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Principal Component Analysis

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

1 Basic Linear Algebra Review

Scalar (1× 1), vector (default column vector, n× 1), matrix (n×m). Matrix transpose
(
A>
)
ij

= Aji.

A n × m matrix A times a m × p matrix B is a n × p matrix C, with Cij =
∑m
k=1AikBkj . Check di-

mensions.

(AB)C = A(BC), A(B + C) = AB + AC, (A + B)C = AC + BC, (A + B)> = A> + B>, (AB)> = B>A>.
Note in general AB 6= BA.

The following is specific to square matrices.

Diagonal matrix: Aij = 0,∀i 6= j. Identity matrix I is diagonal with Iii = 1,∀i. AI = IA = A for all
square A.

Some square matrices have inverses: AA−1 = A−1A = I. (AB)−1 = B−1A−1. (A>)−1 = (A−1)>.

The trace is the sum of diagonal elements (or eigenvalues) Tr(A) =
∑
iAii.

The determinant |A| is the product of eigenvalues. |AB| = |A||B|, |a| = a, |aA| = an|A|, |A−1| = 1/|A|. A
matrix A is invertible iff |A| 6= 0.

If |A| = 0 for a n × n square matrix A, A is said to be singular. This means at least one column is
linearly dependent on (i.e., a linear combination of) other columns (same for rows). Once all such linearly
dependent columns and rows are removed, A is reduced to a smaller r×r matrix, and r is called the rank of A.

A m × m matrix A has m eigenvalues λi and eigenvectors (up to scaling) ui s.t. Aui = λiui. In gen-
eral λ’s are complex numbers. If A is real and symmetric, λ’s are real numbers, and u’s are orthogonal.
The u’s can be scaled to orthonormal, i.e., length one, so that u>i uj = Iij . The spectral decomposition is
A =

∑
i λiuiu

>
i . For invertible A, A−1 =

∑
i

1
λi
uiu
>
i . This shows why the determinant must be non-zero.

A real symmetric matrix A is positive semi-definite, if its eigenvalues λi ≥ 0, ∀i. Equivalently, ∀x ∈
Rn, x>Ax ≥ 0. It is strictly positive definite if λi > 0, ∀i.

A positive semi-definite matrix has rank r equal to the number of positive eigenvalues. The remaining
n− r eigenvalues are zero.

For vector x ∈ Rn, we have
0-norm: ‖x‖0 = count of nonzero elements
1-norm: ‖x‖1 =

∑n
i=1 |xi|

2-norm (the Euclidean norm, or just ‘the norm’, length: ‖x‖2 =
(∑n

i=1 x
2
i

)1/2
1
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∞-norm: ‖x‖∞ = maxni=1 |xi|

2 Principal Component Analysis (PCA)

Let x1, . . . ,xn ∈ RD. It is convenient to assume that the points are centered
∑
i xi = 0. One can always

centered the data by subtracting the sample mean:

µ =
1

n

n∑
i=1

xi.

xi := xi − µ.

We want to represent these points in some lower dimensional space Rd where typically d� D. We form the
sample covariance matrix

S =
1

n− 1

∑
i

xix
>
i . (1)

We then perform an eigen decomposition
S = UΛU>, (2)

where the columns of U are the eigenvectors u1, . . . , uD, the diagonal elements of Λ are the eigenvalues
λ1, . . . , λD. Assuming the eigenvalues are sorted from large to small: λ1 ≥ . . . ≥ λD. Take the first d
eigenvectors u1, . . . , ud. The new representation of any xi is

(u>1 xi, . . . , u
>
d xi)

>.

