Neural Networks
Outline

• Building unit: neuron
 • Linear perceptron
 • Non-linear perceptron
 • The power/limit of a single perceptron
 • Learning of a single perceptron

• Neural network: a network of neurons
 • Layers, hidden units
 • Learning of neural network: backpropagation (gradient descent)
Linear perceptron

- Input: $x_1, x_2, ..., x_D$ (For notation simplicity, define $x_0 = 1$)
- Weights: $w_1, w_2, ..., w_D$
- Bias: w_0
- Output: $a = \sum_{d=0}^{D} w_d x_d$
Nonlinear perceptron

- Input: x_1, x_2, \ldots, x_D (For notation simplicity, define $x_0 = 1$)
- Weights: w_1, w_2, \ldots, w_D
- Bias: w_0
- Activation function: $g(z) = \text{step}(z), \text{sigmoid}(z), \text{relu}(z), \ldots$
- Output: $a = g(\sum_{d=0}^{D} w_d x_d)$
Example Question

• Will you go to the festival?
• Go only if Weather is favorable and at least one of the other two conditions is favorable

All inputs are binary; 1 is favorable
Multi-layer neural networks

- Training: encode a label y by an indicator vector
 - class1=$(1,0,0,…,0)$, class2=$(0,1,0,…,0)$ etc.
- Test: choose the class corresponding to the largest output unit
Learning in neural network

• Again we will minimize the error (K outputs):

$$E = \frac{1}{2} \sum_{x \in D} E_{x}, \quad E_{x} = \|y - a\|^2 = \sum_{c=1}^{K} (a_{c} - y_{c})^2$$

• x: one training point in the training set D
• a_{c}: the c-th output for the training point x
• y_{c}: the c-th element of the label indicator vector for x
Backpropagation

Layer (1) Layer (2) Layer (3) Layer (4)

\[
\begin{align*}
E_x &= ||y - a||^2 \\
\delta_1 &= \frac{\partial E_x}{\partial z_1} = 2(a_1 - y_1)g'(z_1^{(4)}) \\
\frac{\partial E_x}{\partial w_{11}^{(4)}} &= \delta_1^{(4)} a_1^{(3)}
\end{align*}
\]
Backpropagation of δ

Thus, for any neuron in the network:

$$
\delta_j^{(l)} = \sum_k \delta_k^{(l+1)} w_{kj}^{(l+1)} g'(z_j^{(l)})
$$

- $\delta_j^{(l)}$: δ of j^{th} Neuron in Layer l
- $\delta_k^{(l+1)}$: δ of k^{th} Neuron in Layer $l + 1$
- $g'(z_j^{(l)})$: derivative of j^{th} Neuron in Layer l w.r.t. its linear combination input
- $w_{kj}^{(l+1)}$: Weight from j^{th} Neuron in Layer l to k^{th} Neuron in Layer $l + 1$

$$
E_x = \|y - a\|^2
$$
Example Question

15. (Gradient descent) Let $\mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d$. We want to minimize the objective function $f(\mathbf{x}) = \sum_{i=1}^{d} ix_i = x_1 + 2x_2 + \ldots + dx_d$ using gradient descent. Let the stepsize $\eta = 0.1$. If we start at the all-zero vector $\mathbf{x}^{(0)} = (0, \ldots, 0)$, what is the next vector $\mathbf{x}^{(1)}$ produced by gradient descent?
Example Question

15. (Gradient descent) Let \(x = (x_1, \ldots, x_d) \in \mathbb{R}^d \). We want to minimize the objective function \(f(x) = \sum_{i=1}^{d} ix_i = x_1 + 2x_2 + \ldots + dx_d \) using gradient descent. Let the stepsize \(\eta = 0.1 \). If we start at the all-zero vector \(x^{(0)} = (0, \ldots, 0) \), what is the next vector \(x^{(1)} \) produced by gradient descent?

