in general.
Beam search

• Very general technique, not just for A*
• The priority queue has a fixed size k. Only the top k nodes are kept. Others are discarded.
• Neither complete nor optimal, nor can maintain an ‘expanded’ node list, but memory efficient.
• Variation: The priority queue only keeps nodes that are at most ε worse than the best node in the queue. ε is the beam width.
• Beam search used successfully in speech recognition.
Example

Initial state

Goal state

(All edges are directed, pointing downwards)
Example

OPEN
- S(0+8)
- A(1+8) B(5+4) C(8+3)
- B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)
- C(8+3) D(4+inf) E(8+inf) G(10+0) G(9+0)
- C(8+3) D(4+inf) E(8+inf) G(10+0)

CLOSED
- S(0+8)
- S(0+8) A(1+8)
- S(0+8) A(1+8) B(5+4)
- S(0+8) A(1+8) B(5+4) G(9+0)

Backtrack: G => B => S.
What you should know

- Know why best-first greedy search is bad.
- Thoroughly understand A*.
- Trace simple examples of A* execution.
- Understand admissible heuristics.
Appendix: Proof that A* is optimal

- Suppose A* finds a suboptimal path ending in goal G', where $f(G') > f^* =$ cost of optimal path.
- Let’s look at the first unexpanded node n on the optimal path (n exists, otherwise the optimal goal would have been found).
- $f(n) > f(G')$, otherwise we would have expanded n.
- $f(n) = g(n) + h(n)$ by definition.
 - $= g^*(n) + h(n)$ because n is on the optimal path.
 - $\leq g^*(n) + h^*(n)$ because h is admissible.
 - $= f^*$ because n is on the optimal path.
- $f^* \geq f(n) > f(G')$, contradicting the assumption at top.