2.1 The Variance Preservation View (* optional)

PCA can be justified in several ways. Let’s consider a projection onto a line going through the origin. Such
a line can be specified by a vector w ∈ RD. The projection of x is

w>x

‖w‖
. (3)

For simplicity, let us consider w with unit length. The variance of the projected dataset is

1

n− 1

n∑
i=1

(w>xi)
2 = w>Sw, (4)

where

S =
1

n− 1

∑
i

xix
>
i (5)

is the sample covariance matrix since we assume the dataset is centered. The goal of PCA (in this 1D case)
is to find the w that maximizes the variance, in the hope that it maximally preserves the distinction among
points. This leads to the following optimization problem

max
w

w>Sw (6)

s.t. ‖w‖ = 1. (7)

Let’s solve it by forming the Lagrangian

w>Sw + λ(1−w>w). (8)
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The gradient w.r.t. w is
∇ = 2Sw − 2λw. (9)

Setting to zero, we find that
Sw = λw, (10)

i.e., the desired direction w is an eigenvector of S! But which one? Recall the projected variance is

w>Sw = w>λw = λ, (11)

we see that we want λ to be the largest eigenvalue of S and w the corresponding eigenvector. In other
words, let λ1, . . . , λn be the eigenvalues of S in non-increasing order, and u1, . . . , un be the corresponding
eigenvectors. Then u1 is the maximum variance preserving direction, and the resulting variance is simply
λ1. This is PCA with d = 1: a D-dimensional point x is projected to a scalar u>1 x. Note that when S’s
top eigenvalue has multiplicity larger than one, e.g., λ1 = λ2, then PCA is not unique: any unit vector in
span(u1, u2) can be the PCA direction.

If we want d > 1, it can be shown that we want to project x onto the first d eigenvectors

x→ (u>1 x, . . . , u
>
d x)>. (12)

Recall that one can view u1, . . . , uD as the D major-to-minor axes of an ellipsoid represented by the sample
covariance matrix (NB this does not assume that the underlying distribution is Gaussian). Clearly, if d = D
then u1 . . . uD is a basis for RD, and this PCA projection amounts to a rotation of the coordinate system
(align them with the eigenvectors) without any loss of information.

2.2 The Minimum Reconstruction Error View (* optional)

Using any orthonormal basis u1 . . .uD, a training point xi (recall it has been centered) can be written as

xi =

D∑
j=1

αijuj (13)

where
αij = u>j xi. (14)

Consider the d-term approximation to xi:

x̂i =

d∑
j=1

αijuj . (15)

We want the approximation error to be small for all training points:

1

n

n∑
i=1

‖x̂i − xi‖2 =
1

n

n∑
i=1

‖
D∑

j=d+1

αijuj‖2 =
1

n

n∑
i=1

D∑
j=d+1

α2
ij (16)

=
1

n

n∑
i=1

D∑
j=d+1

u>j xix
>
i uj =

D∑
j=d+1

u>j Suj . (17)

If d = D−1, i.e., we need to remove a single dimension, it is easy to see that uD = uD because u>DSuD = λD
is the smallest among all unit vectors. Similarly, the other dimensions to remove are subsequently the
eigenvectors corresponding to the least eigenvalues.
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2.3 The Singular Value Decomposition View (* optional)

Recap: We could have formed a n × D matrix X with the centered points x1, . . . ,xn. Then our sample
covariance matrix is

S =
1

n− 1
X>X,

and our eigen decomposition is
S = UΛU>.

If we form the D × d matrix Ud = [u1| . . . |ud], The PCA projection of X is

XUd.

This is a n× d matrix where the ith row is the new representation of xi.
But we will now perform singular value decomposition (SVD) on X directly, without forming S at all.

SVD performs
Xn×D = Ln×mΣm×mV

>
m×D

where m = min(n,D), L contains orthonormal columns, so does V , and Σ is a diagonal matrix with singular
values σ1, . . . , σm on the diagonal. If we were to write the sample covariance matrix using SVD of X, we get

S =
1

n− 1
X>X =

1

n− 1
V ΣL>LΣV > =

1

n− 1
V Σ2V >.

Equating this with
S = UΛU>, (18)

we see that

λi =
σ2
i

n− 1
, V = U. (19)

So the PCA projection of X can be performed via SVD as

XVd

as well.