A: \(x^{(1)} = x^{(0)} - \eta \nabla f(x) \), and \(\nabla f(x) = (1, 2, \ldots, d) \). So \((-0.1, -0.2, \ldots, -0.1 \cdot d)\).
23. (ReLU) Consider a rectified linear unit with input $x \in \mathbb{R}$ and a bias term. The output can be written as $y = \max(0, w_0 + w_1 x)$. Write down the input value x that produces a specific output $y > 0$.
23. (ReLU) Consider a rectified linear unit with input $x \in \mathbb{R}$ and a bias term. The output can be written as $y = \max(0, w_0 + w_1 x)$. Write down the input value x that produces a specific output $y > 0$.

A: since $y > 0$, $y = w_0 + w_1 \cdot x$. Thus $x = (y - w_0)/w_1$. However, we will also accept the interpretation that we asked for the range $y > 0$. In that case you must show all four branches:

$$
\begin{cases}
 x > -w_0/w_1, & w_1 > 0 \\
 x < -w_0/w_1, & w_1 < 0 \\
 x \in \mathbb{R}, & w_1 = 0, w_0 > 0 \\
 \emptyset, & w_1 = 0, w_0 \leq 0
\end{cases}
$$
Convolution: discrete version

• Given array u_t and w_t, their convolution is a function s_t

$$s_t = \sum_{a=-\infty}^{+\infty} u_a w_{t-a}$$

• Written as

$$s = (u \ast w) \quad \text{or} \quad s_t = (u \ast w)_t$$

• When u_t or w_t is not defined, assumed to be 0
Convolution illustration

\[w = [z, y, x] \]
\[u = [a, b, c, d, e, f] \]
Pooling illustration

\[u_1, u_2, u_3 \]

\[\mathbf{u} = [a, b, c, d, e, f] \]
Example question

What is the value $s = (u \ast w)$? (Valid padding)

$w = [-1,1,1]$
$u = [1,2,3,4,5,6]$
Reinforcement Learning
Outline

- The reinforcement learning task
- Markov decision process
- Value functions
- Value iteration
- Q functions
- Q learning
Reinforcement learning as a Markov decision process (MDP)

- Markov assumption
 \[P(s_{t+1} \mid s_t, a_t, s_{t-1}, a_{t-1}, \ldots) = P(s_{t+1} \mid s_t, a_t) \]

- also assume reward is Markovian
 \[P(r_{t+1} \mid s_t, a_t, s_{t-1}, a_{t-1}, \ldots) = P(r_{t+1} \mid s_t, a_t) \]

Goal: learn a policy \(\pi : S \rightarrow A \) for choosing actions that maximizes

\[E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots] \quad \text{where } 0 \leq \gamma < 1 \]

for every possible starting state \(s_0 \)
Value function for a policy

• given a policy $\pi : S \rightarrow A$ define

$$V^\pi(s) = \sum_{t=0}^{\infty} \gamma^t E[r_t]$$

assuming action sequence chosen according to π starting at state s

• we want the optimal policy π^* where

$$* = \arg \max \ V(s) \ \text{for all } s$$

we'll denote the value function for this optimal policy as $V^*(s)$
Value iteration for learning $V^*(s)$

initialize $V(s)$ arbitrarily
loop until policy good enough
{
 loop for $s \in S$
 {
 loop for $a \in A$
 {
 $Q(s,a) \leftarrow r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V(s')$
 }
 $V(s) \leftarrow \max_a Q(s,a)$
 }
}
define a new function, closely related to V^*

$$Q(s, a) \leftarrow E[r(s, a)] + \gamma E_{s'|s, a}[V^*(s')]$$

if agent knows $Q(s, a)$, it can choose optimal action without knowing $P(s' | s, a)$

$$\pi^*(s) \leftarrow \text{arg max}_a Q(s, a) \quad V^*(s) \leftarrow \max_a Q(s, a)$$

and it can learn $Q(s, a)$ without knowing $P(s' | s, a)$
Q learning for deterministic worlds

for each s, a initialize table entry $\hat{Q}(s,a) \leftarrow 0$

observe current state s

do forever

select an action a and execute it

receive immediate reward r

observe the new state s'

update table entry

$$s \leftarrow \hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$
Example question

Suppose a policy π is shown by red arrows, the discount factor $\gamma = 0.9$. Compute the value function $V^\pi(s)$ for all states s.
Example question